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Abstract: This paper proposed an optimization method to minimize the building energy consumption
and visual discomfort for a passive building in Shanghai, China. A total of 35 design parameters
relating to building form, envelope properties, thermostat settings, and green roof configurations
were considered. First, the Latin hypercube sampling method (LHSM) was used to generate a set of
design samples, and the energy consumption and visual discomfort of the samples were obtained
through computer simulation and calculation. Second, four machine learning prediction models,
including stepwise linear regression (SLR), back-propagation neural networks (BPNN), support
vector machine (SVM), and random forest (RF) models, were developed. It was found that the
BPNN model performed the best, with average absolute relative errors of 3.27% and 1.25% for energy
consumption and visual comfort, respectively. Third, six optimization algorithms were selected
to couple with the BPNN models to find the optimal design solutions. The multi-objective ant
lion optimization (MOALO) algorithm was found to be the best algorithm. Finally, optimization
with different groups of design variables was conducted by using the MOALO algorithm with the
associated outcomes being analyzed. Compared with the reference building, the optimal solutions
helped reduce energy consumption up to 34.8% and improved visual discomfort up to 100%.

Keywords: design optimization; green roof; passive building; energy consumption; machine learning;
visual comfort

1. Introduction

Many studies on passive buildings have focused on the optimization of the building
envelope design parameters [1–6]. For example, Gong et al. [1] proposed an optimization
approach based on an orthogonal method and listing method to minimize the building
energy consumption, considering wall thickness, roof insulation thickness, external wall
insulation thickness, window-to-wall ratio (WWR), window orientation, window type, and
sunroom depth. Ralegaonka et al. [4] performed a review on the passive solar architecture
approach and identified wall aspect ratio, building orientation, window size and location,
and shading to be the most important design parameters affecting the solar contribution to
the cooling and heating load of the building. Lin et al. [6] performed a design optimization
to minimize the building thermal load and discomfort degree hours, taking into account
the concrete thickness, insulation thickness, solar radiation absorbance of the external
walls/roof, and WWR.
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The mechanical system in buildings is also very important for maintaining indoor
thermal comfort, which also needs to be considered in passive building design [7–9].
Dodoo et al. [7] performed a life cycle analysis of a four-story apartment building by
altering its thermal properties, similarly to three passive houses in Sweden with ventilation
heat recovery, and found that the choice of construction material is very important for
the primary energy consumption. Asadi et al. [8] conducted retrofit optimization for a
residential building considering external wall/roof insulation, window type, and solar
collector installation to minimize retrofit cost, maximize energy saving, and improve
thermal comfort. Flaga-Maryanczyk et al. [9] carried out experimental measurement and a
computational fluid dynamics (CFD) simulation for a passive house ventilated through
a ground source heat exchanger in a cold climate and found the ground heat exchanger
could provide heating for up to 24% during the winter season.

There have been a number of studies on the performance of green roofs, mainly
focusing on the physical properties of the plants and soil. For example, He et al. [10]
developed a heat and moisture transfer model to evaluate the insulation and temperature
regulation effect of a green roof. They found that the thermal resistance of the substrate layer
and the corresponding common roof affected the insulation most, while the temperature
regulation ability was affected by leaf area index, surface reflectivity, and the emissivity
of the substrate layer and common roof. Olivieri [11] conducted an experimental study
to evaluate the effect of vegetation density on the energy performance of a green roof
and found that a highly vegetated roof, which is highly insulated, could act as a passive
cooling system.

Table 1 summarizes the design variables that have been considered in previous studies
on passive buildings and green roof optimization. For passive buildings, the design
variables mainly include window properties (e.g., window type and window-to-wall-
ratio), wall/roof properties (e.g., concrete thickness and insulation thickness), building
dimensions (e.g., number of floors and shape factor), and sun room properties (e.g., sun
room depth). For green roof buildings, the design variables mainly focus on the properties
of the plants, leaves, and soil (e.g., plant height, leaf area index, leaf reflectivity, and soil
reflectivity), and the thermal conductivity of the substrate.

Table 1. Design variables for passive buildings and green roof optimization from open literature.

Location Design Variable Ref.

