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Abstract: This paper presents the results of an experimental study on the mechanical behaviors of
steel–concrete composite decks with different shear span-to-depth ratios. Herein, four composite
decks categorized into two types with shear span-to-depth ratios of 2.5 and 4.6 are designed for
an experimental program. The decks then undergo the four-point bending tests until failure to
investigate the structural responses, such as the load, displacement, crack mechanism, and failure
mode. Conventional section analysis is used to derive the flexural strength of composite decks
in comparison with the test results. Additionally, the ductility of the composite decks is assessed
based on the displacement indices. The analysis results demonstrate that the stiffness and capacity
of the composite deck increase with the decrease in the shear span length. However, the ductility
of the composite slabs increases with the shear span length. The flexural strengths predicted by
section analysis overestimate the actual test results. The shear span-to-depth ratio affects the crack
mechanism of the composite decks.

Keywords: steel–concrete composite deck; composite structure; reinforced concrete; flexural behavior

1. Introduction

Besides conventional steel-reinforced concrete (RC) structures, structures made by
steel–concrete composite systems have been gained the attention of researchers and engi-
neers. A novel composite metal decking system with innovative technology is made from
cold-formed steel [1]. This composite deck utilizes cold-formed profiled sheets identical to
those used as roofing products [2], which are poured over the profiled sheets. Nowadays,
this construction method has become more favorable for clients to use in their construction
projects since it is faster and safer than the conventional RC slab. There are two key reasons
for the use of the cold-formed profiled sheet for producing composite slab systems. First,
the cold-formed profiled sheet can be used as formwork during the casting of concrete [3].
Second, at the working stage, the profiled sheet acts as the main steel tension reinforcement
that can withstand high tensile forces [4].

However, an additional secondary reinforcement must be placed above the profiled
steel sheet to reduce damage caused by the shrinkage and temperature. The interface
between the steel sheet and concrete is basically subjected to longitudinal shear stress
induced by the weight of concrete block above the sheet. This results in the development
of the longitudinal shear stress accumulating as loading acting on the supports. There-
fore, bolted shear connectors (e.g., stud bolt) must be implemented at the area around
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the supports in order to overcome the longitudinal shear stress occurring in this zone.
Akhand et al. [5] carried out experiments to investigate the strength of re-entrant decking
under combined flexure and web crippling by using cold-formed sheeting (Bondek-II
sheeting) with a thickness of 1 mm. They found that this kind of decking had higher
buckling sensitivity. Nonlinear finite element models were also proposed in their study
to predict the moment–rotation characteristics of this decking by comparing it with the
experimental data. The advanced design approach for the composite slab was presented by
Crisinel and Marimon [6] and can be used to predict the moment–curvature relationship
at the critical cross-section of a composite slab. Their design approach was verified by
comparison with the results from the large-scale tests.

The behaviors of a steel-concrete composite deck with profiled sheeting and perfobond-
rib shear connectors were examined by Kim and Jeong [7]. It was found that the composite
deck slabs can carry more load, approximately two and a half times, compared to the
conventional RC deck slabs. The utilization of waste materials such as palm oil clinker
aggregates as a full replacement for normal aggregates of lightweight concrete was demon-
strated by Mohammed et al. [8]. This lightweight concrete was then used to produce
composite-slab specimens, which were tested to acquire the load versus strain of these
composite slabs made from palm oil clinker aggregates. An investigation of the behavior
of the composite deck slab made from trapezoidal profiled stainless steel decking sheets
was carried out by Prajapati et al. [9]. In an experiment by Baskar and Jeyasehar [10],
an interlocking system was implemented in the composite deck slab system to increase
the frictional and mechanical interlocking at the interface between the steel sheet and
concrete. This interlocking system can well resist the shear stress longitudinally trans-
ferred at the interface, which strengthens the interaction between the steel and the concrete.
Hedaoo et al. [11] used trapezoidal profiled galvanized iron sheets as components of eigh-
teen composite slab specimens to be tested under static and cyclic loading. The structural
behavior as well as the loading capacity of these composite slab systems was presented in
their work. They also found that the preliminary cycling loading can initially cause the
failure of chemical bonds at the interface between concrete and steel.

