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Abstract: Increasing concern over higher frequency extreme weather events is driving a push towards
a more resilient built environment. In recent years there has been growing interest in understanding
how to evaluate, measure, and improve building energy resilience, i.e., the ability of a building
to provide energy-related services in the event of a local or regional power outage. In addition to
human health and safety, many stakeholders are keenly interested in the ability of a building to allow
continuity of operations and minimize business disruption. Office buildings are subject to significant
economic losses when building operations are disrupted due to a power outage. We propose
“occupant hours lost” (OHL) as a means to measure the business productivity lost as the result of a
power outage in office buildings. OHL is determined based on indoor conditions in each space for
each hour during a power outage, and then aggregated spatially and temporally to determine the
whole building OHL. We used quasi-Monte Carlo parametric energy simulations to demonstrate how
the OHL metric varies due to different building characteristics across different climate zones and
seasons. The simulation dataset was then used to develop simple regression models for assessing the
impact of ten key building characteristics on OHL. The most impactful were window-to-wall ratio
and window characteristics. The regression models show promise as a simple means to assess and
screen for resilience using basic building characteristics, especially for non-critical facilities where it
may not be viable to conduct detailed engineering analysis.

Keywords: energy resilience; resilience metrics; building habitability; passive survivability; office
buildings

1. Introduction

Resilience in the context of the built environment is commonly described as the
ability to prepare for and adapt to changing conditions and withstand and recover rapidly
from disruptions [1]. Increasing concern over higher frequency extreme weather events
is driving a push towards a more resilient built environment. In recent years there has
been growing interest in understanding how to evaluate, measure, and improve building
energy resilience, i.e., the ability of a building to provide energy-related services in the
event of a local or regional power outage caused by or coupled with events such as extreme
heat and cold, wildfires, earthquakes, hurricanes, and floods [2,3]. Energy-related services
include the provision of lighting, heating, ventilation and air conditioning (HVAC), and
plug power. The building design community is looking to address these issues in new and
retrofit construction; owners and operators need to assess and improve the energy resilience
of their buildings, and private-sector intermediaries such as the insurance industry are
financially vulnerable to these impacts and are potential partners in loss mitigation [4].
Even in developed countries with a mature and reliable electrical grid, many buildings
are subject to power outages due to extreme events. For example, millions of people
in California were affected by power outages lasting several days due to wildfires that
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triggered a precautionary shutdown of some transmission lines. Similarly, extreme winter
weather and ice storms in many parts of the United States periodically cause days-long
power outages for homes and businesses. Energy resilience is a critical component of
overall building resilience, and is distinct from structural resilience, or resilience against
human-created threats.

Human safety and health are naturally the first priority driver for resilience. Beyond
that, many stakeholders are keenly interested in the ability of a building to provide a
safe and comfortable indoor environment to allow continuity of operations and minimize
business disruption. Buildings such as offices, retail, food service, and sales, while not mis-
sion critical like hospitals and public safety buildings, are subject to significant economic
losses should building operations be halted due to a power outage. Financial losses due to
disrupted business functions may outweigh any costs associated with structural damage.
This was the case for numerous buildings after Hurricane Sandy, where insurance pay-
ments for lost business were generally more significant than reconstruction expenses [5,6].
These considerations are increasing the interest in energy resilience from building owners,
operators, and insurers.

One of the primary challenges with energy resilience is that this concept is still loosely
defined and not well characterized. Resilience is sometimes presented in tandem with large-
scale sustainability efforts [7]. Numerous standards and guidelines for occupant comfort
and energy efficiency already exist [8], including through the LEED (Leadership in Energy
and Environmental Design) rating system’s passive survivability credit [9]. However, there
are no widely-accepted aggregate metrics for energy resilience. This paper proposes a
simple aggregate metric that serves as a first-order measure of building energy resilience,
especially as it relates to business continuity in commercial buildings such as offices.

We first provide a background of the relevant literature. Next, we define and describe
the proposed metric. We show the application of the metric in a parametric energy sim-
ulation analysis. We then describe the viability of computing the metric based on easily
obtainable building features. We conclude with limitations and areas for further research.

2. Background

Much of the literature on building-level metrics for resilience is focused on the conti-
nuity of building operations for whole communities during a disruption or disaster [10–12].
The literature on energy resilience indicates that there are currently no universally agreed-
upon metrics for assessing the energy resilience of individual buildings [13]. Various
conceptual frameworks have been developed as methods for strategically organizing rel-
evant resilience priorities and data requirements to inform the most appropriate metrics
for determining resilience, including matrices [14], workflow charts [15], and decision
trees [16]. However, while these frameworks offer stakeholders an approach to thinking
through the process of resilience measurement, they do not include explicit energy re-
silience metrics for individual buildings. A resilience index developed by [17] quantifies
the resilience of a building as a function of “robustness, resourcefulness, and recovery”
within the context of maintaining building functionality when faced with unique hazards.
An “energy provision” metric developed by [18] assesses the ability of a building to pro-
vide energy during a disruption, with more specific metrics including natural/mechanical
ventilation potential, air filtration, and daylight coverage. Criteria-based building resilience
and sustainability rating systems and certifications, such as LEED [19], RELi 2.0 [20], US
Resiliency Council Building Rating System [21], and BREEAM (Building Research Estab-
lishment Environmental Assessment Method) [22] aim to assess building resilience mostly
through “feature-based” verification [23], which provides a prescriptive path to resilience,
but does not necessarily take the form of explicit resilience metrics.

