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Abstract: Commercial finite element software that uses default hardening model simulation is not
able to predict the final shape of sheet metal that changes its dimensions after removing the punch
due to residual stress (strain recovery or springback). We aimed to develop a constitutive hardening
model to more accurately simulate this final shape. The strain recovery or balancing of residual
stress can be determined using the isotropic hardening of the original elastic modulus and the
hardening combined with varying degrees of elastic modulus degradation and the size of the yield
surfaces. The Chord model was modified with one-yield surfaces. The model was combined with
nonlinear isotropic–kinematic hardening models and implemented in Abaqus user-defined material
subroutine for constitutive model (UMAT). The Numisheet 2011 benchmark for springback prediction
for DP780 high-strength steel sheet was selected to verify the new model, the Chord model, the Quasi
Plastic-Elastic (QPE) model, and the default hardening model using Abaqus software. The simulation
of U-draw bending from the Numisheet 2011 benchmark was useful for comparing the proposed
model with experimental measurements. The results from the simulation of the model showed that
the new model more accurately predicts springback than the other models.

Keywords: springback; elastic modulus degradation; finite element software; user-defined material
subroutine for constitutive model (UMAT)

1. Introduction

Lightweight materials in the passenger vehicle manufacturing process have been widely used to
reduce the cost of consumption and reduce deformability. However, the dimensions of the final shape
of the deformed part change after removing the punch guide due to residual stress. This phenomenon
is called springback, which is challenging to predict using constitutive models. This challenge has
received considerable attention from researchers, who are seeking to improve the methods and
constitutive models to more accurately predict springback.

Accurately simulating springback requires an accurate hardening model to describe the stress and
strain curve history in the complex loading and unloading process that occurs during sheet-stamping
operations. Accurate constitutive models enable the accurate determination of the stress distribution
during the loading process and of the residual stress relaxation during the unloading process, which
occur during the springback stage. Therefore, researchers have attempted to improve constitutive
models and increase the accuracy of springback simulations.

Many researchers have reported that the main factor in springback prediction is the degradation
of elastic moduli with increasing plastic strain during the unloading process. However, Lems found
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that the experimental measurement of springback was larger than in simulations when using a
constant Young’s modulus, which is available in commercial finite element software [1]. Elastic
modulus degradation has been measured with increasing plastic strain from forward stress to zero
stress. However, Morestin and Boivin reported that the decrease in the elastic modulus in DP780 was
more than 10% compared with the constant elastic modulus with 5% plastic strain [2]. In mild steel,
high-strength steel, and aluminum, the elastic modulus degradation is more than 30% [3,4], 20%, [3–8],
and 10%, respectively [4]. Mendiguren et al. observed a 20% reduction in the elastic modulus of
TRIP700 at 12% plastic deformation [9].

To achieve strain recovery with zero and non-zero residual stress in springback simulation or
strain recovery in the unloading path, two common methods to determine the elastic degradation
unloading of the elastic modulus have been proposed to more accurately predict springback. The first
method, which is more of a mathematical than a physical approach, is the linear degradation elastic
modulus, exemplified by the Chord model [3,7,10–16]. This model has two disadvantages. First,
the Chord model, after 10% plastic strain, tends to be constant for common sheet steel, and this constant
is about 20% of the initial elastic modulus [17]; second, in reality, the strain recovery is more than zero
residual stress, but when using the Chord model, the strain recovery is zero residual stress [17]. To solve
this issue for non-zero residual stress, a second method has been proposed: the Quasi Plastic-Elastic
(QPE) model [18]. In this method, in the unloading path, the stress-strain response starts with the
original elastic modulus until early yield stress, rather than starting nonlinearly with the QPE elastic
unloading modulus, which reproduces non-zero strain recovery compared to reality in the stress-strain
curve. In other words, the QPE model has the same disadvantages as the Chord model, which tends
to be constant after 6% plastic strain and 48% of the initial elastic modulus in DP780. Both methods
were more accurate at predicting springback when the sheet metal base was pre-strained before being
deformed, but overestimate the received material [17]. In springback simulation, the stress does not
return to zero stress, but in reality, it has a positive stress value. This issue can be solved using a
mathematical approach, rather than a physical approach, as suggested by the QPE model.