China Window type, concrete thickness, insulation thickness, sunroom depth, overhang length. [1]

Tianjin Air change rate per hour (ACH), window type (K value and solar heat gain coefficient
(SHGC) value), insulation thickness and K value, overhang length, air-conditioning type. [2]

Tianjin
Window-to-wall ratio (WWR), ACH, K value of external window, K values of exterior wall

and roof, heat recovery efficiency of fresh air, number of floors, and length, height, and width
of the building.

[12]

Lhasa WWR, window type, K value of the external wall. [13]

Lhasa Window type, insulation thickness, sunroom orientation, sunroom depth. [14]

South Jiangsu ACH, SHGC of the window glazing, insulation thickness, window shading type. [15]

Sichuan Building orientation, WWR, window opening size, insulation material and thickness,
building shape factor. [16]

China
Building orientation, WWR, U value of the window, thermal resistance of the exterior wall,

specific heat of the exterior wall, obstruction angle, overhang projection fraction, infiltration
air mass flow rate.

[17]

Yangtze River
Basin Window type, insulation thickness, shading type, natural ventilation. [18]

Lhasa Window frame material, window type, insulation material and thickness, door material and
thickness, floor material and thickness, partition wall type and thickness. [19]
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Table 1. Cont.

Location Design Variable Ref.

Severe Cold
region

Window type, window frame material, insulation structure and thickness, floor layout, shape
factor, sunroom depth. [3]

Shanghai Green roof (vegetation height, leaf area index, leaf reflectivity, soil reflectivity, thermal
conductivity of the substrate). [10]

Southern Shaanxi WWR, window type, insulation thickness, natural ventilation. [20]

China Building orientation, shading, WWR of the south wall, natural ventilation. [21]

China Building orientation, shading type, natural ventilation mode, building layout, thermal
bridge design. [22]

Wuhan WWR, concrete thickness, insulation thickness, absorption of solar radiation. [5]

China Building orientation, WWR, glazing type, glazing thickness, insulation thickness, overhang
length, heating/cooling temperature setpoint. [6]

Europe Window type, insulation material and thickness, area and electricity generation efficiency of
solar air collector. [8]

Mediterranean Green roof (plant height, leaf area index, leaf reflectivity, minimum stomatal resistance,
thermal conductivity of the substrate). [11]

India Window size, glazing type, overhang length, window sill, ventilation mode. [23]

Japan Water depth, roof deck material, and thickness of the insulating panel. [24]

Canada WWR, glazing type, external wall structure. [25]

Australia Infiltration control, ceiling insulation, external shading, glazing type, exterior wall insulation. [26]

Visual comfort is a very important factor when considering a working environment.
Good visual comfort has a positive impact on the occupants’ productivity and well-
being [27]. It is considered as one of the four main occupant comfort aspects (thermal,
visual, acoustic, and IAQ) [28]. Dounis et al. [29] found that using a fuzzy-reasoning
machine to control the indoor visual comfort had a mild effect on the thermal comfort.
Michael et al. [30] proposed an integrated adaptive system with individual movable
modules to improve indoor visual comfort and found it helped minimize glare issues,
while maintaining a high indoor illumination level. Kim et al. [31] proposed a daylight
glare control system using a window-mounted high dynamic range image (HDRI) sensor
to identify the glare source and found it could fully protect from a detected glare source
and maintain indoor visual comfort. ElBatran et al. [32] carried out a parametric study on
daylight availability and visual comfort for an office building with a double skin facade
and found that the perforation percentage and skin depth had the greatest impact on
daylight performance.

The above summary indicates that although there have been many studies on passive
buildings or green roof design optimization, the integration of a green roof into passive
building design optimization to reduce building energy consumption and improve visual
comfort has yet to be done. The above literature review also points out that the interaction
of green roof design variables with other building design variables, such as building
shape, building envelope properties, and air-conditioning thermostat settings, has not been
evaluated through a systematic optimization process.