A key concept emerging in building energy resilience is “passive survivability”, which
denotes the ability of buildings to keep occupants safe and comfortable during a power
outage [24]. “Thermal autonomy” has been proposed to assess a building’s potential
to keep occupants at acceptable temperatures, with the metric ultimately consisting of
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the time occupants are kept in these sufficient thermal conditions [24,25]. Similarly, as
another time-based metric, “hours of safety” has been proposed as a metric to assess the
potential of a building to keep people safe from extreme cold and heat during a power
outage, attributing resilience to the performance of thermal comfort-associated building
components, such as insulation [26].

Other approaches for measuring building energy resilience is to group buildings
with infrastructure systems by their role in infrastructural resilience [11]. Buildings are
viewed as components of the larger power grid system, contributing to grid resilience,
citing building energy resilience as a function of grid-connectivity [27]. While metrics used
to assess the infrastructural resilience of the built environment may not focus on energy
explicitly, considerations for measuring the capacity of key facilities, such as hospitals
and hotels, to serve and offer shelter to people in times of need, may have embedded
energy resilience implications by looking to the continued functionality of these facilities
during power disruptions and grid failure. The GridOptimal metrics proposed by the New
Buildings Institute address power availability for buildings, but with a stronger emphasis
on the contribution of energy-efficient buildings to the overall efficiency of the grid, with a
decarbonized grid as the primary focus [28], and not necessarily the comfort and safety of
occupants at the individual-building level.

Focusing on the economic implications of lost access to grid energy for individual
buildings, “value of lost load” (VoLL) is proposed as a metric to assess the financial
consequences of a power disruption, where a lower VoLL, expressed as “$/kWh”, denotes
a lesser degree of financial consequence due to a loss in load served, thus indicating a
greater degree of building energy resilience [13]. Similarly, “percent of critical load system
can support” is proposed as a metric to quantify the amount of lost grid electricity that
can be made up by resilience measures during a power disruption, especially renewable
energy systems [29,30]. These metrics are primarily focused on renewable energy as a
means to foster building energy resilience and are not easily applicable to passive building
features. Certain passive building features, such as external shading and high-performing
windows, have shown to have significant potential in mitigating indoor conditions in
extreme events [31], but further research is still needed to demonstrate the role of these
passive building features as a means to increase energy resilience [32].

Our review suggests that resilience, even when narrowed to building energy resilience,
can be viewed and assessed in different ways depending on stakeholder interests and use
cases. This calls for a suite of metrics, and indeed it may not be possible or desirable to
try and define a single metric for all these use cases. One apparent gap, vis-a-vis building
energy resilience, is the emerging need for an aggregate measure of building energy
resilience that can be used by owners, investors, operators. While passive survivability
is a step in this direction, it is a technical metric that is more oriented towards the design
community. In the next section, we build on the concept of passive survivability to propose
an aggregate metric for building energy resilience that is targeted towards assessing it from
the stance of business continuity for commercial buildings such as offices and retail facilities.

3. Proposed Metric for Energy Resilience in Office Buildings

There are long-standing existing metrics and criteria to evaluate indoor environmental
conditions for building occupants. Widely accepted guidance in this area include ASHRAE
Standards 55 [33] for thermal comfort, 62.1 and 62.2 [34,35] for ventilation, and 90.1 [36]
for the visual environment. While these are important constituent factors of energy re-
silience, they are not in and of themselves explicitly configured as resilience metrics. They
are generally calculated for a single point in space and time. Building-level resilience
requires a cumulative measure integrated over space and time (e.g., total degree hours
outside of thermal comfort range). We sought to develop an aggregate energy resilience
metric that incorporates multiple constituent indoor environmental quality (IEQ) factors
(including thermal comfort, visual comfort, ventilation), thereby providing stakeholders
with a straightforward assessment of building energy resilience during a power outage.
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We focused our effort on office buildings, whose operations may not be critical for public
safety but may still realize substantial economic consequences due to power outages. For
this use case, our prior experience with industry stakeholders suggests that the metric
should be relatively easy to comprehend, and should not require significant data, expertise
and effort to compute.