The main objective of this study was to extend the Chord model (linear methods) to be able
to reproduce the strain recovery point with non-zero residual stress, enabling a more accurate
determination of springback. The proposed model has one yield surface, similar to the Chord model.
However, the main differences between this new model and the Chord model are:

(1) The new unloading elastic modulus is measured as a straight line between the stress forward and
the non-zero residual stress.

(2) Nonlinear regression analysis is used to fit the new model, which is a function of plastic strain.
(3) The implementation of the new model is combined with von Mises yield criteria in finite

element software.
(4) The numerical integration of the algorithm stress update is implemented as an implicit integration.
(5) The new model implements two types of nonlinear hardening models, the isotropic model and

the combined hardening model, for comparative purposes.
(6) A shell element is used with reduced integration (S4R) due to its efficiency in sheet metal

simulation under plane stress conditions.
(7) The extended Chord model was verified by comparing the U-draw bending of DP780 with the

pre-strain result, which is available in the Numisheet benchmark 2011.

2. Methods

In this section, the methodology of the extended Chord model, the constitutive model, and the
numerical integration are described in detail.
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2.1. New Model Assumption and Statistical Analysis

Figure 1, regarding DP780, shows that the responses of the stress-strain curve in the unloading
path are slightly curved until a certain point of strain recovery in non-zero residual stress. For the
isotropic hardening model, the strain recovery or unloading stage occurs between the forward stress
and zero stress with original elastic moduli. The zero stress is the center of the yield surface for the
isotropic hardening model. The result of the QPE model shows that the strain recovery is positive,
instead of there being zero residual stress, at the center of the bounding yield surface. Therefore, it was
necessary to extend the Chord model to be able to reproduce strain recovery under positive residual
stress. The unloading elastic modulus measured the degradation using a straight line from the forward
stress, with the equivalent plastic strain, to the center of the yield surface at a certain point of strain
recovery. Also, the extended Chord elastic modulus was measured in three ranges of stress as follows:
(1) 0.2 σ0 ≤ σ ≤ 0.95 σ0, (2) 0.25 σ0 ≤ σ ≤ 0.95 σ0, and (3) 0.3 σ0 ≤ σ ≤ 0.95 σ0. The highest part of
the range, 0.95 σ0, was due to the high nonlinearity at the start of unloading. The lowest part of the
stress range occurred because, in reality, the residual stress occurs at the point between the original
elastic modulus and the QPE elastic model after springback terminates. Also, the lowest part of the
range is the center of the yield surface, which is the back stress. All unloading elastic moduli were
measured in five pre-strains—2%, 4%, 6%, 8%, and 10%—as shown in Figure 1. Finally, the Chord,
QPE, and extended Chord models are expressed below, using nonlinear regression analysis between
various elastic unloading moduli and plastic strains.

EChord = E0 − (E0 − Ea)EXP(−C× p) (1)

EQPE = E0 − E1(1− EXP
(
D
(∫

dε− dεp

))
(2)

EExtend Chord = H1 + (H2)EXP(−H3 × P) (3)

where EChord, EQPE, and EExtend Chord are the Chord, QPE, and extended Chord models’ elastic modulus
degradation functions of the equivalent plastic strain P, respectively; dε is the total strain; dεp is the
plastic strain; and Ea, C, E1, D, H1, H2, and H3 are parameters measured by the loading/unloading
tensile test of DP780 using nonlinear regression analysis.
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Figure 1. Stress-strain curve in tension compression test.
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For the hardening models, nonlinear isotropic and nonlinear kinematic parameters are measured
using the uniaxial tension compression test that was taken from the Numisheet 2011 DP780 benchmark.
First, the forward stress is equal to the yield stress plus back stress plus isotropic stress. Thus, the yield
stress is constant, and the isotropic and kinematic stress can be changed by a certain value to obtain the
forward stress. For example, if the nonlinear kinematic hardening model or the back stress is 30%,
then the nonlinear isotropic stress is 70% of the forward stress minus yield stress. The back stress is
the center of the yield surface, which is the final stress and strain recovery. Also, the elastic modulus’
degradation depends on the center of the yield surface, because it is measured from the forward stress
to the center of the yield surface. Finally, all parameters of the nonlinear isotropic and kinematic
hardening models were computed using nonlinear regression analysis to fit the models, as shown in
Table 1.