Due to the large number of design variables involved in the optimization process, the
selection of an appropriate optimization algorithm is of great importance for obtaining
the optimal solutions accurately and efficiently. The optimization algorithms for passive
buildings are based on statistical methods [1], genetic algorithms [2,5,6], and group in-
telligent algorithms [9]. The genetic algorithm is the prevailing approach and belongs to
evolution optimization algorithms. The group intelligent algorithm has been newly devel-
oped in the last decade and can be accessed through GenOpt [9], which provides the option
to couple a particle swarm optimization approach with a building simulation program.
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Although different studies on building design optimization have been made by using either
an evolution algorithm or group intelligent algorithm, few studies have been conducted
to compare the performance of these two optimization algorithms. In addition, thermal
load [1,6], energy demand/consumption/savings [2,5,9], thermal comfort [2,5,6,9], and ini-
tial cost/lifecycle cost [2,5,9] have been targeted as the objectives of design optimization;
however, very little attention has been paid to the optimization of visual comfort for
passive buildings.

2. Research Objective

From the literature survey, it was found that current research on passive buildings
has mainly focused on thermal performance, and often visual comfort was neglected.
Meanwhile, the research on green roof and passive building design has been studied
separately. In view of this, a passive building with a green roof in Shanghai, which is
located in the hot summer and cold winter climatic region of China, is proposed. The
objective of this research was to:

(1) Study the impact of the integration of a green roof on the performance of a pas-
sive building;

(2) Optimize the passive building for both energy consumption and visual comfort.

This study is the first attempt to evaluate the integration of a green roof into passive
building design optimization, while considering both reducing building energy consump-
tion and improving visual comfort. A coupled machine learning and group intelligent
approach to optimizing passive building design solutions, regarding the building form,
envelope properties, thermostat settings, and green roof inclusion, and considering their
implications on energy consumption and visual comfort, is presented. An optimiza-
tion approach was applied to obtain the optimal design solutions in the hot summer
and cold winter climatic region of China, and this can also be extended to all other
climatic conditions.

3. Method

A total of 35 design parameters were considered, which took into account the green
roof physical properties, building shape, building envelope properties, and air-conditioning
thermostat settings. The optimization process comprised four steps (Figure 1). First, LHSM
was used to generate a total of 800 sample buildings. Second, the sample buildings were
simulated under the DesignBuilder environment [33], and associated building energy
consumptions and visual discomfort levels were obtained. Third, a total of four machine
learning approaches, including SLR, SVM, RF, and BPNN, were applied to develop predic-
tion models for building energy consumption and visual comfort. The approaches with the
best prediction performance were selected and coupled with six optimization algorithms,
including three evolutionary algorithms and three group intelligence algorithms, for design
optimization. Finally, the design variables were divided into four groups and the impact
of different groups of design variable combinations were evaluated. The DesignBuilder
optimization module can only handle up to 10 design variables and 2 objectives [33], and
therefore it was not adopted in this study.

3.1. Objective Functions

The optimization problem can be described as below:

Min f1(x), f2(x) = [x1, x2 . . . , xn]. (1)

where f 1 is the per unit annual energy consumption of the building, f 2 refers to visual
discomfort, which is the percentage area not meeting the annual sun exposure (ASE)
requirement (ASE not in range).
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f 1 is determined by the following equation:

f1(x) =
Q(x)
S(x)

(2)

where Q is the annual building energy consumption, which includes heating, cooling,
lighting, and equipment energy consumption, which was obtained by DesignBuilder [33],
in kW; s is the building construction area, in m2.
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The ASE is used as the indicator for daylight analysis. The ASE requirement from
LEED [34] requests that not more than 10% of the space have a lighting intensity of
over 1000 lux for a maximum of 250 h per year. Mangkuto et al. [35] utilized ASE as a
performance indicator for internal shading device optimization.

f 2 (ASE not in range) can then be calculated as:

f2(x) =
ASE250(x)

S(x)
(3)

where ASE250 is the is the area where lighting intensity is over 1000 lux for over 250 h
per year.

ASE250 can be calculated by:

ASE250(x) = (1−ASEDB)× S(x) (4)

where ASEDB is the area of space satisfying the annual sunlight exposure (ASE) require-
ments, as calculated by DesignBuilder [33].

3.2. Building Model and Design Parameter Setting

The building investigated is located in Shanghai, which has a subtropical monsoon
climate with four distinct seasons, abundant sunshine, and abundant rainfall. The climate
is mild and humid, with a short spring and autumn, and long winter and summer. The
annual average temperature in Shanghai is 16.2 ◦C with a heating degree day (HDD 18) of
1540 ◦C·d and cooling degree day (CDD 26) of 199 ◦C·d [36].