We considered two methodological approaches for defining this new building level
energy resilience metric: (a) weighted scoring; and (b) productivity impact. In the weighted
scoring approach, the metric is essentially a weighted sum of the individual constituent IEQ
factors, normalized to a common scale for summation. The weights for each constituent
IEQ factor could be varied based on the priorities of the stakeholders. The advantage of
this approach is that the aggregate metric directly uses well-established measurable IEQ
factors. However, the disadvantages are that the weighting is subjective, and a weighted
score itself is an abstract quantity that is not inherently meaningful. The second approach
we considered was to develop a metric that more directly captures productivity impact,
specifically productivity lost during a power outage. This would be more meaningful for
the end-users and could be more easily converted into economic impacts.

Accordingly, we propose an impact-driven energy resilience metric of “occupant hours
lost” (OHL) as a means to measure the business productivity lost as the result of a power
outage [37]. OHL may be an absolute value (number of occupant-hours lost over a given
time period) or proportional (percentage of normal occupancy lost). For example, an office
building with 100 occupants working 40 h a week would have a total of 4000 occupant
hours per week under normal conditions. If a power outage made the building unusable
for 50 occupants for 20 h over the course of a week, the OHL would be 1000 occupant hours
or 25%. The primary appeal of this metric is that it is conceptually simple and can be easily
understood by building owners and occupants. It can be translated into economic impact
by assigning a monetary value to each occupant hour. Additionally, it can be computed
at different levels of spatial or temporal resolution (e.g., OHL for one floor or section of a
building, OHL for a 3-h power outage during a summer heat event, etc.).

While conceptually simple, the key methodological consideration for computing
OHL are the criteria used to determine when a space is no longer usable by the occupant.
Simply using the comfort criteria for normal occupancy would be unnecessarily stringent,
since most occupants would be willing to tolerate less than comfortable conditions for
limited periods of time, especially under exceptional circumstances such as a power outage.
Based on our literature review, we defined the tolerance criteria for the standard effective
temperature (SET) (SET is the temperature of an imaginary environment with 50% relative
humidity, average airspeed less than 0.1 m/s, and mean radiant temperature equal to air
temperature [33]). It is used to represent thermal sensation [38] as a proxy for thermal
comfort. CO2 concentration is used as a proxy for ventilation, and illuminance as a proxy
for visual comfort. These criteria, shown in Table 1, are based on existing standards. Note
that there are a maximum and minimum as well as a time-weighted tolerance limit within
that range. A space would be considered unusable whenever tolerance criteria are not met
for a given time interval, and the total occupant-hours in that space over that time period
would be considered lost. Users may compute OHL based on each individual IEQ factor or
multiple factors simultaneously. We would note that these criteria may not be universally
acceptable and may need to be adjusted based on use cases and stakeholder priorities. Our
review of the literature on comfort criteria showed a need for further research on human
tolerance of uncomfortable indoor environmental conditions and how human physiology
and behavioral aspects affect adaptation to these indoor conditions [39], albeit a topic that
is largely beyond the scope of building science research, per se. Nonetheless, the criteria
presented below serve as a starting point for illustrating the use of OHL. Our criteria for
occupancy did not include domestic hot water. As such, domestic hot water in offices
is typically needed only for handwashing and dishwashing in kitchenettes (toilets and
urinals do not need hot water). Our premise is that in a critical event, occupants will be
able to tolerate unheated water for handwashing and dishwashing.
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Table 1. Criteria for calculating OHL based on standard effective temperature, CO2, and illuminance.

IEQ Factor Criteria Basis

Thermal-SET Max 240 ◦C SET degree-hours between 30–39.4 ◦C
Max 120 ◦C SET degree-hours between 4.4–12.2 ◦C [9]

Ventilation-CO2 Max 40,000 ppm-hours over 8 h, never to exceed 30,000 ppm [40,41]

Visual-Illuminance Min 150 lux; 100–150 lux for 1 h max per day [36]

4. How the Metric Performs: A Simulation Analysis
4.1. Approach

We used energy simulation to understand and illustrate how the OHL metric varies
due to different building characteristics, across different climate zones and seasons. Addi-
tionally, the simulations were used to generate a dataset to develop a simple predictive
model for calculating OHL based on building characteristics (described in the next section).

We used the US Department of Energy (DOE) medium office prototype model compli-
ant with ASHRAE 90.1-2007 [42] as the starting point for our analysis. Figure 1 shows the
geometry and floor plan for the prototype model, which has a total floor area of 4980 sq.m,
three floors, and a rectangular floor plan with an aspect ratio of 1.5. We used a detailed
zoning version of the model [43] that has more realistic thermal zoning than the standard
prototype model, which only has five zones per floor. The energy models with detailed
office zoning are available for OpenStudio energy modeling environment [44]. The detailed
zoning version has 65 zones, allowing a more fine-grained assessment of OHL variations
in different parts of the building.
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Figure 1. Floor plan and geometry of the DOE medium office 90.1-2007 prototype model with
detailed zoning.

