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Abstract: Optimizing the operating conditions and control set points of the heating, ventilation,
and air-conditioning (HVAC) system in a building is one of the most effective ways to save energy
and improve the building’s energy performance. Here, we optimized different control variables
using a genetic algorithm. We constructed and evaluated three optimal control scenarios (cases) to
compare the energy savings of each by varying the setting and number and type of the optimized
control variables. Case 1 used only air-side control variables and achieved an energy savings rate
of about 5.72%; case 2 used only water-side control variables and achieved an energy savings rate
of 16.98%; and case 3, which combined all the control variables, achieved 25.14% energy savings.
The energy savings percentages differed depending on the setting and type of the control variables.
The results show that, when multiple control set points are optimized simultaneously in an HVAC
system, the energy savings efficiency becomes more effective. It was also confirmed that the control
characteristics and energy saving rate change depending on the location and number of control
variables when optimizing using the same algorithm.
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1. Introduction

The optimal control of heating, ventilation, and air-conditioning (HVAC) systems in buildings
can save a substantial amount of energy. Many variables can be controlled in buildings to achieve
energy savings and operating an HVAC system with the optimal control variables within the operating
conditions of the system is critical for saving energy and improving the system’s overall performance
and efficiency. Researchers have conducted numerous studies in attempts to achieve such optimal
control. The effectiveness of several typical control methods of HVAC systems has been demonstrated
in a number of studies; these methods include near-optimal control [1], the ‘proportional integrated
derivative’ approach [2,3], and model predictive control [4–6]. Recently, as the amount of data and
information that can be obtained from buildings has increased significantly and the computational
performance of computers has improved, researchers have actively employed artificial intelligence
or machine learning techniques to optimize and control HVAC systems [7–9]. Among the machine
learning techniques, genetic algorithms (GAs) are known to be suitable in complex conditions, such as
large amounts of data and parameters, and are especially suitable for the optimization of HVAC
systems in buildings [10,11].

In previous work, the authors conducted studies of optimal HVAC control methods using GAs
that were applied to both a variable air volume (VAV) air-conditioning system and chilled water system
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to optimize the control variables in each system [12,13]. Two control variables for each system were
analyzed in terms of time units, and the energy savings of the entire system for the cooling period were
compared with the energy savings per component. Although the VAV air conditioning system and
the chilled water system were divided into separate systems because they are composed of separate
loops, the subsystem concept of an HVAC system affects its performance at the system level. So, with
regard to the entire HVAC system, changes in the control variables and energy savings rates can show
different characteristics according to changes in the setting or number of the control points.

The study of optimization using GAs is suitable for optimization of the complex composition of
building and HVAC systems, and has already been verified in previous studies [9,12–15].

However, it has not yet been resolved whether the combination of the location or number of
control points among the multiple control variables is more efficient when optimizing using GAs.
When applying control to buildings, it is also very important to provide appropriate adjustment of
control variables, and it is necessary to apply a control scenario in many cases and compare the effects
of control. Based on the results of this study, a guide can be provided for selecting each effective
combination of control variables and an adjustment within the HVAC system.

As a follow-up to our earlier studies [12,13], the main purpose of this study was to compare
the characteristics of different optimal control methods by combining the two methods (air-side and
water-side) with additional control variables in an HVAC system’s controllable points during cooling
periods and organizing the control scenarios by setting and variables of the control points in the HVAC
system. The method for deriving the optimal control variables for an HVAC system uses a GA in the
same way as in the previous studies [12,13]. The main control variables in a ‘combined’ HVAC system
that consists of both a VAV system and a chilled water loop are the supply air temperature, duct static
pressure, chilled water supply temperature, and pump differential pressure, all of which are controlled
simultaneously for the proposed optimization. After constructing three optimal control scenarios
according to the setting and type and number of control variables, we compared the changes in the
control variables and the energy savings percentages during the cooling season for each control scenario.