Table 1. Mechanical properties of DP780 parameters of the varies elastic models and hardening models.

DP780
E0 (MPa) ν σUTS (MPa) σY (MPa)
198,800 0.3 944 454

Chord Model
Q b Ea (MPa) C

460.7 39.7 152,100 96.5

QPE Model QB (MPa) b QI (MPa) HB E1 (MPa) D γB
431.62 39.7 96.9 17,135.3 95,000 254 39.7

Extended Model Q (MPa) b H1 H2 H3 H γ
(0.3% σ) 335.7 39.7 165,407 33,083 64.59 4673.86 39.7

(0.25% σ) 350.2 39.7 163,271 35,291.7 70.5 3543.6 39.7
(0.2% σ) 383.6 39.7 161,040.9 37,577.7 77.3 3115.9 39.7

2.2. Constitutive Models

In this section, constitutive models are evaluated with the Chord, QPE, and the extended models
to predict springback. The three models, with their hardening model, were implemented in user
subroutine defined material (UMAT Abaqus implicit integration). The yield surfaces were von
Mises with two types of hardening models under plane stress conditions. The nonlinear combined
isotropic–kinematic von Mises yield surface was selected for the extended and the QPE models.
The nonlinear isotropic von Mises yield surface was selected for the Chord model. Both kinds of von
Mises hardening models can be expressed by the following equations, respectively:

(σxx − αxx)
2 +

(
σyy − αyy

)2
− (σxx − αxx)

2
×

(
σyy − αyy

)2
+ 2 ∗

(
σxy − αxy

)2
= (R(P))2 (4)

(σxx)
2 +

(
σyy

)2
− (σxx)

2
∗

(
σyy

)2
+ 2 ∗

(
σxy

)2
= R(P)2 (5)

where σxx and σyy are stress tensors in the x and y directions, respectively; σxy is the shear stress in the
plane stress; R(P)2 is the size of the yield surface as a function of the equivalent plastic strain, which is
expressed as P; αxx and αyy are the back stress or the center of the yield surface in the x and y directions,
respectively; and αxy is the back stress of the shear stress.

The size of the yield surfaces for the Chord model and the extension of the chord model can be
computed using the following equation:

R(P) = σy + Q ∗ (1− EXP(−b ∗ P)) (6)

where σy is the initial yield stress, Q and b are parameters measured from uniaxial tensile test to fit the
equation, and P is the equivalent plastic strain.
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The size of the inner yield surface and the bounding yield surface can be computed using the
following equations, respectively:

RB(P) = σy + QB ∗ (1− EXP(−b ∗ p)) (7)

RI(P) = σy + QI ∗ (1− EXP(−b ∗ p)) (8)

where RB(P) is the size of the bounding yield surface, QB is the parameter of the bounding yield
surface, RI(P) is the size of the inner yield surface, and QI is the parameter of the inner yield surface.

2.3. Stress Integration

In this part, the Chord, QPE, and extended Chord models are described with their implicit
numerical integration. Both the QPE and extended models use the combined isotropic–kinematic von
Mises yield criteria from Equation (4). The Chord model uses the isotropic von Mises yield criteria
from Equation (5) without the Chaboche model. The Chord model and extended model use one
yield surface. The QPE model uses two surfaces: the first is the inner yield surface that describes
linear unloading, and the other is the bounding yield surface or external yield surface that describes
nonlinear unloading.

2.3.1. Elastic State Loading and Unloading

In elastic state loading and unloading, the extended model and QPE model share the same
equation for the stress-strain relationship. To compute the trial stress, we used Hooke’s law with the
original elastic modulus or constant elastic modulus. The relationship between stress and strain is in
an incremental form and can be computed using the following equation:

∆σ = D : ∆ε (9)

where ∆σ is stress the stress increase, D is the elastic stiffness matrix function of the original elastic
modulus, and ∆ε is the strain increase.