We then conducted a parametric analysis for three climates and 10 building char-
acteristics related to the envelope and occupancy. The three climates were hot-humid
represented by Houston, Texas; warm-marine represented by San Francisco, California;
and cold-humid represented by Chicago, Illinois. Table 2 shows the list of parameters
and the range of values for each. The ranges were determined based on a review of the
values used in various vintages of DOE prototype models [45] and reference models [46].
The parameter values for windows, wall insulation, and roof insulation varied by climate
to account for different construction practices in those locations. The ranges for other
parameters such as occupant density and plug loads were the same across climate zones.
HVAC and lighting characteristics are not relevant since the assumption is that there is no
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power available to run these systems. Since our use case is to assess resilience for business
continuity, we included plug loads under the assumption that they could be operated with
battery power or onsite non-grid sources.

Table 2. Parameter variations of building characteristics. V1–V4 indicate the discrete values that each parameter can have in
this analysis.

Houston San Francisco Chicago

Parameter Unit V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

Window-to-wall
ratio - 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

Window glazing
type

U-Value (W/m2-K) 2.245 2.254 2.969 5.351 2.245 2.399 2.969 5.351 2.067 2.245 2.969 2.969

SHGC 0.17 0.27 0.45 0.55 0.27 0.45 0.58 0.71 0.27 0.45 0.50 0.62

Visible transmittance 0.21 0.40 0.45 0.53 0.40 0.53 0.65 0.74 0.40 0.53 0.58 0.66

Wall insulation U-Value (W/m2-K) 1.29 0.85 0.7 0.51 1.26 0.70 0.51 0.47 0.88 0.47 0.38 0.33

Wall reflectance - 0.22 0.3 0.5 0.7 0.22 0.3 0.5 0.7 0.22 0.3 0.5 0.7

Roof insulation U-Value (W/m2-K) 0.57 0.37 0.28 0.23 0.57 0.37 0.28 0.23 0.4 0.35 0.28 0.18

Roof reflectance - 0.3 0.55 0.7 0.8 0.3 0.55 0.7 0.8 0.3 0.55 0.7 0.8

Occupancy density ft2/person 130 200 300 400 130 200 300 400 130 200 300 400

Elec Plug and
Process W/ft2 1.25 1 0.75 0.5 1.25 1 0.75 0.5 1.25 1 0.75 0.5

Orientation Degrees 0 45 90 - 0 45 90 - 0 45 90 -

Infiltration 10−3 m3/s-m2 0.569 0.797 1.024 1.133 0.569 0.797 1.024 1.133 0.569 0.797 1.024 1.133

We used a quasi-Monte Carlo approach for creating parametric cases. This approach
is well-suited to this analysis because buildings can have any combination of these pa-
rameter values and it is not feasible to model all permutations and combinations. We set
up a simulation framework that generated parametric cases by randomly selecting one
parameter value from the list of values for each parameter. Each parameter value was
selected independently of other parameter values (However, note that window glazing
type properties (U-value, SHGC, visible transmittance) were not varied independently.
Rather, the glazing type itself was treated as the variable). We generated 500 parametric
cases for each climate (We determined 500 simulations to be adequate as follows: after each
additional parametric simulation, we calculated the mean of the distribution of site energy.
When the standard error of the mean fell below a threshold, we determined that additional
parametric simulations were not required).

For each climate and for each parametric case, we ran the simulation and computed
OHL for power outage events for five week-long periods with different outdoor tempera-
ture conditions, using the TMY weather files for the representative locations. We selected
these “weather weeks” based on the average temperature from 8 a.m.–6 p.m. for each week:

• Hot weather week: the week with highest average temperature.
• Cold weather week: the week with lowest average temperature.
• Mild weather week: the week with the median average temperature.
• Cool weather week: the week with 25th percentile of average temperature.
• Warm weather week: the week with 75th percentile of average temperature.

In each parametric simulation run, we ran the building with normal operations for the
week prior to the weather week before “shutting off” HVAC and lighting for the weather
week. This ensured that any thermal mass effects from normal operations in the prior week
would be accounted for in the weather week.

We computed four OHL metrics from the simulation output for each parametric case,
using the criteria described earlier:
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• Thermal OHL was calculated from the hourly standard effective temperature (SET)
and occupancy in each zone. It represents the building’s ability to maintain thermal
habitability without HVAC systems.

• Visual OHL was calculated from hourly illuminance and occupancy in each zone. It
represents the building’s ability to provide adequate daylighting. The illuminance
was calculated at a distance of 3 m from the window. (Illuminance is 0 lux in zones
without windows.)