Regarding the utilization of numerical techniques, Abdullah and Samuel [12] and
Chen [13] provided results obtained from a bending test, which were then used to develop
finite element models for estimating the horizontal shear bond in composite slabs. The
modeling and analysis of the ultimate behavior of two-way composite slabs were presented
by Eldib et al. [14], who adopted the finite element method with non-linear material
properties. Note that two-way composite slabs mean that the slabs can carry the loads
along with both directions. Composite slabs with a length ratio based on the longer edge
to the shorter edge less than two can be considered two-way slabs. The interface contact
model was activated in their simulation to increase the accuracy of finite element models.
The shear bond mechanism of composite slabs was investigated by Chen and Shi [15], who
conducted both full-size tests and finite element models of concrete slabs composited with
cold-formed profiled steel decks.

The longitudinal shear stress owing to the heavy weight of the concrete block above
the steel sheet is one of the fundamental problems in the construction and design of com-
posite deck slabs. Marimuthu et al. [16] studied the behavior of composite deck slabs by
utilizing embossed trapezoidal profiled sheets. By comparing their experimental results
with European Standards [17] and British Standards [18], they concluded that the stud con-
nector was an essential part to be implemented at the bonding zone between the concrete
and profile steel sheet to enhance the capacity of bonding. Baskar [19] also confirmed that
the use of stud shear connectors could enhance the ultimate strength and ductility of the
composite deck system. Lakshmikandhan et al. [20] later investigated the effect of different
shear transferring mechanisms. The indentation embossment and fastening studs were
carried out in their work. They found that the strength, stiffness, flexural capacity, and
load-carrying capacity of composite deck slabs increased when using the mechanical shear
connectors. More details on the longitudinal shear behavior of composite deck slabs can
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be found elsewhere [21–26]. Recently, an experimental investigation on the connection
behavior of composite decks by varying the types of cold-formed profiled sheets was
carried out by Avudaiappan et al. [3].

One of the most important factors influencing the strengths of RC members is the shear
span-to-depth ratio [27]. This factor plays a major role in determining the performance and
failure behavior of slender RC beams used for tall building construction [28]. For example,
the shear strength of the RC beams increased with decreasing shear span-to-depth ratio due
to the mechanism, commonly refer to as the “strut and tie action” [29,30]. RC beams with
a low shear span-to-depth ratio are prone to suffer shear-compression failure mode [31].
Despite extensive research on this subject, very few experimental studies on the influence
of the shear span-to-depth ratio on behaviors of slender composite metal decks have been
reported in the literature. Therefore, the understanding of the failure mechanism and
bonding resistance in the composite metal decks under bending needs to be improved.

The aim of this research is to assess the flexural strength and behavior of one-way
steel–concrete composite decks, which have length ratios of the longer edge to the shorter
edge greater than two. Four composite decks were fabricated and underwent four-point
bending tests. The effects of the shear span-to-depth ratio on the structural responses of
composite metal decks were investigated. Herein, the composite metal deck was made from
cold-formed steel sheet. The load-displacement curves of tested specimens are presented.
Histograms for cracking and the maximum moment of all composite metal decks were also
assessed. The test results were compared with the flexural strength calculated by using
the section analysis. The crack mechanism and failure mode of the test composite decks
were examined. Further, the ductility of the composite decks under the effect of the shear
span-to-depth ratio was evaluated.

2. Experimental Program
2.1. Test Specimens

Concrete specimens, including the composite deck and standard cylinders (150 mm
× 300 mm), were cast at the same time. The concrete specimens were obtained from the
ready-mixed concrete designed according to the ACI 211.1 standard [32]. The concrete
mixture had a Portland cement (Type I) content of 375 kg/m3 and a water content of
190 kg/m3. The water-to-cement ratio was 0.51 by weight. The mixture also contained
760 kg/m3 sand and 1120 kg/m3 limestone. The fresh concrete had a slump of 11 cm. The
28-day compressive strength of three standard cylinders (Ø150 × 300 mm) ranged between
28 and 34 MPa, with an average value of 32 ± 1.6 MPa. After 24 h, the specimens were
demolded. Then, they were cured by using the wet plastic wrapping method for 28 days.

