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Abstract: The main purpose of the paper was the assessment of the effect of wind load on the
load capacity of a single-layer bar dome. Additionally, which numerical method is appropriate for
low-rise single-layer bar domes was checked. In order to explain the effect of the height-to-span
ratio on the selection of the appropriate calculation model and method of analysis of the bar dome,
an example of the known von Mises truss was proposed. Two cases of von Mises truss differing in the
height-to-span ratio were considered. For the shallow structure, a significant change in the value of
the stiffness matrix determinant and the current stiffness parameter was observed. A similar tendency
in the behavior of the structure can be observed on fragments of larger structures, including shallow
single-layer steel domes. These problems are described on the basis of the dome, which is located on
top of the building housing the restaurant. This structure is subjected to large displacement gradients
and the actual configuration is taken into account in analysis. The analysis showed that there is
a change in stiffness for these structures, and, therefore, that such structures should be designed
according to geometric nonlinear analysis (GNA).
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1. Introduction

For proper assessment of structural safety, it is necessary to select the appropriate computational
model and methods of structural analysis. It is essential for the methods to most accurately represent
the behavior of the structure. This concerns both the adoption of a static diagram, loading, and also a
model of the behavior of the structure, bars, supports, and nodes under load.

The structural analysis means and scope are also highly affected by the behavior of the element
cross-section in compression and bending. The process of structural design was streamlined due to the
introduction of the cross-section classification. The class of the cross-section depends on the shape,
slenderness of the element walls (width-to-thickness ratio c/t), the member yield strength, and the
distribution of compressive stress. When compressive stress does not occur, it is unnecessary to specify
the class of cross-section [1]. The cross-section class indicates the degree of the element resistance to
the local stability failure in the elastic or plastic state. Consequently, it is of key importance for the
selection of the computational model and the criterion of the cross-section capacity [2,3].

Global instability of the steel bars is equivalent to their failure. Global instability of compression
element, called buckling, can have one of three modes: flexural (the bar is bent in the plane having
the lowest stiffness), torsional (the bar twists around the longitudinal axis), and flexural-torsional
(the bar bending is at the same time accompanied by its torsion). Global instability of the element in
bending, called lateral torsional buckling, occurs when the bending moment reaches the critical value.
Beam lateral torsional buckling is initiated by the compression flange buckling out of the bending plane,
and that is immediately transformed into beam torsion. The possibility of stability failure depends on
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the bar slenderness. The bar of sufficiently low slenderness is stable. With an increase in slenderness,
at the same cross-sectional area, the bar becomes more susceptible to global instability. Class 4 steel
bars are particularly vulnerable to global stability failure [4,5].

Problems related to the selection of the appropriate calculation model and method of the stability
analysis of the structures were the topic of many papers. In 1997, Oda and Usami presented a paper
on the method of designing steel frame stability based on a second order elastic analysis, in which
a new formula of equivalent initial deflection was proposed and a methodology using the buckling
mode curvature was introduced to allow systematic application of this formula to irregular frames of
any shape [6]. Fan, Yan, and Cao, in their article [7], presented a multibeam method for simulating
the initial curvature of rods, and two methods of numerical modelling were adopted to introduce
the initial curvature of rods for reticulated shell structures using ANSYS software. In [8], the authors
present a fully analytical model to determine the deformations in the jointing components under the
structure loading and investigate its influence on their post-buckling behavior. In [9], a snap-through
of two shallow single-layer reticulated domes under unilateral displacement control is analyzed.
An interesting experimental study and finite-element (FE) analysis of a single-layer Kiewitt Lamella
dome and a geodesic dome was carried out to understand the mechanism of internal force redistribution
in the progressive collapse of domes, by Xu, Han, Parke, and Liu and is presented in [10], while, in [11],
the authors present a method to identify the most critical members in a single-layer latticed dome
on the basis of the progressive collapse mechanism. The critical member identification method is
proposed, using an index that implicitly estimates the relative vulnerability to node buckling following
the removal of a member to determine the criticality of this member, and based on the established
understanding of the progressive collapse mechanism and the factors influencing the node buckling
resistance, several methods for increasing the progressive collapse resistance of single-layer latticed
domes are suggested. A paper on the impact of material nonlinearities on global analysis and stability
of steel frame structures worth recommending is [12].

The main purpose of the paper was the assessment of the effect of wind load on the load capacity of
a single-layer bar dome. Additionally, which computed method is appropriate for low-rise single-layer
bar domes was checked. In order to explain the effect of the height-to-span ratio on the selection of
the appropriate calculation model and method of analysis of the bar dome, an example of the known
von Mises truss was proposed. Two cases of von Mises truss differing in the height-to-span ratio
were considered. For a shallow structure, a significant change in the value of the stiffness matrix
determinant and the current stiffness parameter was observed. A similar tendency in the behavior
of the structure can be observed on fragments of larger structures, including shallow single-layer
steel domes. These problems are described on the basis of the dome, which is located on top of the
building housing the restaurant. This structure is subjected to large displacement gradients, and the
actual configuration is taken into account in analysis. The analysis showed that there is a change in
stiffness for these structures, hence the conclusion that such structures should be designed according
to GN analysis.

2. Materials and Methods

Modern theory of structural stability started with Koiter’s doctoral thesis [13]. The study marked
the beginning of theoretical investigations into post-buckling behavior of structures near critical states.
The sensitivity of structures to initial imperfections was analyzed. The development of incremental
models and iterative procedures started the nonlinear structural analysis (Oden [14], Bathe [15],
Belytschko [16], Kleiber [17]).

The choice of computational method depends on the type of system. The simplest—linear
analysis—does not take into account changes in the rigidity of the structure and the effect of this change
on its behavior. The linear analysis is based on linear geometric relations between displacements
and strains. In addition, the relations between stresses and strains, and also equations describing the
load-displacement relation are linear in character. Geometric nonlinearity and stability issues related to
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that are disregarded. The linear analysis does not account for the occurrence of overall stability failure
of bars or the whole system, or the local stability failure of the elements of bar cross-sections [18,19].
This is equivalent to the assumption that the structure has ideal (not showing up any imperfections)
initial geometry that does not change (the strain induced by load is not considered). The method
takes into account elastic strain. In this method, displacements are proportional to the loads applied.
The principle of superposition is followed in the assessment of internal forces in the structure and
strength utilization in the cross-sections. In this model, the elastic capacity of the structure is restricted
by the elasticity limit of the material (in practice, the yield point). The linear analysis in terms of the
finite element method FEM boils down to the solution of a linear system of algebraic Equation (1):

KL·q = P (1)

where: KL—linear stiffness matrix of the structure; q—vector of nodal displacements; P—vector of
nodal load.

The FEM software is additionally equipped with linear bifurcation analysis (LBA). The goal of
LBA is to solve the eigenvalue problem:

[KL + µ·KG]·q = 0 (2)

where: KG—geometrical stiffness matrix.
The geometric stiffness matrix KG is identified as the initial stress stiffness matrix. Eigenvalues

µ are critical load multipliers. Eigenvector q illustrates the form of structure deformation. Running
the analysis allows the user to quickly verify how close to instability the analyzed load condition is.
However, analysis is still conducted in the field of linear physical and geometrical relationships.

Only the geometrically nonlinear analysis (GNA) is capable of a full description of the possible
forms of instability. This type of analysis can provide the equilibrium path and information about the
post-critical behavior of the structure. For nonlinear discrete systems which are formulated on the
basis of FEM, the mathematical model corresponds to a set of nonlinear algebraic equations. The set
can be formulated in a total or in an incremental form. In the first case, equations have the form:

Ks(q)q = P (3)

where: Ks—secant stiffness matrix of the structure.
In the second case, equations have the form:

KT(q)·∆q = ∆µ·P + R (4)

where: KT(q)—tangent stiffness matrix of the structure; R = P − F—vector of residual forces; F—vector
of internal forces.

In the equilibrium state R = 0, while in the iterative process, the norm of R defines the distance
from the equilibrium state. The iterative process converges if R→0.