The floor area of each story is 120 m2 with a height of 3.2 m. It is a reinforced concrete
frame structure building. Figure 2 presents the front view of a reference building with over-
hang shading. A door with a dimension of 1.5 m × 2.1 m is open to the south. The building
orientation is due south, with a sunroom attached on the first floor. The heating seasonal
and heating seasonal coefficients of performance (COPs) of the air-conditioning unit were
set to be 2.3 and 1.9, respectively, according to [37]. A typical residential occupancy pattern
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was assigned. The fresh air rate was 30 m3/h per capita and ACH was 0.6. The lighting
density, equipment load, and humidity generation were set to be 5 W/m2, 4 W/m2, and
100 g/(p·h), respectively, according to [38]. The occupant density and activity levels are
listed in Table 2.
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Table 2. The occupant density and activity levels for a typical residential building.

Room Type Occupant Density (m−2) Activity Level (W per Person)

Kitchen 0.0237 160
Bedroom 0.0229 90

Living room 0.0188 110
Shower room 0.0187 120

Table 3 presents the design parameters and their associated value ranges, which were
selected and modified after careful consideration based on the references listed in Table 3.
There are two types of parameters. The first type are discrete parameters (as shown in
Table 4), which include floor number, length to width ratio, and window type. The second
type are continuous parameters, which include the rest of the parameters.

Table 3. Design parameters and value ranges.

Parameter Value Range References Ref. Building

Floor number x1 (1, 3) [12] 3

Length to width ratio x2 R1–R7 * [12] R1

Cooling temperature setpoint (◦C) x3 (24, 26) [5,6] 25

Heating temperature setpoint (◦C) x4 (20, 22) [5,6] 20

Window-to-wall ratio (%)

East (x5) (10, 90) [1,6]
[7,12]
[13,16]
[20,25]

18
West (x6) (10, 90) 15
South (x7) (10, 90) 20
North (x8) (0, 90) 16

Window type (x9) G1–G10 * [1–3,6,8,13,14,20,23] G9

Overhang length (m)

East (x10) (0, 1)
[1]
[2]
[6]

0.5
West (x11) (0, 1) 0.5
South (x12) (0, 1) 0.5
North (x13) (0, 1) 0.5
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Table 3. Cont.

Parameter Value Range References Ref. Building

Absorptance of solar radiation

East (x14) (0.1, 0.9)

[26]

0.7
West (x15) (0.1, 0.9) 0.7
South (x16) (0.1, 0.9) 0.7
North (x17) (0.1, 0.9) 0.7

Concrete thickness (m)

East (x18) (0.1, 0.3)

[1,5]

0.2
West (x19) (0.1, 0.3) 0.2
South (x20) (0.1, 0.3) 0.2
North (x21) (0.1, 0.3) 0.2
Roof (x22) (0.1, 0.3) 0.2

Insulation material x23 M1–M2 * [8,16] M1

Insulation thickness (m)

East (x24) (0.01, 0.3)
[1–3]
[5,6]

[14–16]

0.1
West (x25) (0.01, 0.3) 0.1
South (x26) (0.01, 0.3) 0.1
North (x27) (0.01, 0.3) 0.1
Roof (x28) (0.01, 0.3) 0.1

Sunroom depth (m) x29 D1–D5 * [1,3,14] D2

Substrate thickness (m) x30 (0.05, 0.7) [27] 0.15

Conductivity of the substrate
(W/m·K) x31 (0.05, 0.7) [10,11] 0.7

Vegetation height (m) x32 (0.05, 0.7) [10,11,27] 0.1

Leaf area index (LAI) x33 (0.5, 5) [10,11,27] 1

Leaf reflectivity (lr) x34 (0.1, 0.4) [10,11,27] 0.22

Heat recovery efficiency (%) x35 H1–H61 [12] H2

* R1–R16, D1–D5, H1–H6, G1–G10, and M1-M2 are discrete variables and presented in Table 4.

Table 4. Discrete variable range.