The details of the specimens are presented in Figure 1. The composite deck consisted
of a cold-formed steel sheet, shear connectors, and concrete. The steel sheet with an
embossed trapezoidal profile had a thickness of 1.2 mm. Its yield strength and tensile
strength were 312 MPa and 436 MPa, respectively. The dead weight of the steel sheet was
about 12 kg/m2. Stud bolts (grade M19) with a diameter of 19 mm were used as shear
connectors to overcome the longitudinal shear stress (i.e., prevent slippage between the
steel sheet and concrete). To prevent cracks in the negative bending zone, the transverse
steel used in the investigation was made of conventional round bars 9 mm in diameter
with a spacing of 200 mm. The composite decks were tested on simple supports made from
steel H-beams to reasonably reflect the actual composite systems of deck–beam joints. The
H-shaped beam dimensions are shown in Figure 1.
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Figure 1. Details of test composite decks. (a) Specimens S1 and S2 (dimensions in mm). (b) Specimens S3 and S4 (dimensions
in mm).
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Figure 2 shows the preparation for the composite deck. The dimensions of the com-
posite decks studied are summarized in Table 1. The deck specimens can be divided into
two series based on their length. All decks had a width of 1000 mm, while the maximum
depth of concrete above the profile was 240 mm. Two span lengths of 2500 and 3500 mm for
composite decks were investigated. Figure 1a,b shows the details for the series I specimen
and the series II specimen, respectively.
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Table 1. Dimensions and shear span-to-depth ratio of composite decks.

Series Specimen
No. Width (mm) Depth (mm) Length (mm) Span Length

(mm)
Shear Span

(mm)
Shear

Span-to-Depth (a/h)

I
S1 1000 240 2500 2350 595 2.5
S2 1000 240 2500 2350 595 2.5

II
S3 1000 240 3500 3350 1095 4.6
S4 1000 240 3500 3350 1095 4.6

2.2. Test Setup and Instrumentation

In order to investigate the flexural behaviors, the load and displacement of the simply
supported composite decks were monitored during the tests. Figure 3a shows the scheme
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for the four-point bending tests of specimens S1 and S2. Figure 3b demonstrates the
scheme for the four-point bending tests of specimens S3 and S4. To reflect the actual
composite deck–beam joints, the supports of the decks were I-shaped section steel beams.
The profile steel sheets were connected to the I-steel beams via the studs, as demonstrated
in Figure 3a,b. Three linear variable differential transformers (LVDT) were placed at the
bottom midspan of the composite deck along the deck width to measure the deflection. A
load cell with a capacity of 50 tons and a hydraulic jack were installed on the top of the
specimen to record the applied loads. The loading was gradually applied in the vertical
direction on the steel spreading beam for transferring the forces to the decks. The load
control was set to 10 kN/min until failure. All sensors were connected to a data acquisition
device, which was controlled by a computer, for processing the results. Figure 4a–c shows
the photos of the actual test setup for a representative composite deck.
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3. Results and Discussion

The experimental results are presented in terms of load–midspan deflection curves,
crack patterns, and failure modes.

3.1. Load and Midspan Deflection Relationship

Figure 5 presents the relationships between the load and deflection for all tested
composite decks. Overall, the specimens with a smaller shear span were stiffer than
the decks with a larger shear span. This implies that the stiffness of the steel–concrete
composite decks increased with the decrease of the shear span-to-depth ratios. In addition,
the behavior of all tested decks were simply categorized into two stages: (1) before concrete
cracking and (2) after concrete cracking. Before cracking, the composite decks behaved as
the elastic members, in which the load–deflection curves demonstrated linearity. In this
stage, no bond degradation between the steel profile sheet and concrete was observed. On
the other hand, the load–deflection curves became nonlinear. In other words, the deflection
no longer remained proportional to the applied load after initiation of the first crack, which
took place in the flexure. This occurred because the concrete material broke immediately
after the first cracking, while the steel reinforcement and sheet carried the entire load of the
composite deck. In particular, local bond deterioration was observed at high loads.
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The cracking loads, maximum loads, and deflections at peak forces of all tested
composite decks are summarized in Table 2. The cracking loads of the composite decks S1
and S2 were 79.8 and 108.3 kN, respectively, while their maximum loads were 268.1 and
213.0 kN, respectively. The midspan deflection at the peak loads of composite decks S1
and S2 was 42.9 and 38.2 mm, respectively. It can be seen that despite the features of the
S1 specimen are the same as those of the S2 specimen, the cracking loads, peak forces,
and deflections at peaks are different. This could be because the arch action might be
dominant in specimens S1 and S2 with a shear span-to-depth ratio of 2.5, ensuring that
the force transfer could be partially carried by the concrete arch. The performance of
the concrete arch may depend on the aggregate distribution and aggregate interlocking
mechanism, which could be different between specimens S1 and S2. A similar phenomenon
was reported in the study by Higuchi et al. [33]. Further discussion on the compressive
arch action is shown in Section 3.2.