The tangent stiffness matrix KT of the structure arises as a result of the assembly of the stiffness
matrices of the elements: Ke

T

KT =
∑e

i = 1
Ke

T =
∑e

i = 1
(K e

L + Ke
G + Ke

u1 + Ke
u2 ) (5)

where: Ke
T is the tangent stiffness matrix of the element composed of linear stiffness matrix Ke

L,
geometric stiffness matrix Ke

G, and nonlinear stiffness matrices: Ke
u1 and Ke

u2.
In GNA, it is extremely important to determine changes in structure stiffness in the load process.

An often used measure of structural rigidity is the matrix determinant det (KT). A more effective
proposition to describe these changes was proposed by Bergan and Soreide in [20]. They characterize
the behavior of a multidimensional nonlinear system by using one scalar quantity, the current stiffness
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parameter (CSP), representing the ratio of two quadratic forms formulated for the tangent stiffness
matrix at the initial K0

T and current times Ki
T:

CSP =
∆q0T

·K0
T·∆q0

∆qiT
·Ki

T·∆qi
(6)

This parameter can be used as a measure for the change in the tangent stiffness matrix KT during
the motion in the N-dimensional, displacement solution space. Figure 1a shows a typical snap-through
problem (load parameters versus some norm of displacement vector ||q||). The associated curve for
CSP as a function of ||q|| is traced in Figure 1b. It is noticeable that at the extreme points of the
load-displacement curve, CSP has the value zero. In this situation, the incremental stiffness matrix
KT is singular. CSP is positive for the stable branches of the load-displacement curve. The instable
configurations are characterized by negative values of CSP.

This parameter can be used as a measure for the change in the tangent stiffness matrix KT during 
the motion in the N-dimensional, displacement solution space. Figure 1a shows a typical snap-
through problem (load parameters versus some norm of displacement vector ||q||). The associated 
curve for CSP as a function of ||q|| is traced in Figure 1b. It is noticeable that at the extreme points of 
the load-displacement curve, CSP has the value zero. In this situation, the incremental stiffness matrix 
KT is singular. CSP is positive for the stable branches of the load-displacement curve. The instable 
configurations are characterized by negative values of CSP. 
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Analysis of stability of bar structures with the finite element method (FEM) involves solving 
large systems of nonlinear equations. The relation between displacements and loads in a (N + 1)-
dimensional space is described by the load-displacement path. Elastic stability is closely related to 
singularities along this path. These singular points are considered to be critical ones. They include a 
limit point known as snapping and a bifurcation point known as buckling. The set of equations can 
be completed by a constraint equation to formulate an extended set of equations. An advantage of 
such a formulation is equivalent treatment of displacements q(η) and load parameter μ(η) where η is 
the so-called control parameter. The two most simple ways to control the incremental process are: µ 
= η and qi = η with the load parameter μ and chosen displacement qi being the controlling parameters. 
With the first of the two methods, subsequent points are the points of intersection between µ = ηi and 
the equilibrium path, and with the second method—as the points of intersection between qk = ηi with 
the same solution curve (Figure 2). Both procedures are inefficient at the vicinity of local extremum 
of the controlling parameter. 

Figure 1. (a) Dependence of load parameter µ on the norm of ||q||; (b) dependence of the current
stiffness parameter (CSP) on the norm of ||q||.

Analysis of stability of bar structures with the finite element method (FEM) involves solving large
systems of nonlinear equations. The relation between displacements and loads in a (N + 1)-dimensional
space is described by the load-displacement path. Elastic stability is closely related to singularities
along this path. These singular points are considered to be critical ones. They include a limit point
known as snapping and a bifurcation point known as buckling. The set of equations can be completed
by a constraint equation to formulate an extended set of equations. An advantage of such a formulation
is equivalent treatment of displacements q(η) and load parameter µ(η) where η is the so-called control
parameter. The two most simple ways to control the incremental process are: µ = η and qi = ηwith the
load parameter µ and chosen displacement qi being the controlling parameters. With the first of the
two methods, subsequent points are the points of intersection between µ = ηi and the equilibrium path,
and with the second method—as the points of intersection between qk = ηi with the same solution curve
(Figure 2). Both procedures are inefficient at the vicinity of local extremum of the controlling parameter.
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Figure 2. Control of an incremental process: (a) by load, (b) by displacement. 
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An equation describing a “perfect” family of surfaces cannot be constructed because it is based on
the equilibrium path which is unknown. However, an approximation can be used so that the angle θ is
close to zero. Riks [21,22] proposed the following constraint equation:( .

qα

)T
·(q− qα) +

.
µα·(µ− µα)= (η − ηα ) (7)

where: q—generalized coordinate vector; η − ηα—parameter approximating the arc length; the dots
appearing above the symbols indicate derivatives with respect to the arc length.

Equation (7) defines a hyperplane that is perpendicular to the vector (qα, µα) and distant from
the point (qα, µα) by (η − ηα). It will intersect the equilibrium path almost perpendicular when the
distance η − ηα is sufficiently small.

In this paper, the incremental-iterative method of the constant arc-length developed by Riks was
applied to solve nonlinear equations. To compute the critical points, it is necessary to update the
global tangent stiffness matrix at every iteration step. Four years after the arc-length method was
proposed by Riks, Crisfield [23] came up with an alternative to that method. The latter was employed
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in many commercial FEM programs. Another variant of the constant arc-length method, similar to that
developed by Crisfield, was put forward by Ramm [24].

In the review of arc-length methods, it is worth mentioning the pioneering work by Wempner [25].
The incremental procedures for tracing the equilibrium paths are still being developed in the works of
Ritto-Correa et al. [26], Leon et al. [27], and Rezaiee et al. [28] etc.

Problems of the stability analysis with FEM is currently the subject of many papers [29–33].
The theory of stability deals with critical load and deformation of structures which are associated

with sudden, quantitative changes of the structure state. The actual configurations have to be taken
into account in the theory of stability of structure. This means that stability equations are actually
nonlinear. They can be linearized in the case of linear bucking analysis.

In the paper, the dome is subjected to large displacement gradients and susceptible to stability loss
from the condition of node snapping. Nonlinear geometrical relations are defined in the Lagrangian
description. The constitutive relations are linear. The geometrical nonlinear analysis is performed
using the “Autodesk Robot Structural Analysis” software (FEM code) (Autodesk Revit 2020, San Rafael,
CA, USA).

2.1. Truss Element Description

In order to explain the effect of the height-to-span ratio on the selection of the appropriate
calculation model and method of analysis of the bar dome, an example of the known von Mises truss
was proposed. These issues are discussed in the pioneering work of Pecknold et al. [34].Additionally,
notice that the former analytical solution has been extended to unsymmetric von Mises trusses by
Ligarò and Valvo [35], to three-dimensional pyramidal trusses by Ligarò and Valvo [36], and to more
general planar and space trusses by Rezaiee-Pajand et al. [37].

The truss is analyzed in the undeformed (initial) configuration 0C and in the deformed configuration
tC and t+∆tC (Figure 4). The following material and geometric constants were adopted: E—Young’s
modulus; l0—the initial length; A0—the initial cross-sectional area; l—the length in the deformed
configuration; A—the cross-sectional area in the deformed configuration. The deformation field
in the deformed configuration tC is described by four components, q = {u1, v1, u2, v2}, and the
displacement increment between time t and t+∆t is described by vector ∆q = {∆u1, ∆v1, ∆u2, ∆v2}.
These displacement vectors correspond to nodal force vectors: Q = {U1, V1, U2, V2}, and ∆Q = {∆U1,
∆V1, ∆U2, ∆V2}.

 
Figure 4. Truss element in the undeformed (initial), 0C, and deformed tC and t+∆tC configurations. 

