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Abstract: The intensity non-stationarity is one of the basic characteristics of ground motions, the in-
fluences of which on the dynamic responses of structures is a pressing issue in the field of earthquake
engineering. The BP neural network modified by the genetic algorithm was adopted in this research
to investigate the influence of intensity nonstationary inputs on the structural dynamic responses
from a new perspective. Firstly, many training data were generated from the prediction formula of
dynamic response. The BP neural network was then pre-trained by sparsely selected data to optimize
the initial weights and biases. Finally, the BP neural network was trained by all data, and the mean
square error of predicted responses compared with the target response were less than 10−5. The
calculation formula of sensitivity was also derived here to quantify the influence of the input change
on the output. The presented method combines the advantages of neural networks in nonlinear
multi-variable fitting and provides a new perspective for the study of earthquake nonstationary
characteristics and their influence on the structural dynamic responses.

Keywords: neural networks; genetic algorithm; intensity non-stationarity; artificial neural networks;
GA-BP neural networks; sensitivity

1. Instruction

The intensity non-stationarity of ground motions refers to the characteristic that
the energy of ground motions changes over time, the performance of which is that the
amplitude of the acceleration time history gradually increases and finally attenuates to zero.
Artificial ground motions time history needs to be generated since there are usually only a
few of the ground motions required for nonlinear time-history analysis. Research on the
intensity non-stationarity of ground motions is focused, first, on generating many ground
motions meeting the time-history analysis requirements by using the rule of intensity non-
stationarity and, more importantly, studying the effect of the earthquake non-stationarity
characteristics on the structural dynamic responses.

In the conventional research [1–5], the intensity non-stationarity of ground motions
is mainly described from the perspective of the intensity envelope functions of ground
motions. The shape of these intensity envelope functions is controlled by a number of
shape parameters, and the artificial ground motion with intensity non-stationarity can be
obtained by modulating a stationary ground motion using the envelope function. The value
of the shape parameters is also a focus of the research on the intensity non-stationarity,
and the previous methods based on engineering experience no longer meet the needs
of engineering application. Huo et al. [6] fit the attenuation relationship of envelope
parameters with magnitude, epicentral distance and site conditions by statistical method
for three-step intensity envelope functions. Qu et al. [7] fit the change rule of parameters
of the three-step intensity envelope function using the three seismic records of SMART-1
array and analyzed the effect of the coordinates and soil thickness of the measuring points
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on the parameters. Du et al. [8] proposed an intensity envelope function with log-normal
distribution, fit the attenuation relationship of envelope parameters with magnitude and
epicentral distance under different site conditions by statistical method, and gave the
recommended values under different conditions.

The effect of the intensity non-stationarity of ground motions on the structural dy-
namic responses is not insignificant. Liu et al. [9] analyzed the effect of the envelope
parameters of three-step intensity envelope function on the structural responses and ob-
tained the approximate quantitative relationship between the parameters of the intensity
non-stationarity of ground motions and the structural responses by fitting, which sug-
gested that the stationary state duration of ground motions had a significant effect on the
structural seismic responses. Jiang et al. [10] deduced the analytical expression of structural
dynamic responses activated by the intensity non-stationarity based on the damped-sine
function, which suggested that the frequency ratio and non-stationarity had a greater effect
on the maximum value of structural dynamic responses than the damping ratio.

There are two main kinds of methods for researching earthquake non-stationarity
characteristics and their influence on structural dynamic responses: analytical methods
and numerical methods. With the analytical methods, the effect rule obtained is accurate
and intuitive, but we can only obtain the analytical expression of displacement response
time history, which is extremely complex. On the one hand, it is difficult to derive the
expressions for velocity and acceleration. On the other hand, numerical methods are
still needed to obtain the maximum value of responses. However, in general numerical
methods, the values at multiple discrete points are calculated first, and then a smooth curve
is used to fit the change rule. This method is feasible in the case of low dimension where
there are few parameters but can hardly be implemented when there are many parameters.
Therefore, neural networks are proposed in this paper to study the effect of the intensity
non-stationarity of ground motions on the structural responses. Neural networks have
a strong high-dimensional nonlinear fitting capacity. In this paper, the formula for the
sensitivity of input parameters is deducted based on this, and, compared with the results of
the analytical formula, this method could accurately analyze the change rule and influence
of the maximum value of the structural responses with the parameters of the intensity
non-stationarity.