For the Chord model, the trial stress was computed using Hooke’s law as a function of the Chord
model. The stress-strain relationship is presented in an incremental form and can be computed using
the following equation:

∆σ = DChord : ∆ε (10)

where DChord is the Hooke’s law function of the Chord elastic model in Equation (1).
In this case, the equivalent von Mises trial stress does not match the size of the yield surface,

and no plastic deformation occurs.

2.3.2. Elastic State Unloading and Reloading

In this case, the equivalent plastic strain is greater than zero, and the equivalent trial stress is less
than the size of the yield surface. In this mode for the Chord model, the trial stress can be computed
using Equation (8). For the extended Chord model, the elastic stiffness matrix is a function of the
extended Chord model from Equation (3), instead of using original elastic modulus. The trial stress
can be computed using the following equation:

∆σ = DExtend Chord model : ∆ε (11)

where DExtend Chord model is the Hooke’s law function of the extended Chord elastic model from
Equation (3).

In the QPE model, two stages occur during the iteration of the stress increase in unloading and
reloading. For the first stage, the equivalent trial stress computed by Equation (7) is less than the size
of the inner yield surface and the plastic strain is greater than zero. For the second stage, the equivalent
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trial stress is greater than the size of the inner yield surface and less than the size of the bounding yield
surfaces. Both the sizes of the inner and bounding yield surface are constant, and the inner yield surface
translates until it is in contact with the bounding yield surface according to the following equation:

∆αI = ∆µ(
(

RB(P) −RI(P)
RI(P)

)
∗ σI −

(
RB(P)
RI(P)

)
∗ αI + αB) (12)

where ∆αI is the increase in the back stress of the inner yield surface, σI is the stress at the start of the
increase, αI is the back stress of the inner yield surface at the start of the increase, αB is the back stress
of the bounding yield surface at the start of the increase, and ∆µ is an unknown nonlinear scalar.

In the QPE model in the second stage, the new trial stress can be computed using the Hooke’s law
function of the QPE elastic model as follows:

∆σ = DQPE : ∆ε (13)

where DQPE is the elastic stiffness matrix function of the QPE elastic model from Equation (2).
To find the unknown nonlinear scalar ∆µ by substitution, Equations (11) and (12) can be computed

using Equation (4), rather than applying the Newton Raphson method to find the solution.

2.3.3. Plastic State

The plastic state occurs when the equivalent trial stress is outside of the size of the yield surface
and the trial stress project. Return mapping of stress must be applied to ensure the stress occurs on the
yield surface and to correct the plastic strain increase. In the case of using an isotropic yield surface
(Chord model), the stress and plastic and elastic strains are updated. The yield surface is expanded
without translation, and the Chaboche model is not applied. When using a combined hardening model
(QPE and extended Chord model), the stress, back stress, plastic strain, and elastic strain must be
updated. The translation of the yield surface moves to the center (back stress) of the yield surface
and is expanded by the isotropic hardening model simultaneously. The update of the back stress in
incremental form, which is considered a Chaboche model [19], was used according to

∆ ∝= H ∗ P ∗N − γ ∗ α ∗ P (14)

N =
(σ−α)

‖(σ−α) ∗ (σ−α)‖
(15)

where ∆ ∝ is the back stress for the extended Chord model, H and γ are the parameters of the center of
the yield surface, N is the flow direction of the stress, and P is the plastic strain increase after return
mapping is applied using Newton Raphson method.

The isotropic incremental form is the same as the back stress, but there is a ratio of their parameters,
followed as Chaboche model according to

∆R = b ∗ (Q−R(P)) ∗ P (16)

where Q and b are the same parameters of the size of the yield surface in Equation (6) [19].
For the QPE model, the bounding surface is translated and expanded according to the Chaboche

model, which is expressed as
∆αB = HB ∗ P ∗N − γB ∗ αB ∗ P (17)

∆RB = b ∗ (QB −RB(P)) ∗ P (18)

where ∆αB is the back stress increase of the bounding surface, HB is the parameter of the bounding
surface, γB is the saturated parameter, αB is the back stress of the bounding surface at the end of the
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increase, ∆RB is the increase in the size of the bounding yield surface, QB is the parameter of the
bounding surface, and RB(P) is the current size of the yield surface.