Displacement, strain, and stress fields in the deformed configuration t+∆tC are as follows: 

t+∆t q= t q+∆q, 

t+∆t ε= t ε +∆ ε, 

t+∆t σ= t σ +∆ σ 

(10) 

where: t q, t ε, t σ—displacements, strain, and stress at time t; ∆q, ∆ε, ∆σ—increments between time t 
and t + ∆t. Strain increment can be written as: 

Δε=[B0+B1(g)+
1
2

B2(Δq)] Δq (11) 

where: B1=(tg)
T

⋅Γ= 1
l0

[ − u’ − v’ u’ v’] , B2=(Δq)T⋅ΓT⋅Γ= 1
l0
2 [−(Δu2 − Δu1)  − (Δv2 − Δv1) (Δu2 −

Δu1) (Δv2 − Δv1)], Δu=u2 − u1, Δv=v2 − v1 
Stress increments depend on the physical model adopted. For a linear-elastic material, Hooke’s 

law—i.e., a linear relationship between stress and strain—is valid: 

∆σ = E·∆ε (12) 

Equilibrium equations of the element have the form: 

[KL+ K𝐺𝐺+ Ku1+ Ku2]Δq = tQ −  F + ΔQ (13) 

Fe is the vector of internal forces in the element: 

F = S �−1 −
Δu

l0
, −

Δv

l0
, 1+

Δu

l0
, 

Δv

l0
� (14) 

For a plane truss element, these matrices take the form: 

KL= EA0
l0

�
1 0
0 0

−1 0
0 0

−1 0
0 0

1 0
0 0

�, K𝐺𝐺= S
l0

�
1 0
0 1

−1 0
0 −1

−1 0
0 −1

1 0
0 1

�, 

Ku1= EA0

l0
2 �

2Δu Δv
Δv 0

−2Δu −Δv
−Δv 0

−2Δu −Δv
−Δv 0

2Δu Δv
Δv 0

�, 

(15) 

Figure 4. Truss element in the undeformed (initial), 0C, and deformed tC and t+∆tC configurations.
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The displacement field u =[u v]T is interpolated by linear shape functions:

u = N·q,

where : N =

[
1− ξ 0

0 1− ξ
ξ 0
0 ξ

]
,ξ = x

l
(8)

The strain tensor in this case reduces to one nonzero quantity of the Green–Lagrange tensor that
characterizes the elongation of a bar:

ε = tε = u′+
1
2

(
u′2+v′2

)
= L·N· tq+

1
2
( t g)T

·
tg = B0 ·

tq+
1
2
( t g)T

·g (9)

where: L = 1
l0

[
d

dξ 0
]
—matrix of differential operators; tg =

[
u′ v′

]T
—vector of displacement

gradients, B0 = L·N
Equation (9) accounts for the effect of geometric nonlinearity, which means that large displacements

were taken into account [17,29]. The Green–Lagrange strain tensor is coupled to the Piola–Kirchhoff

second stress tensor. We use the initial reference configuration; thus, axial force S defined as S = EAε is
not the real force in the bar. It corresponds to component S11 = σ of the 2nd Piola–Kirchhoff symmetric
stress tensor. The real axial force S’ = S·l/l0.

Displacement, strain, and stress fields in the deformed configuration t+∆tC are as follows:

t+∆t q= t q+∆q,

t+∆t ε= t ε +∆ ε, (10)

t+∆t σ= t σ +∆ σ

where: t q, t ε, tσ—displacements, strain, and stress at time t; ∆q, ∆ε, ∆σ—increments between time t
and t + ∆t. Strain increment can be written as:

∆ε = [B 0+B1(g) +
1
2

B2(∆q)] ∆q (11)

where: B1= (t g)T
·Γ = 1

l0
[−u′ − v′ u′ v′] ,

B2 = (∆q)T
·ΓT
·Γ = 1

l20
[−(∆u2 − ∆u1) − (∆v2 − ∆v1)(∆u2 − ∆u1) (∆v 2 − ∆v1)],

∆u= u2 − u1, ∆v= v2 − v1

Stress increments depend on the physical model adopted. For a linear-elastic material, Hooke’s
law—i.e., a linear relationship between stress and strain—is valid:

∆σ = E·∆ε (12)

Equilibrium equations of the element have the form:

[K L+ KG+ Ku1+ Ku2]∆q = tQ − F + ∆Q (13)

Fe is the vector of internal forces in the element:

F = S
{
−1−

∆u
l0

, −
∆v
l0

, 1+
∆u
l0

,
∆v
l0

}
(14)
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For a plane truss element, these matrices take the form:

KL = EA0
l0


1 0
0 0

−1 0
0 0

−1 0
0 0

1 0
0 0

,KG = S
l0


1 0
0 1

−1 0
0 −1

−1 0
0 −1

1 0
0 1

,

Ku1 = EA0
l20


2∆u ∆v
∆v 0

−2∆u −∆v
−∆v 0

−2∆u −∆v
−∆v 0

2∆u ∆v
∆v 0

,

Ku2 = EA0
l30


∆u2 ∆u∆v

∆u∆v ∆v2
−∆u2

−∆u∆v
−∆u∆v −∆v2

−∆u2
−∆u∆v

−∆u∆v −∆v2
∆u2 ∆u∆v

∆u∆v ∆v2

,

(15)

2.2. Frame Element Description

In the second example, the Schwedler dome consisting of 224 frame elements and 81 nodes was
analyzed. The following is a description of the plane frame element analogous to the description of the
truss element presented in chapter 2.2. Extension to space frame elements is possible [29]

The frame element description was analyzed in the undeformed (initial) configuration 0C and in
the deformed configurations tC and t+∆tC (Figure 5). The following material and geometric constants
were adopted: E—Young’s modulus; l0—the initial length; A0—the initial cross-sectional area; I0—the
initial moment of inertia; l—the length in the deformed configuration; A—the cross-sectional area in
the deformed configuration; I—moment of inertia in the deformed configuration.

 
Figure 5. Frame element in the undeformed (initial), 0C, and deformed tC and t+∆tC configurations. 

The vector of generalized stresses and modular matrix are: 

σ =� S
M�,     E =�EA

EI �,    ε= �ε0
κ � (18) 

where: S—axial force; M—bending moment 
Stress increments depend on the physical model adopted. For a linear-elastic material, Hooke’s 

law—i.e., a linear relationship between stress and strain—is valid: 

∆ σ = E·∆ ε (19) 

The increment of the strain vector with the dependencies Δu and Δg taken into account takes the 
form: 

Δε=B0Δq+B1(g)Δq+
1
2 B1(Δg)Δq (20) 

where: 

B0= �
−

1
l

0 0

0
6(1 − 2ξ)

l
2(2 − 3ξ)

l

   

1
l

0 0

0
−6(1 − 2ξ)

l2 
2(1 − 3ξ)

l

� (21) 

B1(g)= v’ �0
−6ξ(1 − ξ)

l
1 − 4ξ+3ξ2

0 0 0
   0

6ξ(1 − ξ)
l

−ξ(2 − 3ξ)

0 0 0
� (22) 

The tangent stiffness matrix used in the incremental equilibrium equations of the frame element 
is presented as follows. 

𝐊𝐊T = 𝐊𝐊L + 𝐊𝐊u1 + 𝐊𝐊u2 + 𝐊𝐊G (23) 

Figure 5. Frame element in the undeformed (initial), 0C, and deformed tC and t+∆tC configurations.

The deformation field in the deformed configuration tC is described by six components, t q = {u1,
v1, ϕ1, u2, v2, ϕ2}, and the displacement increment between time t and t + ∆t is described by vector
∆q = {∆u1, ∆v1, ∆ ϕ1, ∆u2, ∆v2, ∆ ϕ2}. These displacement vectors correspond to nodal force vectors:
t Q = {U1, V1, Φ1, U2, V2, Φ2}, and ∆Q = {∆U1, ∆V1, ∆Φ1, ∆U2, ∆V2, ∆Φ2}.
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The displacement field is interpolated using the matrix of the shape function and the nodal
displacement vector:

tu = N·q =[u v ]T,
where :

N =

[
1− ξ 0 0 ξ 0 0

0 1− 3ξ2+2ξ3 l·ξ(1− ξ)2 0 ξ2(3 − 2ξ) −l·ξ2(1 − ξ)

]
, ξ = x

l

(16)

It is visible that the approximation of displacement u, v by means of polynomials of the first and
third orders, respectively, leads to Hermitian shape functions.