2. Building Model and HVAC System Description

2.1. Data Generation

In order to derive the optimal control variables to save energy for an HVAC system using a GA,
several input data for driving the optimization algorithm are required. In this study, a reference
building proposed by the United States Department of Energy’s Building Energy Codes Program [16]
and ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard
90.1 [17] were simulated using EnergyPlus 8.9.0 to evaluate the model building’s energy performance.
Among the choice of reference buildings, we selected the Large Office Building [18–20] of Commercial
Prototype Building Models. The location of the building, weather data, internal heating, and operation
schedule of the facility system all can be used to predict the airflow supply in the building. These
variables were changed under the same conditions and used in a prior study to fit a domestic
situation [12], energy consumption prediction [19], and optimization of a VAV system [12]. Table 1
summarizes the major information and simulation conditions of the reference building used also in the
current study.



Buildings 2020, 10, 195 3 of 13

Table 1. Simulation conditions of the reference building: Large-scale office building [12].

Component Features

Weather Data and Site Location TRY Seoul
Latitude: 37.57◦ N, longitude: 126.97◦ E

Building Type Large-Scale Office

Total Building Area (m2) 46,320

Hours Simulated (h) 2928

Envelope U-Factor (m2 K/W)
External Wall 0.35

Roof 0.213
External Window 1.5

Window-Wall Ratio (%) 40

Set Point (◦C) Cooling 26
Heating 20

Internal Gain
Lighting 10.76 (W/m2)

People 18.58 (m2/person)
Plug and Process 10.76 (W/m2)

People Activity Level 1.15 METs

HVAC Sizing Auto Calculated
(Determine Simulation Program)

Building and HVAC Operation Schedule 7:00–18:00

Output Time-Step Hourly (1 h)

The human factor, such as the number of occupants and behavior [21,22], should be considered
important because of its huge impact on the energy performance of buildings. In this study, the
suggested typical occupancy schedule and metabolic rate in the ASHRAE model were used.

The reference building is divided into 19 zones, of which conditioned zones are 15 zones excluding
basements and plenums. All conditioned zones are the same set point. Figure 1 shows a 3D view of
the reference building used in this study.
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The weather data were converted from the test reference year (TRY) format in Seoul to the
EnergyPlus Weather (EPW) file format; the time-step used to generate the data was one hour. The
simulation period for the reference building was 2928 h of data from May to September.

2.2. HVAC Systems and Control Set Points

The HVAC system of the standard building modeled in this study cools each zone using a VAV
system. The HVAC system consists of a fan, an air handling unit (AHU), a chiller, and a chilled water
pump. In order to improve the building’s energy efficiency by optimizing the HVAC system, many
control variables at the system level can be considered. However, in this study, given the HVAC
system that is configured in the target building, the ‘air-side’ variables, which include the VAV system,
the supply air temperature, and the duct static pressure, were selected as the control target. The
‘water-side’ variables, which include the chilled water system, utilize the chilled water temperature
and pump pressure difference as the control variable settings.

Figure 2 presents a schematic diagram of the control set points for the supply air temperature,
duct static pressure, chilled water temperature, and pump pressure difference that were selected as
the control set points in this study and the configuration of the HVAC system. In the HVAC system,
the fan efficiency was 0.6, the pump efficiency was 0.9, and there is no heat loss in ducts and pipes,
and insulation is assumed to be adiabatic.
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3. Genetic Algorithm-Based Optimal Control Variable Calculations and Optimal Control
Scenario Composition