2. The Intensity Non-Stationarity Model Enveloped by the Damped-Sine Function
and the Analytical Solution of Its Dynamic Responses

The damped-sine function typed intensity envelope function was proposed by Shi-
nozuka et al. [1], as follows:

f (t) = I0e−αt sin(βt)
I0 = eαt0

sin βt0

t0 = 1
β arctg β

α

(1)

where f (t) is the damped-sine function typed intensity envelope function; I0 is the normal-
ization constant, which uniformly adjusts the peak of the envelope function to 1; α is the
parameter of the attenuation term, which mainly affects the peak position and attenuation
rate of the envelope function; β is the excitation shape parameter as well as the frequency
of the sine function, which mainly controls the descent rate of the envelope function in
the descent segment, with little influence on the peak position; and t0 is the time of the
peak of the envelope function. The analytical expression (Equation (2)) of the intensity
non-stationarity signal based on the damped-sine function can be obtained by modulating
a cosine wave with f (t), where ω is the circular frequency of the analytical signal. The
typical expression of F(t) is shown in Figure 1.

F(t) = I0e−αt sin(βt) cos(ωt) (2)
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Figure 1. Intensity nonstationary model based on the damped sine function.

The equation of motion shown in Equation (3) can be obtained when the modulated
non-stationarity analytical signal F(t) is input into a single-degree-of-freedom.

d2u
dt2 + 2ζωn

du
dt

+ ω2
nu = −I0e−αt sin(βt) cos(ωt) (3)

where u is the displacement responses of the structure, the first- and second-order deriva-
tives of which are velocity response and acceleration response; ζ is the damping ratio;
and ωn is the structural natural vibration circular frequency. JIANG et al. [10] obtained
the analytical expression (Equation (4)) of the displacement response u(t) by the Laplace
transformation on both sides of Equation (3).

u(t) = − I0
2

{
(β + ω)

[
eαt 2A sin(β+ω)t−2B cos(β+ω)t

A2+B2 +

e−ζωnt 2C sin
(

ωnt
√

1−ζ2
)
−2D cos

(
ωnt
√

1−ζ2
)

C2+D2

]}
−

I0
2

{
(β + ω)

[
eαt 2A1 sin(β+ω)t−2B1 cos(β+ω)t

A2
1+B2

1
+

e−ζωnt 2C1 sin
(

ωnt
√

1−ζ2
)
−2D1 cos

(
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√
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)
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1
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(4)

where
A = 2(β + ω)

[
(ζωn − a)2 − (β + ω)2 +

(
ω2

n −ω2
nζ2)]

B = 4(β + ω)2(ζω2
n − a

)
C = 2ωn

√
1− ζ2

[
(a− ζωn)

2 −ω2
n
(
1− ζ2)+ (β + ω)2

]
D = 4ω2

n
(
1− ζ2)(a− ζωn)

A1 = 2(β−ω)
[
(ζωn − a)2 − (β−ω)2 +

(
ω2

n −ω2
nζ2)]

B1 = 4(β−ω)2(ζω2
n − a

)
C1 = 2ωn

√
1− ζ2

[
(a− ζωn)

2 −ω2
n
(
1− ζ2)+ (β−ω)2

]
D1 = 4ω2

n
(
1− ζ2)(a− ζωn)

The above analytical analysis shows that the earthquake non-stationarity charac-
teristics has an effect on the structural dynamic responses, but the expression above is
too complex.
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3. Response Prediction Based on the GA-BP Neural Networks

In BP neural networks, many input and output data pairs are used to optimize the
initial weights and biases to minimize the error of the predicted output compared with
the target output of BP neural works. The training algorithm of neural networks is an
optimization algorithm based on local gradient, so the final training result is related to both
initial weights and initial biases, and improper initial network parameters may cause the
local optimal solution of the algorithm.