We assume that the Bernoulli–Euler hypothesis about the undeformable, perpendicular
cross-section is valid. The strain at the point of cross-section is determined by the linear function of
variable y:

ε(x)= ε0(x)+κ(x)y = u′ +
1
2

v′2−v′′y = lTg+
1
2

gTHg (17)

where: l = {1 0 − y
}
—matrix of differential operators; tg =

[
u′ v′ v′′

]T
—vector of displacement

gradients, H =[0 1 0] .
The vector of generalized stresses and modular matrix are:

σ =

[
S
M

]
, E =

[
EA
EI

]
, ε =

[
ε0

κ

]
(18)

where: S—axial force; M—bending moment
Stress increments depend on the physical model adopted. For a linear-elastic material, Hooke’s

law—i.e., a linear relationship between stress and strain—is valid:

∆ σ = E·∆ ε (19)

The increment of the strain vector with the dependencies ∆u and ∆g taken into account takes the
form:

∆ε = B0∆q + B1(g)∆q+
1
2

B1(∆g)∆q (20)

where:

B0 =

 − 1
l 0 0

0 6(1−2ξ)
l

2(2−3ξ)
l

1
l 0 0

0 −6(1−2ξ)
l2

2(1−3ξ)
l

 (21)

B1(g) = v′
 0 −6ξ(1−ξ)

l 1− 4ξ+ 3ξ2

0 0 0
0 6ξ(1−ξ)

l −ξ(2− 3ξ)
0 0 0

 (22)

The tangent stiffness matrix used in the incremental equilibrium equations of the frame element is
presented as follows.

KT = KL + Ku1 + Ku2 + KG (23)
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KL =



EA
l 0 0
0 12EI

l3
6EI
l2

0 6EI
l2

4EI
l

EA
l 0 0
0 −12EI

l3
6EI
l2

0 6EI
l2

2EI
l

−EA
l 0 0
0 12EI

l3
−6EI

l2

0 6EI
l2

2EI
l

EA
l 0 0
0 12EI

l3
6EI
l2

0 −6EI
l2

4EI
l



KG= −S



0 0 0
0 6

5l
1

10
0 1

10
2l
15

0 0 0
0 −6

5l
1

10
0 −1

10
1

30
0 0 0
0 −6

5l
−1
10

0 1
10

−1
30

0 0 0
0 6

5l
−1
10

0 −1
10

2l
15



Ku1= EAl


1∫

0



0 −v′·Γ2 −v′·Γ3 0 −v′·Γ5 −v′·Γ6

−v′·Γ2 0 0 v′·Γ2 0 0
−v′·Γ3 0 0 v′·Γ3 0 0

0 v′·Γ2 v′·Γ3 0 v′·Γ5 v′·Γ6

−v′·Γ5 0 0 v′·Γ5 0 0
−v′·Γ6 0 0 v′·Γ6 0 0


dξ



Ku2= EAl


1∫

0



0 0 0 0 0 0
0 v2

·Γ2
2 v2

·Γ2·Γ3 0 v2
·Γ2·Γ5 v2

·Γ2·Γ6

0 v2
·Γ3·Γ2 v2

·Γ2
3 0 v2

·Γ5·Γ3 v2
·Γ3·Γ6

0 0 0 0 0 0
0 v2

·Γ5·Γ2 v2
·Γ5·Γ3 0 v2

·Γ2
5 v2

·Γ5·Γ6

0 v2
·Γ6·Γ2 v2

·Γ6·Γ3 0 v2
·Γ6·Γ5 v2

·Γ2
6


dξ


Γ2 =

−6ξ(1−ξ)
l ;Γ3= 1− 4ξ+ 3ξ2;Γ5 =

6ξ(1−ξ)
l ;Γ6 = −ξ(2− 3ξ);

(24)

3. Results

3.1. Example 1

3.1.1. Von Mises Truss Analysis

Two cases of von Mises truss differing in the height-to-span ratio were considered. Figure 6 shows
the structure geometry for both cases.

 
Figure 6. Von Mises truss geometry. 

Case 1—High Truss 

The von Mises truss with a span of L = 4.0 m and a height of H = 1.0 m, loaded with a force of P 
= 10 kN, was modelled with steel pipes RO60.3 × 4, with a yield strength of fy = 235 MPa; Young 
modulus E = 210 GPa; and Poissons ratio v=0.3. The height-to-span ratio is H/L = 0.25, and the bar 
angle is γ = 14°. The lengths of both elements are l0 = 412.3 cm. The values of the axial force in the bar 
and the vertical displacement of node 2, determined on the basis of LA (linear analysis) and GNA, 
do not differ significantly (Table 1). 

Table 1. Values of axial force and nodal displacement. 

Force/Displacement/Analysis LA GNA 
Axial force 20.616 kN 20.660 kN 

Nodal displacement of node No. 2 0.236 cm 0.237 cm 

The value of the determinant of the tangent det (KT) stiffness matrix of the structure in the case 
of geometrically nonlinear analysis is 0.2851 × 109, while in the linear analysis, 0.2872 × 109. The value 
of the current stiffness parameter (CSP) practically did not change. In the linear analysis, this value 
was 1.0, while in the geometrically nonlinear analysis, 0.9929. The critical load multiplier obtained 
from the LBA analysis is µcr = 423.638. According to the recommendations of the PN-EN-1993-1-1 [3] 
standard, for a critical multiplier value µ > 10, a linear analysis is sufficient. 

Figure 7a shows the equilibrium path for the von Mises truss case under consideration, while 
Figure 7b shows the CSP-q dependency graph. 

Figure 6. Von Mises truss geometry.

Case 1—High Truss
The von Mises truss with a span of L = 4.0 m and a height of H = 1.0 m, loaded with a force of

P = 10 kN, was modelled with steel pipes RO60.3 × 4, with a yield strength of fy = 235 MPa; Young
modulus E = 210 GPa; and Poissons ratio v=0.3. The height-to-span ratio is H/L = 0.25, and the bar
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angle is γ = 14◦. The lengths of both elements are l0 = 412.3 cm. The values of the axial force in the bar
and the vertical displacement of node 2, determined on the basis of LA (linear analysis) and GNA,
do not differ significantly (Table 1).

Table 1. Values of axial force and nodal displacement.

Force/Displacement/Analysis LA GNA

Axial force 20.616 kN 20.660 kN
Nodal displacement of node No. 2 0.236 cm 0.237 cm

The value of the determinant of the tangent det (KT) stiffness matrix of the structure in the case of
geometrically nonlinear analysis is 0.2851 × 109, while in the linear analysis, 0.2872 × 109. The value of
the current stiffness parameter (CSP) practically did not change. In the linear analysis, this value was
1.0, while in the geometrically nonlinear analysis, 0.9929. The critical load multiplier obtained from the
LBA analysis is µcr = 423.638. According to the recommendations of the PN-EN-1993-1-1 [3] standard,
for a critical multiplier value µ > 10, a linear analysis is sufficient.

Figure 7a shows the equilibrium path for the von Mises truss case under consideration,
while Figure 7b shows the CSP-q dependency graph.

 
Figure 7. (a) Equilibrium path of high von Mises truss, (b) CSP-q path of high von Mises truss. 

Case 2—Shallow Truss 

In the second case, a structure with a span of L = 4.0 m and a height of H = 0.2 m, loaded with a 
force of P = 10 kN, was considered. The structure was modelled from RO76.1x8 steel pipes with a 
yield strength of fy = 235 MPa; Young’s modulus E = 210 GPa; and Poissons ratio v = 0.3. The height-
to-span ratio is H/L = 0.05 and the bar angle γ = 3°. The lengths of both elements are l0 = 400.5 cm. 

The values of the axial force and the vertical displacement of node 2, determined on the basis of 
LA and GNA, differ significantly (Table 2). 

Table 2. Values of axial force and nodal displacement. 

Force/Displacement/Analysis LA GNA 
Axial force 100.125 kN 116.6 kN 

Nodal displacement of node No. 2 2.236 cm 2.795 cm 

The value of the determinant of the tangent det (KT) stiffness matrix of the structure for 
geometrically nonlinear analysis is 0.4977 × 108, while for linear analysis, 0.7999 × 108. The value of 
the current stiffness parameter decreased significantly. In the linear analysis, this value was 1.0, while 
in the geometrically nonlinear analysis, 0.6223. The critical load multiplier obtained from the LBA is 
µcr = 8.944. According to the recommendations of the PN-EN-1993-1-1 [3] standard, for a critical 
multiplier value µ < 10, a more accurate geometrically nonlinear structure analysis is recommended. 
The results obtained clearly confirm the entries in the Eurocode. In the second example, we will use 
them consistently. 