• Ventilation OHL was calculated from the hourly CO2 concentration and occupancy in
each zone. It represents the building’s ability to maintain tolerable CO2 levels without
mechanical ventilation.

• Overall, OHL was calculated using hourly SET, illuminance, CO2 concentration, and
occupancy in each zone. It represents the building’s ability to maintain overall indoor
environmental quality without active HVAC and electrical lighting.

OHL was calculated for each hour for each zone and then aggregated to compute the
building level OHL for each weather week.

4.2. Results and Discussion

Figures 2–5 show the thermal, visual, ventilation, and overall OHL, respectively. Each
chart shows the OHL for the five event weeks. The OHL range for each event week is
represented by a box plot showing the median, 25th, and 75th percentile (lower and upper
bound of the box) and 5th and 95th percentile (lower and upper bounds of the line). A few
key observations:

• Thermal OHL: Thermal OHL was highest in the hot weather week for all three
locations and generally increased from cold to hot weather weeks. There was a wide
range on OHL across weather weeks-about 60% in Houston and Chicago and 40%
in San Francisco, which has a milder climate. Thermal OHL was low in cold and
cool weather weeks, which could be attributed to solar gain and internal loads. The
5th–95th percentile range of OHL is generally consistent at about 20%.

• Visual OHL: In all locations, the lower bound was generally about 20% OHL. This
was due to the internal zones that do not receive any daylight. OHL was higher in
cool and cold weeks, which can be attributed to less daylight in winter.

• Ventilation OHL: There was very little variation across locations, weather weeks and
within weather weeks. This was somewhat to be expected as the only parameters
affecting CO2 level in our simulation model are the infiltration rate and occupant density.

• Overall OHL: This takes into account the combined effect of SET, illuminance, and CO2
criteria. As a result, the overall OHL ranges are higher than with just the individual
criteria. The ranges were fairly consistent across the different climates. Lower bounds
are generally around 50%.

The range of variation of the OHL metric suggests that it is broadly responsive and
sensitive to weather, climate, and building characteristics; furthermore, it can be simulated and
calculated with well-established existing building energy simulation approaches and tools.
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The results also show the value of multiple OHL metrics. While overall OHL repre-
sents the “bottom line” in terms of building usability, the constituent metrics suggest how
to prioritize interventions. For example, consider cold and cool weather weeks, where
thermal OHL is low. The overall OHL is high primarily due to high visual OHL. Therefore,
limited back-up power used for lighting could significantly lower visual OHL and thereby
improve overall OHL.

Finally, we would note that OHL varied significantly across different zones in the
building. For example, Figure 6 shows the thermal OHL in different zones for a hot weather
week in Houston, which ranges from 6–92%. While our analysis and results in this paper
focus on building level OHL, some stakeholders may be interested in analyzing zone level
OHL to inform and prioritize building resilience interventions. OHL metrics allow for such
analyses since they can be computed at various levels of spatial and temporal aggregation.
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5. Impact of Building Characteristics-Simplified Predictors
5.1. Approach

The previous section demonstrated how OHL can be calculated using conventional
building simulation approaches. However, in practice, such simulation is not feasible for
most buildings because of the level of effort to develop simulation models, especially for
existing buildings where data collection is more challenging than new construction. This
level of effort may be justifiable for large or critical facilities but not for small and medium
offices, retail, food service, and sales, etc. For such buildings, owners and operators,
insurance providers, and other stakeholders need simple ways to assess resilience and
identify opportunities to improve it.

Toward that end, we sought to identify whether OHL impacts could be reasonably
estimated using selected building characteristics that are relatively easy to obtain. We
conducted conventional multivariate regression analysis on the parametric simulation
dataset. The dependent variable was OHL. The independent variables were the building
parameters listed in Table 2. We conducted a regression analysis for each location and
weather week, and for each of the OHL metrics. Using the resulting regression coefficients
for each parameter, we computed the incremental change in OHL for a given change in the
parameter value. This, in essence, provides a measure of the impact of changing a building
characteristic, all else being equal. We computed these only for parameter coefficients that
were significant (p < 0.05).

5.2. Results and Discussion

Tables A1–A4 in the Appendix A contain results of the regression for overall OHL,
thermal OHL, ventilation OHL, and visual OHL, respectively, showing coefficient values
and significance for each parameter for each location and weather week. Figures 7–16 show
the impacts of selected individual parameters on the relevant OHL metrics, only showing
values that were statistically significant (p < 0.05). For each parameter, we calculated the
OHL impact of a unit change in the value of that parameter, simply multiplying the unit
change by the regression model coefficient for that parameter. We used a unit change that
would be meaningful in the context of the general range of values for each parameter.
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The impacts vary considerably by location as well as weather week. We offer the
following key observations:

• For WWR, as expected, visual OHL increases while thermal OHL generally decreases
with a decrease in WWR. But the impact on visual OHL is an order of magnitude
higher than the impacts on thermal OHL, especially in cool and cold weeks, and this,
in turn, is reflected in the overall OHL. For example, in Houston WWR impact on
thermal OHL ranges from about −2.6% to +0.4%, while WWR impact on visual OHL
ranges from about 0.2 to 17.6%.