Variable Value Range *

x2 1:1(R1), 2:1 (R2), 3:1 (R3), 3:2 (R4), 4:3 (R5), 5:2 (R6), 5:3 (R7)

x9

Sgl Clr 3 mm (G1), Sgl LoE (G2), Clr 3 mm (G3), Dbl Clr 3 mm/13 mm Air (G4), Dbl Clr 3 mm/13 mm Arg
(G5), Dbl LoE 3 mm/13 mm Air (G6), Dbl LoE 3 mm/13 mm Arg (G7), Trp Clr 3 mm/13 mm Air (G8), Trp Clr

3 mm/13 mm Arg (G9), Trp LoE 3 mm/13 mm Air (G10)

x23 EPS(M1), XPS (M2)

x29 0(D1), 0.5 (D2),1(D3),1.5(D4),2(D5)

x35 70(H1), 75(H2), 80 (H3),85(H4), 90 (H5),95(H6)

* Note: Sgl: Single; Clr: Clear; LoE: Low Emissivity; Arg: Argon; Trp: Triple; EPS: Expanded Polystyrene Insulation; XPS: Extruded
Polystyrene Insulation.

The annual energy consumption and ASE area not in range for the reference building
were 11,262.55 kWh (31.28 kWh/m2) and 8.9%, respectively.

3.3. Optimization Procedure

The optimization procedure included four steps (see Figure 1). First, a total of 800 sam-
ples were created based on LHSM, and the associated annual building energy consumption
and ASE area in range were calculated using DesignBuilder [33]. Second, a total of four
machine learning approaches were applied to develop the prediction models based on
the simulation outcomes and associated values of the design parameters. The machine
learning prediction models with the best prediction performance were selected for the
subsequent analysis. Third, a total of six different optimization algorithms were coupled
with the selected prediction models, searching through the 35-dimensional space, with
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value ranges provided in Tables 3 and 4, to find the optimal solutions (with minimal energy
consumption and maximum visual comfort), and the ones with the best performance were
selected. Fourth, the selected optimization algorithm and prediction models were coupled
to find the optimal solution for different combinations of design parameters to analyze the
impact of design parameters in various aspects.

4. Prediction Model
4.1. Design Sample Creation

LHSM was proposed by McKay [39], and can ensure sampling variables are evenly
distributed in a variable space. In addition, excluding certain dimensions of data from
the sampling results will not affect their completeness [40], and therefore the impact of a
certain group of variables can be investigated without the need for re-sampling.

The number of samples in this study was 800, with 35 design parameters, and follow-
ing the principle of N ≥ 2 2.5 × M (M is the number of design parameters) from [6,41].
The variables could be divided into four groups related to building shape, air-conditioning
settings, building envelope properties, and green roof configurations. Visualizations of the
selected design parameters are presented in Figure 3.
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4.2. Prediction Model through Machine Learning

Four learning approaches, including stepwise regression, BPNN, SVM, and RF, were
used to develop the prediction models. The best prediction models were selected to carry
out the optimization. A detailed analysis of the four machine learning approaches is
described as follows.

4.2.1. SLR

SLR solves the problem of multiple linear relationships between variables and finds
the optimal subset for regression. It makes a univariate regression between the dependent
variable and each independent variable, and the independent variables are sequentially
introduced after being sorted by importance. At the same time, F-test is conducted for the
introduced variable, and those that are not of significance in the equation are eliminated.
Finally, all the significant regression variables are included in the regression model as below:

y = β0 + β1x1 + β2x2 + . . . + βixi (5)

where β0 is the regression constant and βi are the regression coefficients.
In this study, logarithmic SLR was adopted to develop the prediction model for the

building energy consumption as below:

ln y = β0 + β1 ln x1 + β2 ln x2 + . . . + βi ln xi (6)

The outcomes of the regression models for the building energy consumption and ASE
in range are presented as Equations (6) and (7):

ln f1 = 8.011 + 0.871 · ln x1 − 0.089 · ln x9 + 0.059 · ln x6 + 0.049 · ln x5 + 0.044 · ln x7 + 0.013 ·
ln x8 + 0.004 · ln x29 − 0.003 · ln x12 + 0.009 · ln x2 − 0.005 · ln x24 − 0.003 · ln x11 + 0.045 ·

ln x35 − 0.002 · ln x10

(
R2 = 0.986

) (7)

f2 = 87.741− 0.216 · x5 − 4.623 · x29 + 2.171 · x1 + 0.659 · x2 + 4.214 · x10 + 0.201 · x9 − 0.016 · x6 − 0.015 ·
x7 − 0.009 · x8 + 0.689 · x11

(
R2 = 0.852

) (8)

The regression between the target simulation outputs and the prediction results is
shown in Figure 4. It can be seen that the simulation results are in good agreement with
the prediction results, with regression coefficients higher than 0.8517.
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4.2.2. BPNN

BPNN is the most widely used type of neural network, includes input, hidden, and
output layers, and can better solve various problems in practical applications. The hidden
layer contains all the information processing and calculation processes, and can have one
or more layers. Based on the empirical formula and testing, the final number of neurons
for each layer are determined and listed in Table 5.