The biological evolution principle of “survival of the fittest” is introduced into the
parameter optimization algorithm by genetic algorithm, and the basic operators of genetic
algorithm such as selection, cross, and mutation are used to screen the individuals in the
population, with the superior ones retained to produce the next generation. The process is
repeated until the condition of convergence is met. Different from BP neural networks, the
genetic algorithm is a global searching algorithm, which makes up for the deficiency of the
poor global searching capacity of BP neural networks, and the combined model of neural
networks and the genetic algorithm is called GA-BP neural networks [11,12]. In this paper,
the GA-BP neural network is adopted. First, the genetic algorithm is used to optimize the
initial network parameters on a small sample, and then the BP neural network is assigned
to the optimized weights and biases and trained on the whole dataset to obtain the final
solution. The basic algorithm flowchart of GA-BP is shown in Figure 2.
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3.1. Hyperparameters of the BP Neural Networks

Different from the parameters obtained by gradient descent training, the hyperpa-
rameters of the neural networks are set before learning, including the number of layers of
neural networks, the number of neurons at each layer, the selection of cost function, the
selection of excitation function, the methods of weight initialization, and so on.

The intensity non-stationarity model based on the damped-sine function has four
independent variable input parameters and one output parameter. The input parameters
are the time of peak (t0), parameter of excitation shape (β), excitation frequency (ω),
and structural natural vibration period (T), while the output is the absolute value of the
maximum displacement response (umax) of the structure. Therefore, four neurons are
needed at the input layer and one neuron is needed at the output layer of the BP neural
network. In this paper, two hidden layers are set in the BP neural network, which contain
16 and 8 neurons, respectively. The structure of the artificial neural network is shown in
Figure 3. The activation function of each hidden layer is a hyperbolic tangent function, and
the output layer is a linear transfer function. The hyperparameters of the artificial neural
network are shown in Table 1.
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Table 1. Hyperparameters of the artificial neural network.

Layer Activation
Function

Number of
Weights

Number of
Biases

Total Number of
Parameters

Input layer→ Hidden layer 1 Hyperbolic tangent 4 × 16 = 64 16 80
Hidden layer 1→ Hidden layer 2 Hyperbolic tangent 16 × 8 = 128 8 136
Hidden layer 2→ Output layer Linear transfer 8 × 1 = 8 1 9

Total for each layer - 200 25 225

3.2. Training Dataset

The dynamic response prediction algorithm based on the BP neural network in this paper
is a supervised learning algorithm, and the training data are composed of input and output
data pairs. First, values of the four input parameters are taken uniformly within a certain range
to obtain a set of input data. Then, each of the input parameters is substituted into Equation (4)
to obtain the displacement response time history. Finally, the maximum absolute value of the
displacement response time history is taken to obtain the output of each input parameter.

Given that the fitness function of each individual in a population needs to be evaluated
by the genetic algorithm, the use of all training data will cause low efficiency of the
algorithm. Therefore, the training data are divided into two parts, of which the sparsely
selected sample data in the first part are used to optimize the initial weights and biases of
the genetic algorithm, and all data in the second part are used to train the final BP neural
network. The detailed methods for taking the small sample training data and the whole
training data are shown in Table 2.

Table 2. Samples used for training and validation.