Figure 8a shows the equilibrium path for the von Mises truss case under consideration, while 
Figure 8b shows the CSP-q dependency graph. 

Figure 7. (a) Equilibrium path of high von Mises truss, (b) CSP-q path of high von Mises truss.

Case 2—Shallow Truss
In the second case, a structure with a span of L = 4.0 m and a height of H = 0.2 m, loaded with a

force of P = 10 kN, was considered. The structure was modelled from RO76.1× 8 steel pipes with a yield
strength of fy = 235 MPa; Young’s modulus E = 210 GPa; and Poissons ratio v = 0.3. The height-to-span
ratio is H/L = 0.05 and the bar angle γ = 3◦. The lengths of both elements are l0 = 400.5 cm.

The values of the axial force and the vertical displacement of node 2, determined on the basis of
LA and GNA, differ significantly (Table 2).
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Table 2. Values of axial force and nodal displacement.

Force/Displacement/Analysis LA GNA

Axial force 100.125 kN 116.6 kN
Nodal displacement of node No. 2 2.236 cm 2.795 cm

The value of the determinant of the tangent det (KT) stiffness matrix of the structure for
geometrically nonlinear analysis is 0.4977 × 108, while for linear analysis, 0.7999 × 108. The value
of the current stiffness parameter decreased significantly. In the linear analysis, this value was 1.0,
while in the geometrically nonlinear analysis, 0.6223. The critical load multiplier obtained from the
LBA is µcr = 8.944. According to the recommendations of the PN-EN-1993-1-1 [3] standard, for a critical
multiplier value µ < 10, a more accurate geometrically nonlinear structure analysis is recommended.
The results obtained clearly confirm the entries in the Eurocode. In the second example, we will use
them consistently.

Figure 8a shows the equilibrium path for the von Mises truss case under consideration,
while Figure 8b shows the CSP-q dependency graph.

 
Figure 8. (a) Equilibrium path of shallow von Mises truss, (b) CSP-q path of shallow von Mises truss. 

3.1.2. Discussion of Example 1 

Based on the analyses carried out, a significant impact of structure geometry on the values of 
axial forces and displacements of the structure node was observed. In both cases, examples of the 
equilibrium path of von Mises trusses and the corresponding CSP-q path were presented. 

In the first case, the structure with a height-to-span ratio of 0.25 was not susceptible to geometric 
nonlinearities. The difference in axial forces and displacements between linear and geometrically 
nonlinear analysis was below 1%. The change value of the stiffness matrix determinant also proved 
to be insignificant. 

For shallow structures, changes in axial forces and displacements turned out to be significant. 
The axial force value increased from 100.125 kN obtained in a linear analysis to 116.6 kN in a 
geometrically nonlinear analysis. 

Similarly, the values of the displacement of the second node changed from 2.236 to 2.795 cm. 
There was also a significant change in the value of the stiffness matrix determinant and the current 
stiffness parameter. 

A similar tendency in the behavior of the structure can be observed on fragments of larger 
structures, including shallow single-layer steel domes (Figure 9). Example 2 describes these 
problems. 

Figure 8. (a) Equilibrium path of shallow von Mises truss, (b) CSP-q path of shallow von Mises truss.

3.1.2. Discussion of Example 1

Based on the analyses carried out, a significant impact of structure geometry on the values of
axial forces and displacements of the structure node was observed. In both cases, examples of the
equilibrium path of von Mises trusses and the corresponding CSP-q path were presented.

In the first case, the structure with a height-to-span ratio of 0.25 was not susceptible to geometric
nonlinearities. The difference in axial forces and displacements between linear and geometrically
nonlinear analysis was below 1%. The change value of the stiffness matrix determinant also proved to
be insignificant.
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For shallow structures, changes in axial forces and displacements turned out to be significant.
The axial force value increased from 100.125 kN obtained in a linear analysis to 116.6 kN in a
geometrically nonlinear analysis.

Similarly, the values of the displacement of the second node changed from 2.236 to 2.795 cm.
There was also a significant change in the value of the stiffness matrix determinant and the current
stiffness parameter.

A similar tendency in the behavior of the structure can be observed on fragments of larger
structures, including shallow single-layer steel domes (Figure 9). Example 2 describes these problems.

 
Figure 9. Example of shallow dome. 

3.2. Example 2 

3.2.1. Geometry and Loads 

The dome with the diameter of 25 m and height of 1 m will top the building housing a restaurant. 
The location, a village of Święta Katarzyna, lies in the Świętokrzyskie Mountains. 

The structure is based on 16 reinforced concrete columns, 5 m high. The whole structure is closed 
with a reinforced concrete wreath forming a rigid structure, which simulates grillages work. 

A mesh of the dome consisting of 81 nodes and 224 elements is illustrated in Figure 10. The most-
stressed elements of the groups, and the nodes with the most displacement in GNA, are marked on 
Figure 10, case 1 by green and case 2 by red color. The structure of concern is Schwedler type bar 
dome. The length of each meridian is 2.511 m. Parallels become shorter as the dome tapers up; the 
successive lengths, starting at the base, are: 4.877, 3.908, 2.934, 1.958, and 0.979 m. The covering will 
comprise tubular steel bars and glass panels. 

For the dome of concern, the following loads were assumed: permanent load—G (self-weight of 
the bar structure and the covering); snow load—S for zone 3 (acc. PN-EN 1991-1-3 [38]); wind load—
W (acc. PN-EN 1991-1-4) [39]. The combination of loads applied to the structure was in compliance 
with PN-EN 1990 [40]. Evenly distributed loads were reduced to concentrated forces applied in all 
nodes. The load is concentrated to nodes according to the load distribution regions (envelope 
distribution). 

To facilitate the description of analysis concerning a structure with a large number of nodes, the 
nodes located on subsequent rings were grouped. Table 3 shows the grouping of nodes into clusters 
R1-R5. Furthermore, loads applied to a group of nodes are given, which means each node of a given 
cluster is under the same load. The keystone (node no 1) does not belong to any of the groups. 

Table 3. Groups of nodes and the corresponding node numbers. 

Group Name Numbers of Nodes 
R1 6, 16, 26, 36, 46, 56, 66, 76, 7, 17, 27, 37, 47, 57, 67, 77 
R2 5, 15, 25, 35, 45, 55, 65, 75, 8, 18, 28, 38, 48, 58, 68, 78 
R3 4, 14, 24, 34, 44, 54, 64, 74, 9, 19, 29, 39, 49, 59, 69, 79 
R4 3, 13, 23, 33, 43, 53, 63, 73, 10, 20, 30, 40, 50, 60, 70, 80 
R5 2, 12, 22, 32, 42, 52, 62, 72, 11, 21, 31, 41, 51, 61, 71, 81 

Figure 9. Example of shallow dome.

3.2. Example 2

3.2.1. Geometry and Loads

The dome with the diameter of 25 m and height of 1 m will top the building housing a restaurant.
The location, a village of Święta Katarzyna, lies in the Świętokrzyskie Mountains.

The structure is based on 16 reinforced concrete columns, 5 m high. The whole structure is closed
with a reinforced concrete wreath forming a rigid structure, which simulates grillages work.

A mesh of the dome consisting of 81 nodes and 224 elements is illustrated in Figure 10.
The most-stressed elements of the groups, and the nodes with the most displacement in GNA,
are marked on Figure 10, case 1 by green and case 2 by red color. The structure of concern is Schwedler
type bar dome. The length of each meridian is 2.511 m. Parallels become shorter as the dome tapers
up; the successive lengths, starting at the base, are: 4.877, 3.908, 2.934, 1.958, and 0.979 m. The covering
will comprise tubular steel bars and glass panels.
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Figure 10. Schwedler dome geometry: (a) nodes, (b) elements (by green—case 1; by red—case 2). 

The average characteristic value of the dome’s own weight was assumed to be 1.45 kN/m2. The 
permanent load values for individual groups of nodes are summarized in Table 4. 

Table 4. Dome’s own weight reduced to concentrated forces at the nodes. 