Table 5. The number of neurons in each layer.

No. Model Input Layer Hidden Layer Output Layer

1 Energy
Consumption 35 12 1

2 ASE Area in
Range 35 5 1

The Levengerg–Marquardt method was applied for training. The percentages of
data used for training and validation were 90% and 10%, which were recommended by
Zhang et al. [42] and Lu et al. [43]. The regression between the target simulation outputs
and the prediction results is shown in Figure 5. Good agreements are found with the
R-squares higher than 0.93.
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4.2.3. SVM

SVM has been widely used to solve practical problems. It is based on statistical learn-
ing and introduces the principle of structural risk minimization, which effectively solves
the problem of dimensionality difficulties and local minima [44]. Support vector regression
(SVR) is a type of SVM, which studies the relationship between output parameters and
input parameters, and predicts the output variable values of new samples with the same
distribution as the training sample set. The specific step is to introduce a loss function for
distance correction under the premise of classification, thereby determining the regression
model for prediction [45]. The regression between the target simulation outputs and the
prediction results is shown in Figure 6. Good agreements are found with the R-squares
higher than 0.85.
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4.2.4. RF

RF is a further combination of classification trees, which improves the accuracy of the
results without significantly increasing the amount of calculation. RF is not sensitive to
multi-collinearity, and the outputs are relatively stable for missing and unbalanced data and
make good use of as much independent variable information as possible [46]. Compared
with traditional decision trees, RFs have a stronger fault tolerance. The regression between
the target simulation outputs and the prediction results is shown in Figure 7. Good
agreements are found with the R-squares higher than 0.96.
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4.3. Comparisons on the Prediction Models

The outcomes of the relative error ranges for each model are listed in Table 6. It can be
observed that the relative error of the visual comfort model was slightly lower than that of
the energy consumption model. This may be due to the fact that the visual comfort was
affected by fewer design parameters, and therefore, with the same amount of training, its
prediction accuracy was higher than that of the energy consumption. Table 6 also points
out that the BPNN model had the best prediction performance, with an average relative
error of 3.27% and 1.25% for energy consumption and ASE area in range, respectively. The
SVM model had a slightly higher average relative error for both energy consumption and
ASE area in range compared with the other prediction models.

Table 6. Comparison of relative error.

Relative
Error Method <1% <2% <5% <10% <15% <20% Average (%)

Energy
consumption

SLR 18.0 33.0 72.0 97.0 99.8 100.0 3.73
BPNN 18.1 37.8 78.5 97.6 100.0 100.0 3.27
SVM 15.1 29.4 61.8 84.9 95.4 98.6 5.18
RF 24.4 43.8 77.3 94.6 98.6 99.8 3.42

ASE area
in range

SLR 25.0 46.0 83.0 99.0 100.0 100.0 2.81
BPNN 52.6 81.6 92.8 99.9 100.0 100.0 1.25
SVM 25.4 46.9 83.1 98.5 100.0 100.0 2.83
RF 38.5 71.5 96.6 100.0 100.0 100.0 1.64

Table 7 presents the R-squares of each model, which also shows that the BPNN model
had the highest R-square, followed by RF, SLR, and SVM. In particular, for the prediction
of ASE area in range, the BPNN model significantly outperformed the other models.

Table 7. R-square of Each Model.

Model Energy Consumption ASE Area in Range

SLR 0.9808 0.8519
BPNN 0.9870 0.9661
SVM 0.9722 0.8489
RF 0.9844 0.9603

Based on the above results, the BPNN models were selected to couple with the
optimization algorithms to carry out the design optimization in this study. The BPNN is
flexible for nonlinear modeling, and has strong adaptability, learning, and massive parallel
computing abilities.