Table 2. The experimental results of the tested composite decks.

Series Specimen
No.

Cracking
Load
(kN)

Cracking
Moment
(kN-m)

Maximum
Load
(kN)

Maximum
Moment
(kN-m)

Maximum
Moment by

Section Analysis
(kN-m)

Difference
in Maximum
Moment (%)

Deflection
at Peak
Load
(mm)

Failure
Mode

I
S1 79.8 23.7 268.1 79.8 65.2 18.3 42.9 SD-CF *
S2 108.3 32.2 213 63.4 65.2 2.8 38.2 SD-CF

II
S3 50.7 27.8 93.17 51 65.2 27.8 25 SD-CF
S4 55 30.1 113.17 62 65.2 5.2 23.9 SD-CF

Note: * SD-CF = profile sheeting steel debonding followed by concrete fracture.



Buildings 2021, 11, 624 9 of 13

When the shear span-to-depth ratio was increased from 2.5 to 4.6, the ability of the
composite to resist the applied load decreased. The first crack load and peak load of
composite decks S3 and S4 were lower than those of the S1 and S2 specimens. However,
the cracking moments were similar for all specimens. This was mainly because despite
the much longer members of the series II specimens (S3/S4) compared with the series I
specimens (S1/S2), the compressive strength and the sections of the concrete members
were approximately the same for the two concrete series. The maximum moments and
deflections at peak loads of the series I specimens increased by 21% and 40%, respectively,
compared to those produced by the series II specimens. These results indicated that
the shear span-to-depth ratio influenced the post-cracking behavior of the steel-concrete
composite decks.

Table 2 presents the results of the nominal moments of composite decks derived by
section analysis. The section analysis was carried out using conventional bending theory,
which is commonly used to analyze the flexural behavior of conventional steel-reinforced
concrete members [34]. The symbols used in the simplified section analysis are shown in
Figure 6. The following assumptions were considered in the calculation. The linear strain
distribution through the deck depth was examined. A perfect bond between steel and
concrete was assumed. No tensile strength of concrete was included in the calculation. The
equivalent concrete stress block for estimating the concrete internal force in compression
was considered. Only the case with a neutral axis located beyond the steel profile sheeting
was assumed. The formulation of the moment capacity after assuming force equilibrium in
the section can be generally expressed as below:

Mn = Fa

(
d− a

2

)
+ Fd

(
d′ − a

2

)
(1)

Fa =

{
Eaεa Aa; εa < εya
fya Aa ; εa ≥ εya

(2)

Fd =

{
Edεd Ad; εa < εya
fyd Ad ; εa ≥ εya

(3)

where Mn is the moment capacity (N-mm); Fa and Fd denote the internal forces in steel
sheet and reinforcement (N), respectively; a (= β1 × c) is the height of an equivalent block
of concrete compressive stress distributed in the section (mm); β1 is the factor relating the
depth of the equivalent rectangular compressive stress block to the depth of the neutral
axis. The value of β1 was equal to 0.80 in this study [34]; c is the distance from the extreme
compression fiber to the neutral axis (mm); d and d’ are the distances from top fiber to
centroid of the steel sheet and reinforcement (mm), respectively.
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The predicted results from section analysis generally overestimated the experimental
results. This is possibly because the effect of the shear span-to-depth was not considered in
the analysis and a perfect bond between the steel and concrete was assumed. This implies
that further study on the model for prediction of the flexural capacity of the steel–concrete
composite decks is needed.