• Decreasing SHGC by 0.1 lowers thermal OHL by 1.8 to 3.3% in hot and warm
weather weeks.

• Increasing wall reflectance and roof reflectance have approximately equivalent impacts
on thermal OHL and have minimal if any impact on overall OHL.

• Interestingly, reducing the U-value (i.e., increasing the insulation) of windows, walls,
and roofs increases thermal OHL in cooler weather weeks-possibly because of the
reduced ability to dissipate internal and solar gains when outdoor temperatures
are lower.

• As expected, a 0.1 decrease in visible transmittance significantly impacts visual OHL
and overall OHL, with increasing impacts in cool and cold weeks (i.e., fall and winter).

• Lowering plug loads by 11 W/sq.m (approximately 10% of typical office plug load
values) reduces overall OHL by around 0.3–0.5% in hot and warm weeks.

• Infiltration impacts appear to be minimal.
• Overall, it appears the most impactful parameters are WWR, SHGC, and visible

transmittance. In particular, WWR and visible transmittance significantly impact
daylight availability, which in turn significantly impacts visual OHL. In the case of
thermal OHL, SHGC is more impactful than wall and roof insulation, suggesting
that indoor thermal conditions appear to be more influenced by solar load than the
outdoor temperature.

The model fit for most of the metrics and weather weeks were generally good, with a
few exceptions (see again Appendix A Tables A1–A4). The adjusted R2 varies from 0.59
to 0.96 for thermal OHL, 0.43–0.94 for visual OHL, 0.86 to 0.97 for ventilation OHL, and
0.45–0.93 for overall OHL.

The results show significant differences between the different OHL metrics. This also
explains why overall OHL does not always offer intuitive or self-explanatory results. This
suggests that it is important for stakeholders to evaluate metrics based on their priorities.
For example, some owners may primarily be interested in reducing thermal OHL, on the
premise that in a power outage, they can use some level of battery-powered lighting or
consolidate building activities in daylit spaces.

A key limitation of these results is that geometry (shape and surface to volume ratio)
was not a variable in the simulation dataset used for the analysis. Nevertheless, for
buildings with similar rectangular geometry, the regression shows promise as a simple
means to assess and screen for resilience, analogous to energy benchmarking. This is
especially relevant for non-critical facilities where it may not be viable to conduct a rigorous
energy resilience analysis using detailed building simulation.

6. Conclusions and Further Research

Energy resilience planning for the built environment has largely focused on main-
taining key facility operations concerning human wellbeing and survival during natural
disasters. Our study contributes to the growing body of research on building resilience in
two ways:

• We propose “occupancy hours lost” (OHL) as a metric to capture the impact of a
power outage. It can be calculated and aggregated at various levels of spatial and
temporal resolution. It offers a relatively simple approach for evaluating the energy
resilience of non-critical buildings, with a focus on supporting stakeholder priorities
for business continuity during a power outage. Using parametric energy simulations,



Buildings 2021, 11, 96 15 of 20

we illustrated how the metric varies due to different building characteristics, across
different climate zones and seasons.

• We developed a simple predictive model for calculating OHL based on building
characteristics, using the aforementioned simulation results. This would allow a first-
order coarse evaluation of building energy resilience with a relatively low data burden.

There are several areas for further research:

• Our simulation analysis was limited to a particular building morphology and occu-
pancy characteristics. This should be expanded to represent a range of morphologies,
sizes, and occupancy characteristics in order to more robustly evaluate the potential
of using simple regression models to predict OHL.

• Ultimately, the simulation-based datasets need to be complemented with empirical
validation, which can be challenging due to the difficulty of emulating extreme events
in real life. One potential approach may be to de-power a building, take measurements
of indoor conditions, and compare these against the simulation results.

• Another area of further work is to analyze how the accuracy of the metric varies with
the quantity and quality of data input. This is especially relevant to wider application
in the building industry, where it is still challenging to get even basic information
on building characteristics without significant effort. Metrics that provide moderate
accuracy with low data burden are much more likely to be widely accepted and used
than high fidelity metrics that have a high data burden.

• These metrics need to be field-validated by building industry stakeholders using them
for actual business purposes.

Finally, we would reiterate that resilience is a very broad concept and no single metric
can capture the diversity of use cases. Depending on the event scenario and stakeholder
priorities, the energy resilience metric presented in this paper may need to be used in
conjunction with other key resilience metrics, such as structural integrity in the case of an
earthquake scenario. Other use cases may call for applying the metric to aggregations of
buildings, so that resilience planners and policymakers can assess energy resilience at the
community scale.
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Appendix A
Table A1. Overall OHL Regression results.