3.1. Determination of Genetic Algorithm-Based Optimal Control Variables

In this study, we used a GA to determine the optimal control of the HVAC system. The objective
function of the GA is the sum of the total energy consumption of the HVAC system. When optimization
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is performed after setting the required number of populations and the selection range of the solution
in the GA, the algorithm calculates the optimized control value when the total energy consumption of
the system becomes the minimum. The computation of the GA prevents the repetition of unnecessary
computations and allows the computation to be performed up to 100 generations with consideration
of the proper computation time. The optimal control variables were calculated in units of one hour,
and then each calculated optimal control variable was updated to a real-time input value for the control
of the HVAC system in order to perform an optimal control operation. Figure 3 is a flowchart of the
process of calculating the real-time optimal control variables and the process of the optimal control
operation method.Buildings 2020, 10, x FOR PEER REVIEW 5 of 13 
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In the process of calculating the optimal control variables for the optimal control operation, we
used a mathematical model from the literature [12,23,24] to calculate the energy consumption of the
HVAC system. Among the input values required for the calculations, the main values used as fixed
variables were the simulation output values of the reference building. The model used to calculate
the energy consumption of each component in the HVAC system was programmed using MATLAB
R2018a, and the GA for optimization was programmed using MATLAB’s Global Optimization Toolbox.

3.2. Genetic Algorithm Calculation and Control Range Settings

In this study, we employed the design conditions of the building and the operations provided
by the system manufacturer (Trane Commercial HVAC) to select the ranges of the upper and lower
limits, which are within the selection range of the solution, as controllable values while the actual
system is operating. The control ranges were set in accordance with the literature and based on design
conditions and actual measurements. Table 2 shows the ranges for the calculations of the control
settings and GA set used in this study.
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Table 2. Control ranges for calculation of the genetic algorithm.

Supply Air
Temperature (◦C)

Duct Static Pressure
(Pa)

Chilled Water Temperature
(◦C)

Pump Pressure Difference
(kPa)

12–19 250–622 6–10 34.47–103.43

3.3. Optimal Control Scenarios Composition and Evaluation Method

This study investigated how changes in the setting and type and number of the control variables
affect the energy savings of the HVAC system during optimal control operations. Table 3 shows that the
three operation scenarios (cases) of the HVAC system were constructed by changing the configuration
of each control variable in order to understand the control characteristics.

Table 3. Optimal control scenarios.

Case

Control Variable

Supply Air
Temperature

(◦C)

Duct
Static Pressure

(Pa)

Chilled Water Supply
Temperature

(◦C)

Pump Pressure
Difference

(kPa)

(Non-Optimal) 12.8 474 6.7 78.05

Case 1 Calculate GA Calculate GA 6.7 78.05

Case 2 12.8 474 Calculate GA Calculate GA

Case 3 Calculate GA Calculate GA Calculate GA Calculate GA

‘Normal’ operations of a HVAC system, i.e., without any optimal control scenario, are considered
to be as follows: supply air temperature of 12.8 ◦C, duct static pressure of 474 Pa, cold-water supply
temperature of 6.7 ◦C, and pump differential pressure of 78.05 kPa.

Case 1 optimizes and controls the air-supply variables, i.e., the supply air temperature and duct
static pressure. The other control variable is used as the set-point operation, which is a feasible control
method for a building installed with a VAV system.

Case 2 optimizes and controls the water-side control variables, i.e., the cold-water supply
temperature and pump differential pressure. The other control variables are operated as set-points.
This control method can be applied when the chiller and the cold-water pump are controlled during
cooling when using a chilled water system in a building.

Case 3 is a method to optimize all the control variables selected in this study at the same time.
The results of the optimal control operations for each scenario were analyzed by observing the

changes in the optimal control variables calculated using the GA. The energy savings effects were
evaluated by comparing the energy consumption of the HVAC system during normal operations
with a certain control value and at the optimum control operation for each case. The target period of
analysis was from June to September, which is the general cooling period applied in this study for the
Seoul area.