As shown in Figure 5, the ductility index is defined by the ratio between the dis-
placement at peak load (uu) to the displacement at yielding (uy). It is important to note
that the yielding point is given by a point on the curve corresponding to a change in
stiffness of the composite, where the slope of the curve is distinct, since it is not possible to
directly determine the strain of the composite [35,36]. The ductility indices of specimens S1
(uu/uy = 3.0) and S2 (uu/uy = 3.16) were lower than those of specimens S3 (uu/uy = 5.28) and
S4 (uu/uy = 3.57). The decks with a short span length could form the shear arch action to
induce the diagonal deformation but decrease the vertical deformation; consequently, the
displacement at yielding load was nearer the displacement at peak load compared with
the decks with a larger span length.

3.2. Crack Pattern and Mode of Failure

Figures 7a and 8 show the crack patterns of the specimens under the load increments.
Deck S1 started cracking at a load of 100 kN, while deck S3 began fracturing at a load by
130 kN. Generally, the specimens started cracking in the center; then, the cracks tended to
open, and a new crack formation under the loading points was observed. In specimen S1
with a short shear span length, the cracks occurred in the pure bending region, while the
cracks under the loading points were observed on deck S3 with a larger shear span length.
In addition, at high loads, there were fewer cracks in the composite deck S3 than in deck
S1. As observed from the tests, the failure crack width in specimen S3 was larger than that
in deck S1. The possible reason is that besides the flexural capacity, the concrete arch (as
illustrated in Figure 7b) in the shear span of deck S1 contributed to resisting the applied
forces. The arch action in the deck S3 could be neglected, and it behaved only as a bending
member; therefore, the flexural cracks were wide. These findings indicate that the shear
span-to-depth ratio affected the failure mechanisms of the composite decks.
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Figure 9 shows a typical failure mode for all test specimens. The primary failure
mode observed in the experiments was the debonding of the sheeting profile steel and the
detachment of the steel sheet from concrete followed by concrete fracture. The separation
mode of failure between the steel sheet and concrete occurred because these test specimens
lacked continuity. This failure mode revealed that the slippage of the steel sheet to concrete
would govern the structural efficiency of the steel–concrete composite decks. Indeed, the
bond degradation between steel and concrete might accelerate the concrete deformation.
Further, it can be recognized that the failure criteria assumed in the section analysis satisfied
the actual failure except for the detachment of the profile sheeting steel from the concrete.
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4. Conclusions

Experimental results on the mechanical behaviors of steel-concrete composite decks
with various shear span-to-depth ratios, which were provided in previous studies with
little information, were presented in this paper. The structural responses of four composite
decks with shear span-to-depth ratios of 2.5 and 4.6 were experimentally and analytically
identified. The major conclusions drawn from this study are as follows:

1. The stiffness, the cracking load, and the load-carrying capacity of the steel–concrete
composite decks increased with the decrease of the shear span-to-depth ratio.
However, the composite decks with a longer shear span could provide greater
displacement ductility.

2. The current research found that the flexural strength of the composite decks predicted
by conventional section analysis overestimated the experimental values, which is
critical for safety. Therefore, in future, experimental, numerical, and analytical inves-
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tigations should be conducted to comprehensively develop the strength model for
composite decks.

3. The shear span-to-depth ratio noticeably affected the failure mechanism of the steel–
concrete composite decks. The flexural cracks concentrated in the pure bending region
were observed in the specimen with a shear span-to-depth ratio of 2.5. The specimen
with a shear span-to-depth ratio of 4.6 showed the flexural cracks distributed under
loading areas. It should be noted that the longer shear span length, the larger the
flexural cracks observed in the composite deck.

4. At failure completion, the detachment of profile sheeting steel to concrete was ob-
served. A measurement of the bond–slip profile between the steel sheet and concrete
is needed. An on-going study on innovative anchorage and friction systems to pre-
vent the slippage between steel and concrete in the composite slabs is planned by
the authors.

5. This study might serve as a source for the initial design of steel–concrete composite
slabs regarding the shear span-to-depth ratios.
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