Case (Intercept) WWR Window
U-Value SHGC Window

vis Trans
Wall

U-Value
Wall

Reflectance
Roof

U-Value
Roof

Reflectance
Occupant
Density

Plug Load
Density Orientation Infiltration Adj. R2

HO_hot 0.83408 0.03258 0.01388 −0.07762 −0.02213 −0.00011 0.03387 −42.78699 0.45

HO_warm 0.92863 −0.2135 0.01243 −0.18979 −0.02098 −0.00006 0.03733 −52.55214 0.60

HO_mild 1.08953 −0.52308 −0.32909 −0.02642 −0.03222 −0.04184 0.04 −75.51234 0.66

HO_cool 1.24251 −0.94812 −0.14597 −0.49549 −0.02693 0.0002 −54.39543 0.74

HO_cold 1.45032 −1.30297 −0.20264 −0.61161 0.00052 −62.88679 0.91

SF_hot 0.49055 0.1106 −0.00378 0.20627 −0.01798 −0.03146 −0.02909 0.00014 0.03834 −0.00011 −82.40585 0.86

SF_warm 0.47934 0.03852 −0.0039 0.14003 −0.02844 −0.01556 −0.02002 −0.019 0.00012 0.02267 −0.00006 −68.46596 0.75

SF_mild 0.54614 −0.02084 −0.00611 0.15431 −0.06185 −0.01917 −0.02193 −0.02123 0.00014 0.02662 −85.18133 0.58

SF_cool 1.18469 −0.94152 0.00917 −0.37309 0.00026 −97.10029 0.75

SF_cold 0.89833 −0.44449 −0.24912 0.00005 −91.64591 0.59

CH_hot 0.2105 0.21418 −0.02716 0.01269 −0.02258 −0.01302 −0.00004 0.04047 −47.30604 0.93

CH_warm 0.6362 0.0686 −0.00582 0.21087 −0.05392 −0.01205 −0.02251 −0.02384 0.00005 0.05084 −0.00011 −116.26643 0.80

CH_mild 0.67858 −0.23871 0.0425 −0.14708 0.00008 0.01271 −0.00011 −78.58245 0.49

CH_cool 1.20039 −1.0896 0.02222 −0.07286 −0.35689 −0.00006 0.00037 −68.84239 0.80

CH_cold 1.11705 −0.92302 0.02408 −0.07637 −0.2991 0.00024 −89.11845 0.76

Only coefficients with p <= 0.05 shown; Bold values indicate coefficients with p <= 0.001.

Table A2. Thermal OHL Regression results.

Case (Intercept) WWR Window
U-Value SHGC Window

Vis Trans
Wall

U-Value
Wall

Reflectance
Roof

U-Value
Roof

Reflectance
Occupant
Density

Plug Load
Density Orientation Infiltration Adj. R2

HO_hot 0.46288 0.19311 0.01085 0.17596 0.01308 0.01685 −0.03929 0.01713 −0.02466 −0.00007 0.07828 −16.13206 0.96

HO_warm 0.39134 0.1672 0.00803 0.17036 0.01103 0.00651 −0.03564 0.01578 −0.0311 −0.00002 0.10329 −31.14112 0.95

HO_mild 0.26186 0.0858 0.18575 −0.02694 −0.0499 −0.04036 −0.04495 0.00007 0.12178 −0.00034 −36.94327 0.92

HO_cool 0.16342 0.04988 −0.00556 0.17479 −0.02755 −0.04252 −0.03851 −0.0349 0.00014 0.09769 −0.00011 −44.32564 0.95

HO_cold 0.06712 −0.01553 −0.00668 0.07686 −0.02687 −0.01709 −0.02209 −0.00816 0.00002 0.04315 −0.00019 −23.56909 0.80

SF_hot 0.15529 0.21074 −0.00787 0.31341 0.04525 −0.02816 −0.05604 −0.01564 −0.06407 0.00022 0.10004 −0.00009 −71.31831 0.92

SF_warm 0.0463 0.16941 −0.01434 0.32515 0.05845 −0.04158 −0.06122 −0.02708 −0.06222 0.00021 0.08901 −67.35553 0.93

SF_mild 0.10439 0.15976 −0.01603 0.31604 0.05331 −0.04013 −0.05767 −0.02539 −0.06465 0.00023 0.09244 0.00004 −66.50788 0.94
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Table A2. Cont.