4. Results and Discussion

4.1. Variance of Control Parameters

4.1.1. Supply Air Temperature

Figure 4 presents the changes in the supply air temperature from June to September. Among
the proposed optimal control operation scenarios, case 2 does not include supply air temperature
as a control variable, so the changes in supply air temperatures are shown only for case 1 and case
3. For both case 1 and case 3 in June and September, the distribution of the supply air temperature
ranged from 12 ◦C, the lowest value, to 17–18 ◦C, which is not significantly different from the outside
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temperature. For case 1, the maximum value is 19 ◦C, which is the upper limit of the control range
of the supply air temperature. In June and September, the building temperature can be controlled
using a temperature that does not differ significantly from the outside air temperature. The results
indicate that outside air cooling can be introduced without requiring the air conditioner to run when
the cooling load is relatively low. The supply air temperature in July and August, when the cooling
load increases, was operated at about 12 ◦C, the lowest value of the control range when controlled for
case 1 and slightly lower than for normal operations when controlled for case 3 that operated at about
12.6 ◦C. If the supply air temperature is continuously set to a low supply air temperature, as in July
and August, there is risk of condensation on the supply duct or outlet side, and reheating is required
to maintain the indoor set temperature. In addition, cold drafts can also occur indoors, so these factors
must be considered when applying operation methods.

Figure 4. Supply air temperature changes during optimal control mode for June through to September.

4.1.2. Duct Static Pressure

Figure 5 shows the changes in duct static pressure from June to September. Case 2 does not
include duct static pressure as a control variable, so the changes in duct static pressure are shown only
for case 1 and case 3. For both case 1 and case 3, the duct static pressure on the air supply side was
kept below 474 Pa and kept constant during normal operations. Maintaining low duct static pressure
in the system provides less air volume than the design air volume, which saves energy when using
the blower. For case 1, the average duct static pressure per month was 268 Pa in June, 261 Pa in July,
258 Pa in August, and 283 Pa in September. However, the reduction in the amount of airflow due
to maintaining the low duct static pressure may temporarily reduce the local indoor air quality in
the zone due to the decrease in the airflow speed inside, even when meeting the required amount of
outside air. Therefore, maintaining adequate indoor air quality is necessary.
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4.1.3. Chilled Water Temperature

Figure 6 shows the changes in the chilled water temperature from June to September. Both optimal
control scenarios, case 2 and case 3, were operated between 9 and 10 ◦C higher than the chilled water
temperature of 6.7 ◦C, which is set during normal operations according to the design value. In the
optimal control operations, the cooling load of the building can be handled sufficiently, even with cold
water that has a temperature higher than the design value of 6.7 ◦C. Therefore, energy consumption
in the chiller can be reduced by reducing the power consumption of unnecessary compressors that
typically are used to produce cold water at a low temperature in the chiller. This method also is
expected to be able to detect and prevent over-cooling of the chiller. Moreover, it can be used to
calculate the chilled water temperature that is suitable for the cooling load of the building or to calculate
the chiller capacity (size).

Figure 6. Chilled water temperature changes during optimal control mode for June through September.

4.1.4. Pump Pressure Difference

Figure 7 shows the pump pressure differences associated with operation conditions from June to
September. Both optimal control case 2 and case 3 operated while maintaining a lower value than the
set value of 78.05 kPa, which is the difference in pump pressure during normal operations and the
design value. The pump pressure differences for case 2 and case 3 averaged about 26.10 and 29.04 kPa,
respectively. These scenarios can cool the reference building by maintaining a low chilled water pump
pressure. When a low differential pressure is maintained in the chilled water loop, cooling is possible
even with a small flow of cold water during operation of the HVAC system, which also results in the
reduction of the head of the chilled water pump.
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4.2. Analysis of Energy Consumption

4.2.1. Monthly Energy Consumption Comparison

Figure 8 shows comparisons of the monthly energy consumption for normal operations as well as
for each optimal control operation scenario from June to September, the period of analysis. Of all the
optimal control operations in these months, case 3 saved the most energy by approximately 23.9% to
27.2%, case 2 saved approximately 16.6% to 17.53%, and case 1 saved approximately 4.2% to 9.6%. In
other words, case 3, which uses all four control variables, had higher energy-saving percentages than
case 1 and case 2; that is, as the number of control variables increased, the energy savings percentage
also increased. The monthly energy saving ratios for case 1 and case 3 showed a difference of more
than 2–3% in June and September compared to July and August when the cooling load was large,
while case 2 showed similar savings rates within 1% of all months. The method of controlling the heat
source side showed a constant variation in energy savings regardless of the change in cooling load.Buildings 2020, 10, x FOR PEER REVIEW 9 of 13 

 

Figure 8. Monthly energy consumption comparison between normal operation mode and optimal 

operation modes for June through September. 