Data Type Small Sample Data Whole Data

t0

Lower limit 20 20
Upper limit 40 40

Interval 2 1

β
Lower limit 0.01 0.01
Upper limit 0.05 0.05

Interval 0.01 0.01

ω
Lower limit 1 0.1
Upper limit 10 10

Interval 1 0.1

T
Lower limit 0.5 0.5
Upper limit 4 4

Interval 0.5 0.1

Total sample 4400 378,000
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The training dataset of the BP neural network includes training set, validation set, and
test set. The training set is used to train the BP neural networks. The validation set is used
to evaluate the performance of the BP neural networks, including determining whether
there is underfitting or overfitting. The test set is used to evaluate the generalization ability
of the final BP neural networks and does not participate in the training of the BP neural
networks. In this paper, after the dataset is out of order, 70% of the total sample is randomly
selected as the training set, 15% as the validation set, and 15% as the test set.

3.3. Data Initialization

In general, the distribution form of training dataset will affect the calculation effi-
ciency of gradient descent algorithm, and data preprocessing can improve the solving
speed and accuracy. The common normalization methods include linear normalization,
mean standardization, and nonlinear normalization (taking the logarithm, exponent, etc.).
The distribution characteristics of the training dataset in this paper show that data are too
concentrated in an interval of smaller magnitude and thus the combination of linear normal-
ization and nonlinear normalization, that is, taking the logarithm of the dataset and then
normalizing the linearity, is selected, and the calculation formulas for the normalization of
input and output data are shown in Equations (5) and (6), respectively.

y = N1(x) =
(m− n)(x− xmin)

xmax − xmin
+ n (5)

y = N2(x) =
(m− n)(log(x)− log(xmin))

log(xmax)− log(xmin)
+ n (6)

where x and y are the non-normalized and normalized data, respectively; m and n are the
maximum and minimum values of linear normalization, respectively; and xmax and xmin
are the maximum and minimum values of the dataset, respectively. In Equation (5), the
dataset is linearly compressed into the interval of [n, m]. In Equation (6), the dataset is
linearly compressed into the interval of [n, m] after taking the algorithm. In this paper, n
and m are set to −1 and 1, respectively, and the umax histograms of network output before
and after the normalization are shown in Figure 4. It can be seen that many non-normalized
data are concentrated in the interval of [0, 5000], while the normalized data are close to
being normally distributed. Training data in normal distribution can improve the accuracy
and efficiency of gradient descent algorithm.

Buildings 2021, 11, x FOR PEER REVIEW 7 of 15 
 

  
(a) Distribution of non-normalized data (b) Distribution of normalized data 

Figure 4. Comparison of histograms before and after the data normalization. 

3.4. Optimization of Initial Network Parameters Based on the Genetic Algorithm 
3.4.1. Coding 

In the genetic algorithm, chromosome coding is needed first, with such methods as 
binary coding and real-number coding. For binary coding, the network parameters need 
to be converted into binary numbers, and the large number of parameters of the neural 
networks will lead to long genes. In addition, Hancock [13] pointed out in his research 
that binary coding will also lead to permutation problem. For real-number coding [14–
16], the network parameters are directly coded into a string of real numbers in sequence, 
which requires no conversion of number systems and will not cause too long chromo-
some. In this paper, the real-number coding shown in Figure 5 is adopted. We can see that 
the chromosome consists of three sets of weight vectors and three sets of bias vectors, 
where ω1, ω2, and ω3 are the weight vector from the input layer to the first hidden layer, 
the weight vector from the first hidden layer to the second hidden layer, and the weight 
vector from the second hidden layer to the output layer, respectively. ω2,i-j is the weight 
from the ith neuron at the first hidden layer to the jth neuron at the second hidden layer. 
b1, b2, and b3 are the bias vector from the input layer to the first hidden layer, the bias vector 
from the first hidden layer to the second hidden layer, and the bias vector from the second 
hidden layer to the output layer, respectively. b2,k is the kth bias from the first hidden layer 
to the second hidden layer. 

 
Figure 5. Real-number coding of the chromosome. 