Nodes Group Own Weight Load Value—G (kN) 
R1 3.564 
R2 7.129 
R3 10.683 
R4 14.229 
R5 8.878 

Node No. 1 7.180 

The average characteristic value of the snow load was determined based on the standard [38]. 
The structure of concern is located in the Świętokrzyskie Mountains at the height of A = 530 m amsl, 
which is the snow load in zone 3. For the considered structure, the characteristic value of roof snow 
load is: s = 1.651 kN/m2. The snow load values for individual groups of nodes are summarized in 
Table 5. 

Table 5. Dome loaded with uniform snow load represented as concentrated forces. 

Nodes Group Snow Load Value—S (kN) 
R1 4.059 
R2 8.118 
R3 12.165 
R4 16.203 
R5 10.110 

Node No. 1 8.176 

For low-rise structures (flat roofs) for which the f/d ratio < 0.05, wind load is usually neglected. 
This is due to the common belief that consideration of wind has a positive effect on the values of 
cross-sectional forces of the bars. In the considered work, it was decided to present an example 
scheme for collecting wind load on a shallow bar dome and to verify the impact of uneven wind 
suction loading on structural behavior. 

Figure 10. Schwedler dome geometry: (a) nodes, (b) elements (by green—case 1; by red—case 2).

For the dome of concern, the following loads were assumed: permanent load—G (self-weight of
the bar structure and the covering); snow load—S for zone 3 (acc. PN-EN 1991-1-3 [38]); wind load—W
(acc. PN-EN 1991-1-4) [39]. The combination of loads applied to the structure was in compliance with
PN-EN 1990 [40]. Evenly distributed loads were reduced to concentrated forces applied in all nodes.
The load is concentrated to nodes according to the load distribution regions (envelope distribution).

To facilitate the description of analysis concerning a structure with a large number of nodes,
the nodes located on subsequent rings were grouped. Table 3 shows the grouping of nodes into clusters
R1-R5. Furthermore, loads applied to a group of nodes are given, which means each node of a given
cluster is under the same load. The keystone (node no 1) does not belong to any of the groups.

Table 3. Groups of nodes and the corresponding node numbers.

Group Name Numbers of Nodes

R1 6, 16, 26, 36, 46, 56, 66, 76, 7, 17, 27, 37, 47, 57, 67, 77
R2 5, 15, 25, 35, 45, 55, 65, 75, 8, 18, 28, 38, 48, 58, 68, 78
R3 4, 14, 24, 34, 44, 54, 64, 74, 9, 19, 29, 39, 49, 59, 69, 79
R4 3, 13, 23, 33, 43, 53, 63, 73, 10, 20, 30, 40, 50, 60, 70, 80
R5 2, 12, 22, 32, 42, 52, 62, 72, 11, 21, 31, 41, 51, 61, 71, 81

The average characteristic value of the dome’s own weight was assumed to be 1.45 kN/m2.
The permanent load values for individual groups of nodes are summarized in Table 4.

Table 4. Dome’s own weight reduced to concentrated forces at the nodes.

Nodes Group Own Weight Load Value—G (kN)

R1 3.564
R2 7.129
R3 10.683
R4 14.229
R5 8.878

Node No. 1 7.180

The average characteristic value of the snow load was determined based on the standard [38].
The structure of concern is located in the Świętokrzyskie Mountains at the height of A = 530 m amsl,
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which is the snow load in zone 3. For the considered structure, the characteristic value of roof snow
load is: s = 1.651 kN/m2. The snow load values for individual groups of nodes are summarized in
Table 5.

Table 5. Dome loaded with uniform snow load represented as concentrated forces.

Nodes Group Snow Load Value—S (kN)

R1 4.059
R2 8.118
R3 12.165
R4 16.203
R5 10.110

Node No. 1 8.176

For low-rise structures (flat roofs) for which the f/d ratio < 0.05, wind load is usually neglected.
This is due to the common belief that consideration of wind has a positive effect on the values of
cross-sectional forces of the bars. In the considered work, it was decided to present an example scheme
for collecting wind load on a shallow bar dome and to verify the impact of uneven wind suction
loading on structural behavior.

Unlike forces of dead load and snow load, the wind force acts perpendicular to the roof surface.
As the structure of concern is a double-curved bar dome, it is necessary to determine angles of
inclination of individual meridians—αn—in order to specify the wind force deviation from the vertical
axis “z”—δn. The values of angles αn and δn are shown in Figure 11. The dome is divided by
meridians into 16 equal parts. The angle γ by which the wind force in the XY plane should be rotated
is γ = 360/16 = 22.5◦.

Unlike forces of dead load and snow load, the wind force acts perpendicular to the roof surface. 
As the structure of concern is a double-curved bar dome, it is necessary to determine angles of 
inclination of individual meridians—αn—in order to specify the wind force deviation from the 
vertical axis “z”—δn. The values of angles αn and δn are shown in Figure 11. The dome is divided by 
meridians into 16 equal parts. The angle γ by which the wind force in the XY plane should be rotated 
is γ = 360/16 = 22.5°. 

 
Figure 11. The values of angles αn and δn. 

When calculating wind pressure coefficient, the standards applied were in accordance with [39]. 
The wind load distribution recommended by the standard is based on the assumption that on the 
dome arch determined by cutting the dome with a vertical plane perpendicular to the direction of the 
wind, the pressure is constant (broken lines in Figure 12). 

 
Figure 12. Diagram of the structure division into wind zones acc. [39]. 

To determine the external pressure coefficients for the dome of concern, it is necessary to 
determine the following Equations (25) and (26): 

h
d =

5 m
25 m = 0.20 (25) 

f
d =

1 m
25 m =0.04 (26) 

For the h/d Equation (25), the Cpe,A, Cpe,B, and Cpe,C coefficients can be determined by linear 
interpolation of the data value in the graph in Figure 13 as a function of the f/d Equation (26). 

Figure 11. The values of angles αn and δn.

When calculating wind pressure coefficient, the standards applied were in accordance with [39].
The wind load distribution recommended by the standard is based on the assumption that on the
dome arch determined by cutting the dome with a vertical plane perpendicular to the direction of the
wind, the pressure is constant (broken lines in Figure 12).

To determine the external pressure coefficients for the dome of concern, it is necessary to determine
the following Equations (25) and (26):

h
d

=
5 m

25 m
= 0.20 (25)

f
d

=
1 m
25 m

= 0.04 (26)

For the h/d Equation (25), the Cpe,A, Cpe,B, and Cpe,C coefficients can be determined by linear
interpolation of the data value in the graph in Figure 13 as a function of the f/d Equation (26).
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Unlike forces of dead load and snow load, the wind force acts perpendicular to the roof surface. 
As the structure of concern is a double-curved bar dome, it is necessary to determine angles of 
inclination of individual meridians—αn—in order to specify the wind force deviation from the 
vertical axis “z”—δn. The values of angles αn and δn are shown in Figure 11. The dome is divided by 
meridians into 16 equal parts. The angle γ by which the wind force in the XY plane should be rotated 
is γ = 360/16 = 22.5°. 

 
Figure 11. The values of angles αn and δn. 
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wind, the pressure is constant (broken lines in Figure 12). 

 
Figure 12. Diagram of the structure division into wind zones acc. [39]. 
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Based on Figure 13, the relationship (27) necessary for interpolation of Cpe,i indices was determined:

yn =
y2 − y1

x2 − x1
·

( f
d
− x1

)
+ y1 (27)

For values of: h/d = 0.20 and f/d = 0.04, the following were obtained: Cpe,A = −1.14; Cpe,B = −0.56;
Cpe,C = −0.20.

The considered dome was divided into the wind load zones as shown in Figure 14.
On the basis of Figure 15, the relationship 28, necessary for interpolation of the wind pressure

coefficient at the designated points (Table 6), was determined.

Cpe,A −Cpe,n

xn − xA
=

Cpe,A −Cpe,B

xB − xA
. (28)
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Figure 15. Wind pressure coefficient interpolation scheme.

Table 6. Interpolated values of wind pressure coefficients.