5. Optimization

Two types of optimization algorithm, the evolutionary algorithm and group intelli-
gence algorithm, were applied in this study, and are discussed in the following sections.

5.1. Evolutionary Algorithm

The evolutionary algorithm (EA) [47] is a random search algorithm that imitates
biological evolution. It can handle complex nonlinear problems well and is widely used
in solving practical optimization problems. It has a good versatility for multi-objective
optimization problems. In this study, three algorithms, i.e., multi-objective evolutionary
algorithm based on decomposition (MOEA/D), non-dominated sorting genetic algorithm
–II (NSGA-II), and non-dominated sorting genetic algorithm –III (NSGA-III) were used for
design optimization.
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5.1.1. MOEA/D

MOEA/D is an evolutionary algorithm based on decomposition, through which a
multi-objective optimization problem is decomposed into a set of multiple single-objective
optimization problems with different weighting factors to approach the Pareto front [48].
In this study, the Tchebycheff aggregate function method was used to assign weight vectors
to each sub-problem.

5.1.2. NSGA-II

The NSGA-II algorithm by Deb was improved on the basis of the non-dominated
sorting genetic algorithm, and introduces a fast non-dominated genetic algorithm with
an elite strategy and a crowding degree comparison operator, which can not only reduce
the computational complexity but also obtain a more evenly distributed Pareto optimal
solution [49]. The NSGA-II algorithm has a faster convergence speed and a better Pareto
solution set. It has become the performance benchmark for many other multi-objective op-
timization algorithms and is widely used in solving multi-objective optimization problems.

The parameters settings of the NSGA-II algorithm were as follows: population size
D = 40; crossover probability Pc = 0.99; mutation probability Pm = 0.0001; termination
evolution algebra G = 200.

5.1.3. NSGA-III

NSGA-III is a third-generation non-dominated sorting genetic algorithm proposed on
the basis of the NSGA-II algorithm, and with improvement to the selection mechanism to
allow more uniform population distribution and more abundant individual diversity [50].
The NSGA-III algorithm has the same calculation steps as the NSGA-II algorithm, but its
individual selection mechanism is based on reference points [50].

The basic settings of the NSGA-III algorithm were as follows: population size D = 50;
maximum generation for iteration G = 80.

5.2. Group Intelligence Algorithm

The group intelligence algorithm is a new method for solving problems based on the
social group behavior of certain animals and the inherent principles of artificial life theory.
In this study, the traditional multi-objective particle swarm algorithm (MOPSO) and the
relatively new, but more widely used, multi-objective dragonfly algorithm (MODA) and
multi-objective ant lion optimization algorithm (MOALO) were used.

5.2.1. MOPSO

The MOPSO algorithm imitates group social behaviors by using particles to search
for the most feasible area in the solution space [51]. Each particle represents a certain
search position in the solution space and with a searching speed, combined with the
fitness function to adjust the position, the algorithm finally determines the particle′s flight
direction towards the optimal solutions.

5.2.2. MODA

The dragonfly algorithm (DA) imitates the social behavior of dragonfly groups [52].
A total of five behavior parameters, including separation, formation, gathering, preda-
tion, and escape, are used to imitate dragonfly behavior and update the position of each
individual in the group.

5.2.3. MOALO

The MOALO algorithm imitates the foraging behavior of antlions in nature and
has a better global search ability than particle swarm and genetic algorithms [53]. The
antlion algorithm gradually finds the approximate optimal solution by exploring random
solutions. Unlike the traditional swarm intelligence optimization algorithm, there are two
opposing species in the ant lion optimization (ALO) algorithm: ants and antlions. Six basic
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steps of antlion predation processes are imitated, which include: (1) ants move randomly;
(2) antlions build traps; (3) ants fall into traps; (4) ants slides towards antlions; (5) antlions
capture ants; and (6) antlions rebuild traps [54].

5.3. Comparison of Optimization Algorithms

Figure 8 presents a comparison of the outcomes of the Pareto solutions from different
optimization algorithms. It can be observed that the MOALO algorithm led to the best
Pareto front, which means its performance was the best. The MOPSO algorithm appeared
to have the worst performance among the six optimization algorithms. Among the evolu-
tionary algorithms, MOEA/D had the best performance, and NSGA-III only obtained parts
of the optimal solutions compared with NSGA-II. Excepting MOPSO, the other two group
intelligence algorithms (MODA and MOALO) outperformed all of the three evolutionary
algorithms. However, the running times of the group intelligence algorithms were about
three to four times that of the evolutionary algorithms.