3.4.2. Fitness Function 
Fitness function is used to evaluate the superiority and inferiority of each individual 

in a population. In this paper, the BP neural network is assigned to the chromosomes of 
each individual, trained 20 times, and the sum of the absolute values of prediction errors 
was taken as the fitness value of the individual. The calculation formula is shown in Equa-
tion (7). 

1

n

i i
i

F y o
=

= −  (7)

where n is the total number of training data, which is set to 4400 in this paper; yi is the 
target output of the ith set of data; and oi is the predicted output of the ith set of data. 

ω1 ω2 ω3 b1 b2 b3

ω 2,1-1 ω 2,1-2 ω 2,1-3 ω 2,i-j ω 2,16-6 ω 2,16-7 ω 2,16-8

b 2,1 b 2,2 b 2,3 b 2,k b 2,14 b 2,15 b 2,16

Figure 4. Comparison of histograms before and after the data normalization.

3.4. Optimization of Initial Network Parameters Based on the Genetic Algorithm
3.4.1. Coding

In the genetic algorithm, chromosome coding is needed first, with such methods as
binary coding and real-number coding. For binary coding, the network parameters need
to be converted into binary numbers, and the large number of parameters of the neural
networks will lead to long genes. In addition, Hancock [13] pointed out in his research that
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binary coding will also lead to permutation problem. For real-number coding [14–16], the
network parameters are directly coded into a string of real numbers in sequence, which
requires no conversion of number systems and will not cause too long chromosome. In
this paper, the real-number coding shown in Figure 5 is adopted. We can see that the
chromosome consists of three sets of weight vectors and three sets of bias vectors, where
ω1, ω2, and ω3 are the weight vector from the input layer to the first hidden layer, the
weight vector from the first hidden layer to the second hidden layer, and the weight vector
from the second hidden layer to the output layer, respectively. ω2,i-j is the weight from the
ith neuron at the first hidden layer to the jth neuron at the second hidden layer. b1, b2, and
b3 are the bias vector from the input layer to the first hidden layer, the bias vector from the
first hidden layer to the second hidden layer, and the bias vector from the second hidden
layer to the output layer, respectively. b2,k is the kth bias from the first hidden layer to the
second hidden layer.
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3.4.2. Fitness Function

Fitness function is used to evaluate the superiority and inferiority of each individual in
a population. In this paper, the BP neural network is assigned to the chromosomes of each
individual, trained 20 times, and the sum of the absolute values of prediction errors was taken
as the fitness value of the individual. The calculation formula is shown in Equation (7).

F =
n

∑
i=1
|yi − oi| (7)

where n is the total number of training data, which is set to 4400 in this paper; yi is the
target output of the ith set of data; and oi is the predicted output of the ith set of data.

3.4.3. Basic Operators of Genetic Algorithm

(1) Section operator

Roulette algorithm is selected for the selection operator in this paper, and the selection
probability (pi) is assigned to each individual based on Equation (8). In the equation, Fi is
the fitness value of an individual. Since the fitness is defined as the sum of the absolute
values of prediction errors, individuals with lower fitness values should be more likely to
be selected.

pi =

N
∏
j=1

Fj

Fi
N
∑

j=1
Fj

(8)

(2) Cross operator

In this paper, the real-number cross method is adopted, and the cross probability is set
to 0.3. Two paternal chromosomes are randomly selected first, and then one cross position
is randomly selected. The value of the daughter chromosomes at the cross position is the
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randomly weighted sum of the value of two paternal chromosomes at the cross position,
as shown in Equation (9). {

A′j = Aj(1− b) + Bjb
B′j = Bj(1− b) + Ajb

(9)

where A′ and B′ represent the cross-generated daughter chromosomes; Aj and Bj represent
the jth cross position of chromosomes A and B, respectively; j is a random integer, the
maximum value of which is the length of the chromosome; and b is a randomly generated
combination weight coefficient, the value range of which is from 0 to 1.