3. Application

All parameters of the extended Chord model, size of yield surface, and back stress were computed
using the Newton Raphson method for a uniaxial tensile test that were taken from the Numisheet 2011
benchmark for DP780 sheet steel to fit all models.

3.1. Description of Stress-Strain Curve of DP780 Sheet Steel

In this study, a 1.4-mm-thick, 380-mm-long, and 30-mm-wide piece of DP780 sheet steel was
selected from the Numisheet 2011 benchmark experiment. Rectangular sheet specimens as received
had already been prepared. Five-cycle loading, unloading, and reloading with certain plastic strains,
2%, 4%, 6%, 8%, or 10%, was tested using an Instron (Model 8801) universal material testing machine.

3.2. Finite Element Simulation to Evaluate New Model

The algorithm for stress integration of the extended Chord model was implemented into UMAT
implicit integration using Abaqus software. The S4R shell element, with four nodes for reducing
integration, was selected due to its robust accuracy and to reduce the time required for sheet metal
forming simulation. The elements applied were 4 mm2 and we used 5467 elements. The punch,
die, and holder were modeled as rigid bodies. All hardening models had 5 layers. The QPE model
simulation required 12 h, and the Chord model and the extended Chord model required 6 h each using
one workstation processor.

3.3. Draw-Bending Tests to Predict Springback

The dimensions of the punch, holder, and die used to draw the U bending are shown in Figure 2,
and the three parameters for the springback simulation used to evaluate the new model are illustrated
in Figure 3. The holding force applied was 2940 KN, and the friction coefficient between the sheet and
tools was 0.1 with a hard coefficient. The speed of the punch was 1 mm/s.
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4. Discussion

Abaqus software has two types of hardening models that can be used to simulate springback.
The first method is the isotropic hardening model that uses the original elastic modulus. This kind of
hardening model’s center of the yield surface is zero in stress space during sheet metal deformation.
The unloading stage started when the die, punch, and holder were removed. In this stage, the stress
and strain recovery relaxes until the balance point (the center of the yield surface) of the residual stress
is reached. In the isotropic hardening model, the strain recovery is less than the true strain recovery
measurement, due to the large slope of the elastic modulus. For the second method, the nonlinear
isotropic and kinematic hardening models are combined with the original elastic modulus. In this
method, the center of the yield surface is equal to the back stress, which is greater than zero and leads
to less strain recovery than in the isotropic hardening model. The combined hardening model uses
100% back stress and 0% isotropic stress, which leads to a very large positive back stress (center of
the yield surface) and very small strain recovery. Thus, both hardening models available in Abaqus
software overestimate springback and predict less strain recovery than in reality. This measurement is
supported by similar findings reported by Zang et al. [20].

From the previous discussion, the main factors that affect springback or strain recovery prediction
accuracy using finite element software are the measurement of the elastic modulus degradation and
the size of the yield surface [3]. Thus, if the elastic modulus and the center of the yield surface decrease,
the strain recovery increases. The Chord model with the isotropic hardening model overestimate
compared with experimental measurements due to the lower measurement of the elastic moduli’s
degradation with zero residual stress, which led to a larger strain recovery than for actual strain
recovery [17]. The QPE model is more accurate than the Chord model due to the size of the yield
surface, which leads to non-zero residual stress and larger elastic modulus degradation, with the center
of the yield surface 18% higher in terms of forward stress than the Chord model [17,18,21–23]. Figure 4
depicts the main differences in springback prediction between the isotropic hardening model with the
original elastic modulus, the Chord model, and the QPE model. We assumed that the extended Chord
model was able to predict springback more accurately than the Chord and QPE models because the
elastic modulus degradation and the size of yield surface consider where location of the balance point
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of strain recovery. The extended model is not as complicated as the Chord and QPE models, because it
only uses one yield surface and is easy to implement in finite element software user subroutines.Metals 2019, 9, 511 9 of 12 
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Figure 4. Strain recovery or springback in different models.