4.2.2. Total Energy Consumption Comparison 

Figure 9 shows a comparison of the overall energy consumption under normal operations and 

under each optimal control operation scenario from June to September, the period of analysis. The 

total energy consumption comparison also confirms the energy savings effect due to an increase in 

the number of control variables. Although both case 1 and case 2 were controlled using only two 

control variables, the energy savings ratio differed by more than 10% due to the larger proportion of 

energy consumed by the chiller than the AHU (including the fan) in the target building. 

 

Figure 9. Comparison of total energy consumption between normal operation mode and optimal 

operation modes for June through September. 

4.2.3. Energy Consumption Comparison by Component 

In this study, the energy consumption of the HVAC system was calculated as the sum of the 

energy consumption of the fan, chiller, and chilled water pump. Therefore, the changes in energy 

consumption by component also needed to be analyzed in order to understand how the 

characteristics of each optimal control operation affects the change in the energy consumption of each 

component for each case. The results are as follows. 

Figure 10 shows a comparison of the energy consumption of the fan according to normal 

operations and each optimal control operation scenario from June to September. Case 1 saved the 

most fan energy at 26.87%. Case 2 was unable to save blower energy because this case has no fan-

related control variables. Although case 3 used all the control variables, the savings rate was 

approximately 6% lower than case 1, which is judged to be due to the output of the algorithm that 

considers a balance of the air-side variables and water-side variables in order to save energy of the 

chiller and cold water pump simultaneously while also using the chilled water temperature and 

pump pressure. Thus, case 1 is the most advantageous control method but only with regard to energy 

savings of the fan. 

Figure 8. Monthly energy consumption comparison between normal operation mode and optimal
operation modes for June through September.

4.2.2. Total Energy Consumption Comparison

Figure 9 shows a comparison of the overall energy consumption under normal operations and
under each optimal control operation scenario from June to September, the period of analysis. The
total energy consumption comparison also confirms the energy savings effect due to an increase in the
number of control variables. Although both case 1 and case 2 were controlled using only two control
variables, the energy savings ratio differed by more than 10% due to the larger proportion of energy
consumed by the chiller than the AHU (including the fan) in the target building.
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4.2.3. Energy Consumption Comparison by Component

In this study, the energy consumption of the HVAC system was calculated as the sum of the
energy consumption of the fan, chiller, and chilled water pump. Therefore, the changes in energy
consumption by component also needed to be analyzed in order to understand how the characteristics
of each optimal control operation affects the change in the energy consumption of each component for
each case. The results are as follows.

Figure 10 shows a comparison of the energy consumption of the fan according to normal operations
and each optimal control operation scenario from June to September. Case 1 saved the most fan energy
at 26.87%. Case 2 was unable to save blower energy because this case has no fan-related control
variables. Although case 3 used all the control variables, the savings rate was approximately 6% lower
than case 1, which is judged to be due to the output of the algorithm that considers a balance of the
air-side variables and water-side variables in order to save energy of the chiller and cold water pump
simultaneously while also using the chilled water temperature and pump pressure. Thus, case 1 is the
most advantageous control method but only with regard to energy savings of the fan.
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In buildings where AHU is designed to be larger than the chilled water plant, it is expected
that greater energy savings can be achieved by selecting only the air-side duct static pressure and air
temperature as the control variables.