(3) Mutation operator

In this paper, the mutation probability is set to 0.3, and it is based on Equation (10).

A′j =

 Aj + r2
(

Aj − Aj,max
)
Φ
(

1− g
Gmax

)
, when r1 ≥ 0.5

Aj + r2
(

Aj,min − Aj
)
Φ
(

1− g
Gmax

)
, when r1 < 0.5

(10)

where Aj is the jth gene position of a certain chromosome in a population; A′j is the gene
value on the jth gene position after mutation; Aj,max is the upper limit of the gene value
on the jth gene position; Aj,min is the lower limit of the gene value on the jth gene position;
r1 and r2 are two random numbers in [0, 1]; g is the current generation; and Gmax is the
maximum generation. Φ is a mutation parameter related to the generation; the greater the
generation is, the smaller the value of the mutation parameter will be, i.e., the mutation
probability will decrease with the increase of the generation.

3.5. Genetic Algorithm Optimization Results

An initial population containing 20 individuals is randomly generated, and the evo-
lution of the mean fitness values and best fitness values of a population can be obtained
after 10 generations, as shown in Figure 6. It can be seen that the fitness of the population
decreases constantly with the increase of the generation and finally tends to be stable.
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4. Validation of the Artificial Neural Networks
4.1. Validation on the Dataset

The predicted output of each input can be obtained after inputting the input data into
the trained artificial neural networks. The validation diagram of neural networks shown in
Figure 7 can be obtained with the target value as the x-coordinate and the predicted value
as the y-coordinate. The closer the discrete points in the figure are to the line with a slope
of 1, the higher the prediction accuracy will be.

Figure 7a shows the validation results of data on the test set, from which we can find
that the discrete points are basically distributed near the line, with the mean square error of



Buildings 2021, 11, 69 9 of 14

only 1.0024× 10−5. The test set does not participate in the network training, indicating that
the artificial neural network has good generalization ability. Figure 7b shows the validation
results of data on all datasets, from which we can find that the mean square error is less
than 10−5, indicating that the artificial neural network has higher prediction accuracy and
can meet the need for subsequent analysis.
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4.2. Validation of the Change Rule of Single Parameter

Test set does not participate in the artificial neural networks training, and validation
of the accuracy of the artificial neural networks on the test set can effectively validate the
generalization ability of the artificial neural network to some extent. However, the data
values on the test set are still included in the maximum and minimum values of the training
data. To further validate the generalization ability of the artificial neural networks outside
the datasets, the difference between the predicted value and the theoretical value of the
artificial neural network is compared by constantly changing the value of a single input
parameter in this section, as shown in Figure 8.
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Figure 8a shows the change of the theoretical output and predicted output with the
structural period T, which can also be considered as the displacement response spectrum.
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When the range of T is extended from the 0.5–4 s of the original data to 0–8 s, the artificial
neural networks in this paper can still accurately predict the output values before 6.6 s.
Figure 8b shows the change of the theoretical output and predicted output with the
excitation frequency ω. When the range of ω is extended from the 0.1–10 of the original
data to 0–20, the artificial neural networks can still accurately predict the output values in
the entire extended data segment. Figure 8c shows the change of the theoretical output and
predicted output with the excitation shape parameter β. When the range of β is extended
from the 0.01–0.05 of the original data to 0–0.1, the artificial neural networks can still
accurately predict the output values in the segment before 0.064. Figure 8d shows the
change of the theoretical output and predicted output with the time of peak t0. When the
range of t0 is extended from the 20–40 s of the original data to 0–60 s, the artificial neural
networks can still accurately predict the output values in the segment after 6.2 s.