Isotropic, Chord, QPE, and extended models were implemented in Abaqus to verify the accuracy
of the extended model. According to the simulation results in Table 2, the results for obtaining
the balance point (springback) were logical. The strain recovery simulation was set up for several
constitutive models from very large to small: Chord, QPE, the extended model, and isotropic models,
respectively. Thus, the strain recovery of the extended model was between that predicted by the QPE
model and that by the isotropic model, which was the strain recovery nearest to the balance point
compared with the experimental measurement, as shown in Figure 5.

Table 2. Measurement of the parameters and errors of springback simulation.

Parameters of
Springback Experiment Isotropic Model QPE Chord Model 20% σ 25% σ 30% σ

θ1 115.8 103.25 119.4 105.26 120.5 116.3 111.03
θ2 79.2 76.5 83.3 88.33 84.2 78.67 77.1
ρ 118.2 190.49 108 82.65 105.26 117 131.89

Errors

θ1 0% 10.83% 3.1% 9.1% 4% 1.43% 4.1%
θ2 0% 3.4% 5.17% 11.48% 6.31% 2.7% 3.65%
ρ 0% 61.15% 8.6% 30% 10.94% 2.6% 11.5%

The accuracy and the errors of the measurements of the three parameters of springback predication
for all models are provided in Table 2. The errors of the isotropic model were 10.83% of θ1, 3.4% of θ2,
and 61.15% of ρ. The errors of the Chord model were 9.1% of θ1, 11.48% of θ2, and 30% of ρ. The errors
of the QPE model were 9.1% of θ1, 11.48% of θ2, and 30% of ρ. The extended model underestimated
the parameters compared with the other models if the elastic modulus’ degradation with the center of
the yield surface was considered. The accuracy of the appropriate center of the yield surface was 25%
of the forward stress with their elastic modulus’ degradation. Therefore, the errors of the extended
model’s simulation of 25% of the forward stress were minimized to 1.43% of θ1, 2.7% of θ2, and 2.6%
of ρ compared with the other models. The simulation of the appropriate extended Chord model of
25% of the forward stress using Abaqus is shown in Figure 6. The validation of the current model
for other types of advanced high-strength steel sheet depends on its mechanical properties and the
amount of the residual stress in the strain recovery stage. Thus, to choose the appropriate model for
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other advanced high-strength steel sheets, the variation of the elastic model degradation with different
sizes of yield surfaces and simulations must be examined.

Metals 2019, 9, 511 9 of 12 

 

 
Figure 4. Strain recovery or springback in different models. 

Isotropic, Chord, QPE, and extended models were implemented in Abaqus to verify the 
accuracy of the extended model. According to the simulation results in Table 2, the results for 
obtaining the balance point (springback) were logical. The strain recovery simulation was set up for 
several constitutive models from very large to small: Chord, QPE, the extended model, and isotropic 
models, respectively. Thus, the strain recovery of the extended model was between that predicted by 
the QPE model and that by the isotropic model, which was the strain recovery nearest to the balance 
point compared with the experimental measurement, as shown in Figure 5. 

 
Figure 5. Springback profile of the different hardening models compared in our experiment. 

The accuracy and the errors of the measurements of the three parameters of springback 
predication for all models are provided in Table 2. The errors of the isotropic model were 10.83% of 𝜃1, 3.4% of 𝜃2, and 61.15% of 𝜌. The errors of the Chord model were 9.1% of 𝜃1, 11.48% of 𝜃2, and 
30% of 𝜌. The errors of the QPE model were 9.1% of 𝜃1, 11.48% of 𝜃2, and 30% of 𝜌. The extended 
model underestimated the parameters compared with the other models if the elastic modulus’ 
degradation with the center of the yield surface was considered. The accuracy of the appropriate 
center of the yield surface was 25% of the forward stress with their elastic modulus’ degradation. 
Therefore, the errors of the extended model’s simulation of 25% of the forward stress were minimized 

-80

-70

-60

-50

-40

-30

-20

-10

0
0 20 40 60 80 100 120 140 160

Chord model QPE model Isotropic

0.25 of stress forward Experment

Figure 5. Springback profile of the different hardening models compared in our experiment.