Figure 11 shows a comparison of the energy consumption of the chiller under normal operations
and each optimal control operation scenario from June to September. Although in case 1, the control
variables related to the chiller cannot be controlled directly, the energy consumption of the chiller
decreased somewhat. The chiller is believed to have saved energy by being cooled directly via
outdoor air intake when the outdoor air temperature was low and free cooling was possible. In case 2,
the cooling load of the chiller could be handled sufficiently by supplying the chiller with cold water at
a high temperature while the chiller operated between 9 and 10 ◦C, which is approximately 3 ◦C higher
than the set point of 6.7 ◦C during normal operations. With more control variables, case 3 produced the
more optimal chilled water temperature needed for cooling, compared to case 2, and saved the most
chiller energy. The advantage here is that the chiller has many control variables for energy savings.
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Figure 11. Comparison of chiller energy consumption between normal operation mode and optimal
operation modes for June through September.

Figure 12 shows a comparison of the energy consumption of the cold-water pump under normal
operations and under each optimal control operation scenario from June to September. In case 1,
the energy consumption of the chilled water pump increased slightly due to the partial increase in
the circulation of the cold water, as the cooling coil must be supplied with only the amount of chilled
water that is needed to keep the supply air temperature low in the AHU. In case 2, the pump pressure
difference was about 26 kPa lower than the set point of 78.05 kPa during normal operations, providing
the load with a lower flow rate of chilled water and thus saving energy from the chilled water pump.
Case 3 used all the control variables and operated the chilled water pump by supplying the more
optimal chilled water flow rate compared to case 2, thereby saving the most energy.
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Figure 12. Comparison of pump energy consumption between normal operation mode and optimal
operation modes for June through September.

To save the energy of the chilled water plant composed of the chiller and pump, control using
many control variables could save more energy. The conditions of control variables in the AHU also
have a significant effect on energy performance in optimizing the chilled water plant.

5. Conclusions

The optimal control variables used in an HVAC system were derived in this study using a GA.
Three optimal control scenarios were established by varying the setting and number of optimal control
variables. The three optimal control scenarios were compared and evaluated versus normal operating
conditions by investigating changes in the appropriate optimal control variables and energy savings.

The change in the supply air temperature was 12.31 ◦C on average during operations with case
1 and 12.68 ◦C on average during operations with case 3, operating at a temperature approximately
0.5 to 0.3 ◦C lower than the set point of 12.8 ◦C during normal operations. The change in duct static
pressure was 267 Pa on average for case 1 and 296 Pa for case 3, which is approximately 180 to 200 Pa
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lower than the set point of 474 Pa during normal operations. The optimal control variable derived
using the GA is considered to have saved energy while maintaining the air supplied to each zone from
the VAV system in a low-temperature to low-pressure state.

The change in chilled water temperature was 9.21 ◦C on average for case 2 and 9.73 ◦C on average
for case 3, which was operated at a temperature 2.5–3.0 ◦C higher than the set point of 6.7 ◦C during
normal operations. The change in pump differential pressure was 51.95 kPa on average for case 2 and
49.01 kPa on average for case 3 and was maintained at a differential pressure of about 26 to 29 kPa lower
than the set point of 78.05 kPa during normal operations. The optimal control variable derived using
the GA is considered to have saved energy while keeping the chilled water loop in a low-temperature
low-pressure state.

The overall energy savings of the HVAC system during operations was 5.72% in case 1, 16.98% in
case 2, and 25.14% in case 3. The control method of case 3 used all the control points and saved the
most energy, up to approximately 25% for the target building using optimal control variables. The
energy savings of the fan were best in case 1, and the energy savings of the chiller and chilled water
pump were best in case 3.

The results of this study confirm that the energy savings percentage differs according to the change
in the setting points and number of control variables. Additionally, the more multiple control points
are optimized by increasing the number of control variables, the more effective is the energy savings.
Therefore, the adjustment of multiple variables for optimal control is important when reviewing
the effects of control, selection of variables, and control strategies. However, the size and operation
conditions of each component in the HVAC system may vary as the location and weather condition,
and the design and size of the building and the schedule for usage change, so the energy savings rate
for each proposed optimal control operation scenario will vary.

In future research, there are also many other control variables in the HVAC system, so that
additional research on optimal control operation in more complex control conditions should be carried
out by adding a variety of control variables, and the optimal control proposed in this study should be
verified in the on-site building.
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