5. Analysis of Influence of the Intensity Non-Stationarity of Ground Motions
5.1. Sensitivity Analysis of Neutrons at the Adjacent Layers

The complete structure of artificial neural networks is shown in Figure 9, including
the input layer, hidden layer, and output layer. xi,j represents the jth neuron at the ith layer;
ReLU is the activation function; and Wi and θi are, respectively, the weight matrix and bias
vector from the ith layer to the (i + 1)th layer.
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Sensitivity [17,18] is defined as the influence of the input change on the output, which
can be obtained by taking the derivative of the output with respect to the input. The mth
neuron xk,m at the kth layer and the nth neuron xk+1,n at the (k + 1)th layer were investigated.
When a neuron at the previous layer produces little disturbance, the change of the neuron
at the later layer S(k,m),(k+1,n) can be obtained by taking the derivative of the output xk+1,n
with respect to the input xk,m, as shown in Equation (11).

S(k,m),(k+1,n) =
∂xk+1,n

∂xk,m
(11)

The relationship between xk,m and xk+1,n is shown in Equation (12), where Wk,i,n is the
weight coefficient from the ith neuron at the kth layer to the nth neuron at the (k + 1)th
layer; θk,n is the bias coefficient from the neurons at the kth layer to the nth neuron at the
(k + 1)th layer; and R(x) is an activation function.

xk+1,n = R

[
∑

i
xk,iWk,i,n + θk,n

]
(12)
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After substituting Equation (12) into Equation (11), we can obtain the sensitivity expression:

∂xk+1,n

∂xk,m
=

∂

∂xk,m
R

(
∑

i
xk,iWk,i,n + θk,n

)
= R′

(
∑

i
xk,iWk,i,n + θk,n

)
Wk,m,n (13)

When the activation function is a linear transfer function, R(x) = x and R′(x) = 1;
therefore, Equation (13) can be further simplified to Equation (14).

S(k,m),(k+1,n) =
∂xk+1,n

∂xk,m
= Wk,m,n (14)

When the activation function is a hyperbolic tangent function, R(x) = (ex− e−x)/(ex + e−x)
and R′(x) = 1 − R2(x); therefore, Equation (13) can be further simplified to Equation (15).

S(k,m),(k+1,n) =

[
1−R2

(
∑

i
xk,iWk,i,n + θk,n

)]
Wk,m,n =

(
1− x2

k+1,n

)
Wk,m,n (15)

5.2. Sensitivity Analysis of Neutrons at any Layer

The mth neuron xk,m at the kth layer and the nth neuron xv,n at the vth layer were
investigated, and their sensitivity can be obtained by the chained derivation formula shown
in Equation (16).

S(k,m),(v,n) = ∑
i1

∑
i2

∑
i3

· · · ∑
iv−k−1

∂xv,n

∂xv−1,i1

∂xv−1,i1
∂xv−2,i2

∂xv−2,i2
∂xv−3,i3

· · ·
∂xk+1,iv−k−1

∂xk,m
(16)

where ij represents the subscript index of the jth neuron at the ith layer. The chained
derivation formula shown in Equation (16) actually converts the sensitivity of neurons at
any two layers into the sum of the sensitivity of neurons at multiple adjacent layers.

5.3. Analysis of Influence of the Parameters of the Intensity Non-Stationarity Based on Neural
Networks

The BP neural network in this paper has three connection layers, of which the first
two layers adopt hyperbolic tangent activation functions, and the output layer adopts
linear transfer activation function. Equation (17) can be obtained by the chained derivation
formula in Equation (16).

S(0,i),(3,1) =
∂x0,1
∂y0,1

[
16
∑

j=1

8
∑

k=1

∂x1,j
∂x0,i

∂x2,k
∂x1,j

∂x3,1
∂x2,k

]
∂y3,1
∂x3,1

=
∂x0,1
∂y0,1

∂y3,1
∂x3,1

16
∑

j=1

8
∑

k=1

{[(
1− x2

1,j

)
W0,i,j

][(
1− x2

2,k

)
W1,j,k

]
W2,k,1

}
i = 1, 2, 3, 4

(17)