Pressure Coefficients xA x1 x2 x3 xB x4 x5 x6 xC

x 0.00 3.125 6.25 9.375 12.50 15.625 18.75 21.875 25.00
Cpe −1.14 −1.00 −0.85 −0.71 −0.56 −0.47 −0.38 −0.29 −0.20

After determining the pressure coefficients, the pressure of the wind on the dome was
determined acc. standard [39]. For domes, it is necessary to determine the reference height that
is significant when determining the wind load. The reference height of the dome in question is:
ze = h + f

2 = 5 m + 1
2 m = 5.5 m the base wind speed is vb,0 = 25.04 m/s; while the exposure

factor is: ce(ze) = 1.99. The base value of the wind speed pressure was determined on the level
qb = 0.392 kN/m2. The peak value of pressure wind speed is equal to qp(ze) = 0.392·1.99 = 0.780 kN/m2.

The values of wind load in individual nodes are obtained from multiplication of the peak value of
wind speed pressure, wind pressure coefficient, meridian length values, and length values of individual
parallels. The results for the sequentially numbered nodes are summarized in Table 7.
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Table 7. Values of the wind load to the individual nodes.

Node
Number

Wind Load
Value
(kN)

Node
Number

Wind Load
Value
(kN)

Node
Number

Wind Load
Value
(kN)

Node
Number

Wind Load
Value
(kN)

1 −2.588 21 −1.385 41 −2.245 61 −3.391
2 −5.445 22 −4.06 42 −2.675 62 −1.815
3 −8.726 23 −6.506 43 −4.286 63 −2.909
4 −6.551 24 −4.885 44 −3.218 64 −2.184
5 −4.372 25 −3.26 45 −2.148 65 −1.457
6 −2.186 26 −1.63 46 −1.074 66 −0.729
7 −0.383 27 −0.729 47 −1.074 67 −1.63
8 −0.767 28 −1.457 48 −2.148 68 −3.26
9 −1.149 29 −2.184 49 −3.218 69 −4.885
10 −1.5311 30 −2.909 50 −4.286 70 −6.506
11 −0.955 31 −1.815 51 −2.675 71 −4.06
12 −4.7766 32 −3.391 52 −2.245 72 −1.385
13 −7.654 33 −5.434 53 −3.597 73 −2.22
14 −5.746 34 −4.08 54 −2.701 74 −1.666
15 −3.835 35 −2.723 55 −1.802 75 −1.112
16 −1.917 36 −1.361 56 −0.901 76 −0.556
17 −0.556 37 −0.901 57 −1.361 77 −1.917
18 −1.112 38 −1.802 58 −2.723 78 −3.835
19 −1.666 39 −2.701 59 −4.08 79 −5.746
20 −2.22 40 −3.597 60 −5.434 80 −7.654

- 81 −4.776

3.2.2. Case 1. Load Combination: 1.15G + 1.5S

In the first case, the situation of a standard approach to the dimensioning of shallow structures
(flat roofs) was considered.

For the dome of concern, the following loads were assumed: permanent load—G (self-weight of
the bar structure and the covering); snow load—S for zone 3 (acc. [38]).

The static-strength analysis, intended to produce the dimensioning of the steel elements, was
performed acc. PN-EN-1993-1-1 [3] using Autodesk Robot Structure Professional 2019 software for
spatial frame structure. To increase the accuracy of calculations, all the elements were additionally
divided into 10 parts. The elements of the structure were assumed to be made of steel tubes with yield
point fy = 235 MPa and Young’s modulus E = 210 GPa; Poisson’s ratio v = 0.3. In order to dimension
the designed structure, three groups of rods were modeled: meridians, parallels, and diagonals.

The values of cross-sectional forces, load capacity for the most-stressed elements of these groups,
and the displacement limits of node 79 are summarized in Table 8. The cross-sections taken for different
groups of rods are summarized in Table 9. Figure 16 shows the deformation of the structure.

In the second step, the considered structure was subjected to linear buckling analysis.
The lowermost critical load multiplier is equal to µcr = 2.11199. Figure 17 shows the buckling
modes for four successive eigenvalues. According to PN EN 1993-1-1/5.2.2 (5)B [3], when the
lowermost critical load multiplier µcr < 3.0, it is necessary to carry out a more accurate second order
(GNA) analysis for the structure.

In the last step, the geometrically nonlinear static analysis was carried out. Nonlinear analysis
produced the results of displacements and internal forces while taking into account second-order effects.
In GNA, the lowermost critical load multiplier is equal to µcr = 1.562. Exceeding this multiplier results
in a peculiar stiffness matrix. GNA is a mathematical tool with which it is possible to generate complete
equilibrium paths. Tracking the equilibrium path is inherently related to the analysis of post-critical
states. The problem presented in example 2 concerns the design of a real shallow steel lattice structure.
These types of structures are susceptible to large displacement gradients, which can only be considered
by using geometrically nonlinear relationships. GNA in this case is used to determine the internal
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forces, displacements, and critical load multiplier. In the case of the analyzed shallow lattice dome,
the critical load is related to the phenomenon of the node snap-through. After the critical load is
exceeded, only unstable equilibrium states occur. From an engineering point of view, the part of the
equilibrium path after reaching the critical load multiplier does not cause significant changes to the
structure design process. Figure 18 shows the equilibrium path of the considered bar dome for case 1.

Table 8. Values of the internal forces and the maximum horizontal and vertical displacement of node
79 for LA.

Internal Forces/Displacement
LA

Meridian
Bar no 30

Parallel
Bar no 114

Diagonal
Bar no 193

NEd (kN)—axial force 563.694 162.79 1.977
Nc,Rd (kN)—design capacity of the section under uniform

compression 1543.95 552.250 212.910

Nb,Rd (kN)—design buckling resistance of the compressed element 1486.389 275.405 60.072
My,Ed,Max (kNm)—design bending moment with respect to y-y axis 28.537 0.569 0.316
My,c,Rd (kNm)—design bending resistance with respect to y-y axis 102.827 16.511 4.892
Mz,Ed,max (kNm)—design bending moment with respect to z-z axis −2.300 0.572 −0.090
Mz,c,Rd (kNm)—design bending resistance with respect to z-z axis 102.827 16.511 4.892

Utilization (%) 67 65 8
Maximum vertical displacement (mm)—for node 79 42.52

Allowable vertical displacement (mm)—D/300 83.33
Maximum horizontal displacement (mm)—for node 79 3.93

Allowable horizontal displacement (mm)—H/150 6.67

Table 9. Cross sections taken for different groups of rods.

Group Name Nodes Nos Cross Section

Parallel 2 to 81 RO 219.1 × 10
Meridian 82 to 161 RO 101.6 × 8
Diagonal 162 to 224 RO 76.1 × 4

17 −0.556 37 −0.901 57 −1.361 77 −1.917 
18 −1.112 38 −1.802 58 −2.723 78 −3.835 
19 −1.666 39 −2.701 59 −4.08 79 −5.746 
20 −2.22 40 −3.597 60 −5.434 80 −7.654 

- 81 −4.776 
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Mz,c,Rd (kNm)—design bending 
resistance with respect to z-z axis 102.827 16.511 4.892 

Utilization (%) 67 65 8 
Maximum vertical displacement 

(mm)—for node 79 
42.52 

Allowable vertical displacement 
(mm)—D/300 

83.33 

Maximum horizontal displacement 
(mm)—for node 79 3.93 

Allowable horizontal displacement 
(mm)—H/150 6.67 

Table 9. Cross sections taken for different groups of rods. 

Group Name Nodes Nos Cross Section 
Parallel  2 to 81 RO 219.1x10 

Meridian 82 to 161 RO 101.6x8 

Diagonal 162 to 224 RO 76.1x4 
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Figure 18. Equilibrium path of the considered bar dome for case 1.

Values of the internal forces and the maximum horizontal and vertical displacement of node 54,
for the load multiplier µ equal to 1, are presented in Table 10.
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Table 10. Values of the internal forces and the maximum horizontal and vertical displacement of node
54 for GNA.