Metals 2019, 9, 511 10 of 12 

 

to 1.43% of 𝜃1, 2.7% of 𝜃2, and 2.6% of 𝜌 compared with the other models. The simulation of the 
appropriate extended Chord model of 25% of the forward stress using Abaqus is shown in Figure 6. 
The validation of the current model for other types of advanced high-strength steel sheet depends on 
its mechanical properties and the amount of the residual stress in the strain recovery stage. Thus, to 
choose the appropriate model for other advanced high-strength steel sheets, the variation of the 
elastic model degradation with different sizes of yield surfaces and simulations must be examined.  

 
Figure 6. Springback simulation for 25% of stress forward. 

Table 2. Measurement of the parameters and errors of springback simulation. 

Parameters of 
Springback 

Experiment Isotropic 
Model 

QPE Chord 
Model 

20% 𝝈 25% 𝝈 
30% 𝝈 𝜃1 115.8 103.25 119.4 105.26 120.5 116.3 111.03 𝜃2 79.2 76.5 83.3 88.33 84.2 78.67 77.1 𝜌 118.2 190.49 108 82.65 105.26 117 131.89 

Errors 𝜃1 0% 10.83% 3.1% 9.1% 4% 1.43% 4.1% 𝜃2 0% 3.4% 5.17% 11.48% 6.31% 2.7% 3.65% 𝜌 0% 61.15% 8.6% 30% 10.94% 2.6% 11.5% 

5. Conclusions 

In this work, we extended and devolved the Chord model using nonlinear combined hardening 
models with only one yield surface. The numerical integration was completely implicit, and was 
implemented in user-defined material subroutine (UMAT) under plane stress conditions. By using 
one yield surface with a combined hardening model to control the size of the yield surface and elastic 
modulus degradation, the simulated strain recovery prediction was more accurate compared with 
the other models. The extended model could be implemented in finite element software using one 
von Mises yield surface. The verified extended model, when compared with experimental 
measurements, showed that the approximate stress-strain curve behavior in the unloading path, 
which was used to obtain an accurate balance point, affected the accuracy simulation in predicting 
springback when the elastic degradation and size of the yield surface were considered. 

The parameters of the extended model, Chord model, QPE model, nonlinear isotropic model, 
and nonlinear kinematic model were obtained from a uniaxial tension compression test (Benchmark 
2011) of DP780 using nonlinear regression analysis. The simulation of the stress-strain curve showed 
that the parameters were better able to reproduce the stress-strain curve. The QPE model was good 
at reproducing the nonlinear unloading path but was a more complicated constitutive model to 
implement. 

Figure 6. Springback simulation for 25% of stress forward.

5. Conclusions

In this work, we extended and devolved the Chord model using nonlinear combined hardening
models with only one yield surface. The numerical integration was completely implicit, and was
implemented in user-defined material subroutine (UMAT) under plane stress conditions. By using
one yield surface with a combined hardening model to control the size of the yield surface and elastic
modulus degradation, the simulated strain recovery prediction was more accurate compared with the
other models. The extended model could be implemented in finite element software using one von
Mises yield surface. The verified extended model, when compared with experimental measurements,
showed that the approximate stress-strain curve behavior in the unloading path, which was used to
obtain an accurate balance point, affected the accuracy simulation in predicting springback when the
elastic degradation and size of the yield surface were considered.

The parameters of the extended model, Chord model, QPE model, nonlinear isotropic model,
and nonlinear kinematic model were obtained from a uniaxial tension compression test (Benchmark
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2011) of DP780 using nonlinear regression analysis. The simulation of the stress-strain curve showed
that the parameters were better able to reproduce the stress-strain curve. The QPE model was
good at reproducing the nonlinear unloading path but was a more complicated constitutive model
to implement.

Finally, we simulated the Benchmark 2011 U-draw bending of DP780 high-strength steel sheet
without pre-strain. The result showed that our model provides improved springback prediction when
the elastic modulus degradation and the size of the center of the yield surface are considered.
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