where y0,1 and x0,1 are the data values before and after the normalization of the ith input,
respectively, and the normalization formula is shown in Equation (5); y3,1 and x3,1 are the
output data values before and after the normalization, respectively, and the normalization
formula is shown in Equation (6); W0,i,j is the weight from the ith neuron at the input layer
to the jth neuron at the first hidden layer; W1,j,k is the weight from the jth neuron at the first
hidden layer to the kth neuron at the second hidden layer; and W2,k,1 is the weight from
the kth neuron at the second hidden layer to the first neuron at the output layer. According
to the normalization formula of the input and output data, the first two differential terms
in Equation (17) are as follows:

∂x0,1
∂y0,1

= m−n
y0,i,max−y0,i,min

∂y3,1
∂x3,1

=
[log(y3,1,max)−log(y3,1,min)] ln 10

m−n × 10{
(x3,1−n)[log (y3,1,max)−log (y3,1,min)]

m−n +log (y3,1,min)}
(18)
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where y0,i,max and y0,i,min are the maximum and minimum values before the normalization
of the ith input data, respectively; y3,1,max and y3,1,min are the maximum and minimum
values before the normalization of the output data, respectively; and m and n are the
maximum and minimum values of the linear normalization, which are set to 1 and −1,
respectively, in this paper. The data in Figure 8 are substituted into Equation (18), and the
corresponding sensitivity analysis figures can be obtained, as shown in Figure 10.
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According to Figure 10c,d, excitation shape parameter (β) and time of peak (t0) have
the least effect on the maximum absolute displacement response; the sensitivity of structural
period and excitation frequency is first positive and then negative, which is consistent with
the change rule of the structural response (which first increases and then decreases) near
the resonance frequency. A similar rule can also be found is Figure 10e: when the structural
period and excitation frequency are similar, the greater the sensitivity is and the higher
the excitation frequency is, the smaller the effect of the vibration input on the dynamic
response will be.
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6. Conclusions

The effect of the intensity non-stationarity of ground motions on the structural dy-
namic responses is one of the scientific problems in the anti-seismic field. In this paper,
the adoption of GA-BP neural networks in the research of the presented problem is pro-
posed for the first time. Firstly, the initial weights and biases of the BP neural network are
optimized by the genetic algorithm based on a small amount of training data. Then, the
BP neural network is trained on all training data. Finally, the effect rule of the intensity
non-stationarity of ground motions on the structural dynamic responses is obtained by
studying the relationship between the BP neural network input and output. The main
conclusions in this research are as follows:

(1) The GA-BP neural network in this paper, after trained with many data, can predict
the maximum displacement response of the structure through four input parameters (time
of peak t0, excitation shape parameter β, excitation frequency ω, and structural period T).
The results show that the GA-BP neural network has high prediction accuracy, but the high
prediction accuracy can only be ensured within a certain range due to the limited range of
training data. However, due to the generalization ability of BP neural networks, the range
is larger than that of the training data.

(2) The sensitivity of the neural networks can be defined as the derivative of the output
with respect to the input, which is used to measure the effect of the input change on the
output. The analytical expression of the output of the BP neural network with respect to
the input is obtained by mathematical derivation, and its comparison with theoretical value
shows that the sensitivity from the calculation of the neural network is consistent with
the theoretical value within the range of prediction accuracy. The results of the sensitivity
analysis show that the maximum displacement output is the most sensitive to changes of
the structural period and excitation frequency near the point of resonance.

(3) In the research on the effects of the nonstationary characteristics on the structural
dynamic responses, compared with the analytic derivation method, the method based on
the GA-BP neural networks can not only ensure the equivalent accuracy, but also avoid
situations where the expression is too complex to solve; thus, this method can be extended
to the study on the effect rule of nonlinear responses. Compared with numerical methods,
the method in this paper can make full use of the advantages of neural networks in high
dimension strong nonlinear fitting and comprehensively consider the effect rule of multiple
input parameters.
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