Internal Forces/Displacement
GNA

Meridian
Bar no 20

Parallel
Bar no 107

Diagonal
Bar no 180

NEd (kN)—axial force 596.243 208.020 1.61
My,Ed,Max (kNm)—design bending moment with respect to y-y axis 39.097 0.825 0.431
Mz,Ed,max (kNm)—design bending moment with respect to z-z axis −2.774 −0.628 −0.119

Utilization (%) 81 85 9
Maximum vertical displacement (mm)—for node 54 53.54

Allowable vertical displacement (mm)—D/300 83.33
Maximum horizontal displacement (mm)—for node 54 5.51

Allowable horizontal displacement (mm)—H/150 6.67

3.2.3. Case 2. Load Combination 1.15 × G +1.5 × S+0.9 ×W

In the second case, a situation was considered in which the load caused by uneven wind suction
was additionally taken into account. Therefore, the considered structure was subjected to: permanent
load (G) (self-weight of the steel structure and roofing) and snow load (S) for area 3 of snow load
according to PN-EN-1991-1-3 [38] and uneven wind suction load (W) determined on the basis of
PN-EN-1991-1-4 [39]. Cross sections of individual groups of members were adopted according to
Table 9.

The values of cross-sectional forces, load capacity for the most-stressed elements of these groups,
and the displacement limits of node 9 are summarized in Table 11. Figure 19 shows the deformation of
the structure.

Table 11. Values of the internal forces and the maximum horizontal and vertical displacement of node
9 for LA.

Internal Forces/Displacement
LA

Meridian
Bar no 10

Parallel
Bar no 106

Diagonal
Bar no 165

NEd (kN)—axial force 518.05 164.801 19.766
Nc,Rd (kN)—design capacity of the section under uniform

compression 1543.95 552.25 212.910

Nb,Rd (kN)—design buckling resistance of the compressed element 1486.389 275.405 43.369
My,Ed,Max (kNm)—design bending moment with respect to y-y axis 29.862 0.693 0.122
My,c,Rd (kNm)—design bending resistance with respect to y-y axis 102.827 16.511 4.892
Mz,Ed,max (kNm)—design bending moment with respect to z-z axis −2.235 −0.617 −0.019
Mz,c,Rd (kNm)—design bending resistance with respect to z-z axis 102.827 16.511 4.892

Utilization (%) 65 67 49
Maximum vertical displacement (mm)—for node 9 48.42

Allowable vertical displacement (mm)—D/300 83.33
Maximum horizontal displacement (mm)—for node 9 4.52

Allowable horizontal displacement (mm)—H/150 6.67
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3.2.3. Case 2. Load Combination 1.15*G +1.5*S+0.9*W 

In the second case, a situation was considered in which the load caused by uneven wind suction 
was additionally taken into account. Therefore, the considered structure was subjected to: permanent 
load (G) (self-weight of the steel structure and roofing) and snow load (S) for area 3 of snow load 
according to PN-EN-1991-1-3 [38] and uneven wind suction load (W) determined on the basis of PN-
EN-1991-1-4 [39]. Cross sections of individual groups of members were adopted according to Table 
9. 

The values of cross-sectional forces, load capacity for the most-stressed elements of these groups, 
and the displacement limits of node 9 are summarized in Table 11. Figure 19 shows the deformation 
of the structure. 

 
Figure 19. Ribbed dome deformation included wind load. 
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Figure 19. Ribbed dome deformation included wind load.

In the second step, the considered structure was subjected to linear buckling analysis.
The lowermost critical load multiplier is equal to µcr = 2.35506. Figure 20 shows the buckling
modes for four successive eigenvalues.
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In the second step, the considered structure was subjected to linear buckling analysis. The 
lowermost critical load multiplier is equal to µcr = 2.35506. Figure 20 shows the buckling modes for 
four successive eigenvalues. 

 
Figure 20. Buckling modes of the structure included wind suction: (a) 1st, (b) 2nd, (c) 3rd, (d) 4th. 

In the last step, the geometrically nonlinear static analysis was carried out. The critical load 
multiplier is equal to µcr = 1.390. Figure 21 shows the equilibrium path of the considered bar dome 
for case 2. 

 
Figure 21. Equilibrium path of the considered bar dome for case 2. 

Figure 20. Buckling modes of the structure included wind suction: (a) 1st, (b) 2nd, (c) 3rd, (d) 4th.

In the last step, the geometrically nonlinear static analysis was carried out. The critical load
multiplier is equal to µcr = 1.390. Figure 21 shows the equilibrium path of the considered bar dome for
case 2.
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Allowable vertical displacement 
(mm)—D/300 83.33 

Maximum horizontal displacement 
(mm)—for node 9 4.52 
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(mm)—H/150 
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Figure 20. Buckling modes of the structure included wind suction: (a) 1st, (b) 2nd, (c) 3rd, (d) 4th. 
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for case 2. 
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Values of the internal forces and the maximum horizontal and vertical displacement of node 9,
for the load multiplier equal to 1, are presented in Table 12.

Table 12. Values of the internal forces and the maximum horizontal and vertical displacement of node
9 for GNA.

Internal Forces/Displacement
GNA

Meridian
Bar no 10

Parallel
Bar no 106

Diagonal
Bar no 165

NEd (kN)—axial force 555.081 214.545 36.408
My,Ed,Max (kNm)—design bending moment with respect to y-y axis 43.965 1.210 0.173
Mz,Ed,max (kNm)—design bending moment with respect to z-z axis −2.704 −0.720 −0.008

Utilization (%) 83 92 90
Maximum vertical displacement (mm)—for node 9 68.72

Allowable vertical displacement (mm)—D/300 83.33
Maximum horizontal displacement (mm)—for node 9 6.52

Allowable horizontal displacement (mm)—H/150 6.67

3.2.4. Discussion of Example 2

The huge impact of uneven wind load on its load bearing capacity in the structure under
consideration is clearly visible. During initial verification of cross-sections in linear analysis, an increase
in utilization of the elements from the “diagonals” group to 49%, compared to utilization of 8% in
case 1, was noticed. Changes in element utilization in the linear analysis for the other groups did
not differ significantly and amounted: from 67% to 65% for meridians and from 65% to 67% for
parallels, respectively. Larger differences were observed in geometric nonlinear analysis, and for
meridians, the utilization increased from 81% to 83%; in the case of parallels, from 85% to 92%; and in
the case of diagonals, from 9% to as much as 90%. Differences in cross-sectional forces were also noted.
In the linear analysis, the value of the axial force for meridians decreased from 563.694 to 518.05 kN;
for parallels, increased from 162.79 to 164.801 kN; and for diagonals, increased from 1.977 to as much as
19.766 kN. Changes in the values of cross-sectional forces follow a similar trend in the case of GNA. For
meridians, a decrease from 596.243 to 555.081 kN; for parallels, an increase from 208.020 to 214.545 kN;
and for diagonals, an increase from 1.61 to as much as 36.408 kN were observed.

The impact of uneven load is also noticeable on the value of the critical load multiplier determined
in LBA. For case 1, it is µcr = 2.11199, while in case 2 it increases to µcr = 2.35506. Both values indicate
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that a second order analysis is necessary. The critical load multiplier values for geometrically nonlinear
analysis are, respectively, for case 1, µcr = 1.562 and for case 2, µcr = 1.390.

4. Conclusions

Linear analysis with linear bifurcation analysis works well for the design of steel high-rise
single-layer coverings. The situation changes radically when the structure is a low-rise single-layer bar
dome. These structures are subjected to large displacement gradients, and the actual configuration has
to be taken into account in analysis. During the analysis, a clear decrease in measures describing the
stiffness of the structure was observed. This structures should be designed according to geometrically
nonlinear analysis.

The nonlinear analysis of bar structures with the finite element method (FEM) involves solving large
systems of nonlinear equations. The relation between displacements and loads in a (N+1)-dimensional
space is described by the load-displacement path. Stability analysis is closely related to singularities
along this path. Controlling the incremental-iterative process to determine the equilibrium path
and determine the location of critical points requires the establishment of a number of parameters.
Their selection is not always intuitive and is time consuming. It often requires a lot of experience, but it
is beneficial. The values of internal forces and displacements determined with two analyses mentioned
above show very large differences. This concerns both the ultimate limit state and the serviceability
limit state.

The paper focuses on comparing two load cases of low-rise bar domes, classic in accordance with
Eurocodes requirements and taking into account uneven wind suction. Based on the analyses carried
out, a significant impact of wind suction on the values of cross-sectional forces and displacements
of structure nodes was observed. The use of stability analysis methods additionally enhanced the
observed effect of the adverse effect of asymmetrical load on the structure. According to the authors,
it is advisable to verify the load-bearing capacity of weak structures after taking into account the
asymmetrical impact of wind on the structure.
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