Case (Intercept) WWR Window
U-Value SHGC Window

Vis Trans
Wall

U-Value
Wall

Reflectance
Roof

U-Value
Roof

Reflectance
Occupant
Density

Plug Load
Density Orientation Infiltration Adj. R2

SF_cool 0.09911 −0.03505 −0.02001 0.11755 0.02586 −0.03813 −0.01628 −0.04688 −0.01418 0.00004 0.067 −0.00021 −31.1346 0.91

SF_cold 0.16269 −0.0154 0.27486 0.03355 −0.04017 −0.03666 −0.04179 −0.01769 0.00013 0.05636 −0.00093 −26.46278 0.86

CH_hot 0.4202 0.25897 0.25586 −0.01936 0.01853 −0.03022 0.01548 −0.02228 0.00002 0.07217 0.00004 −42.18851 0.93

CH_warm 0.29996 0.19879 −0.01792 0.3201 −0.0185 −0.03904 −0.04701 0.0001 0.11495 −0.00015 −82.49559 0.90

CH_mild 0.09487 0.11318 −0.03483 0.31584 −0.06512 −0.0325 −0.08057 −0.02433 0.00017 0.08979 −0.00049 −56.3568 0.91

CH_cool 0.01239 0.00808 −0.00243 0.01441 −0.00385 0.00003 0.00301 −0.00004 −5.49333 0.59

CH_cold 0.01152 −0.00068 0.00157 −0.00087 0.00039 0.00003 0.00067 0 −0.64141 0.93

Only coefficients with p <= 0.05 shown; Bold values indicate coefficients with p <= 0.001.

Table A3. Ventilation OHL Regression results.

Case (Intercept) WWR Window
U-Value SHGC Window

Vis Trans
Wall

U-Value
Wall

Reflectance
Roof

U-Value
Roof

Reflectance
Occupant
Density

Plug Load
Density Orientation Infiltration Adj. R2

HO_hot 0.51231 −0.00222 0.01725 0.00018 −153.14466 0.92

HO_warm 0.41364 0.00018 −121.63163 0.97

HO_mild 0.43035 0.00019 −118.99631 0.97

HO_cool 0.37269 0.00007 −114.66429 0.93

HO_cold 0.37384 0.00639 0.00008 −118.26842 0.95

SF_hot 0.35438 0.00011 −0.00002 −88.57826 0.94

SF_warm 0.32633 0.00058 0.00008 −0.00185 −72.60319 0.92

SF_mild 0.36495 0.0001 −109.3139 0.94

SF_cool 0.35865 0.00006 −103.42958 0.91

SF_cold 0.37906 0.00113 −0.00806 0.00012 0.00003 −100.15798 0.93

CH_hot 0.35451 −0.00444 0.00012 −87.22699 0.87

CH_warm 0.41193 0.00016 −131.37983 0.96

CH_mild −0.00246 0.0001 −83.56577 0.92

CH_cool 0.32165 0.00737 0.0022 0.00003 −79.93948 0.86

CH_cold 0.36489 −0.00368 0.00008 −101.5246 0.92

Only coefficients with p <= 0.05 shown; Bold values indicate coefficients with p <= 0.001
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Table A4. Visual OHL Regression results.

Case (Intercept) WWR Window
U-Value SHGC Window

Vis Trans
Wall

U-Value
Wall

Reflectance
Roof

U-Value
Roof

Reflectance
Occupant
Density

Plug Load
Density Orientation Adj. R2

HO_hot 0.68788 −0.34306 0.01929 −0.3148 −0.29769 −0.0003 0.43

HO_warm 1.02647 −0.88035 0.01222 −0.28549 −0.5045 −0.00027 0.78

HO_mild 1.11223 −0.95341 −0.20389 −0.59517 −0.00025 0.00025 0.70

HO_cool 1.35684 −1.389 −0.28819 −0.70917 −0.00022 0.00051 0.75

HO_cold 1.58249 −1.75991 −0.26366 −0.82182 −0.00017 0.00078 0.91

SF_hot 0.35566 −0.04015 0.00182 0.01444 −0.05929 −0.00025 0.85

SF_warm 0.3677 −0.05239 0.00221 0.02056 −0.07871 −0.00025 0.79

SF_mild 0.42582 −0.13533 0.00456 −0.14755 −0.00024 0.00009 0.54

SF_cool 1.20394 −1.22743 0.0119 −0.49739 −0.00022 0.00033 0.78

SF_cold 0.82707 −0.64687 0.00867 −0.34265 −0.00025 0.64

CH_hot 0.32589 −0.01696 0.00288 −0.01717 −0.00025 0.94

CH_warm 0.38083 −0.09991 0.00875 −0.07705 −0.00025 0.76

CH_mild 0.56812 −0.38237 0.0189 −0.21743 −0.00025 0.60

CH_cool 1.21665 −1.34897 0.02706 −0.08916 −0.42726 −0.00021 0.00043 0.80

CH_cold 1.10494 −1.20215 0.03392 −0.10789 −0.384 −0.00022 0.00037 0.78

Only coefficients with p <= 0.05 shown; Bold values indicate coefficients with p <= 0.001
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