Buildings 2021, 11, x FOR PEER REVIEW 16 of 22 
 

group intelligence algorithms (MODA and MOALO) outperformed all of the three evolu-
tionary algorithms. However, the running times of the group intelligence algorithms were 
about three to four times that of the evolutionary algorithms. 

20 22 24 26 28 30 32
0

1

2

3

4

5
 MOEA/D
 NSGAII
 NSGAIII
 MOPSO
 MODA
 MOALO

V
isu

al
 d

isc
om

fo
rt 

(%
)

Energy consumption (kWh/m2)
 

Figure 8. Pareto fronts for the different algorithms. 

Comparisons of the ranges of visual discomfort, energy consumption, number of op-
timal solutions, and running time for the different optimization methods are listed in Ta-
ble 8. It can be noted that the visual discomforts were all less than 5%, and the energy 
consumptions (except the ones from NSGA-II) were all less than 29.3 kWh/m2. Compared 
with the reference building energy consumption of 31.28 kWh/m2 and visual discomfort 
of 8.9%, the improvements to the building’s thermal and visual performance were remark-
able for all the optimal solutions. 

Table 8. Comparison of algorithm running results. 

Method Visual Discomfort (%) 
Energy  

Consumption 
(kWh/m2) 

No. of  
Solutions 

Running Time 
(s) 

MOEA/D (0.4,3.1) (25.9,27.1) 131 349 
NSGA-II (0.4,4.5) (26.4,31.9) 74 312 
NSGA-III (1.1,1.5) (27.5,27.8) 80 266 
MOPSO (2.3,2.4) (28.6,29.3) 80 1295 
MODA (0.5,3.0) (24.8,25.8) 100 1110 

MOALO (0.0,4.7) (20.4,29.3) 100 1048 

A further data analysis was conducted for the MOALO algorithm, with 100 optimal 
solutions. Table 9 presents the ranges of the design parameters recommended based on 
the optimal solutions provided by the MOALO algorithm. It shows that the design of pas-
sive houses in hot summer and cold winter areas should focus on heat insulation design. 
As is obvious, the WWR for the east, west, and south facades should be kept at 10%, and 
no window should be provided on the north facade. Triple-layer Low-E glazing and a 
plant height of 0.2–0.5 m are also recommended based on the optimal solutions. A floor 
number of 3 is recommended, meaning the most compact building shape is preferred. A 
cooling temperature setpoint of 24–26 °C and heating temperature setpoint of 20–22 °C 
are recommended, which differ from the recommended values from the design standard 

Figure 8. Pareto fronts for the different algorithms.

Comparisons of the ranges of visual discomfort, energy consumption, number of
optimal solutions, and running time for the different optimization methods are listed in
Table 8. It can be noted that the visual discomforts were all less than 5%, and the energy
consumptions (except the ones from NSGA-II) were all less than 29.3 kWh/m2. Compared
with the reference building energy consumption of 31.28 kWh/m2 and visual discomfort of
8.9%, the improvements to the building’s thermal and visual performance were remarkable
for all the optimal solutions.

Table 8. Comparison of algorithm running results.

Method Visual
Discomfort (%)

Energy
Consumption

(kWh/m2)

No. of
Solutions

Running Time
(s)

MOEA/D (0.4,3.1) (25.9,27.1) 131 349
NSGA-II (0.4,4.5) (26.4,31.9) 74 312
NSGA-III (1.1,1.5) (27.5,27.8) 80 266
MOPSO (2.3,2.4) (28.6,29.3) 80 1295
MODA (0.5,3.0) (24.8,25.8) 100 1110

MOALO (0.0,4.7) (20.4,29.3) 100 1048

A further data analysis was conducted for the MOALO algorithm, with 100 optimal
solutions. Table 9 presents the ranges of the design parameters recommended based on the
optimal solutions provided by the MOALO algorithm. It shows that the design of passive
houses in hot summer and cold winter areas should focus on heat insulation design. As
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is obvious, the WWR for the east, west, and south facades should be kept at 10%, and
no window should be provided on the north facade. Triple-layer Low-E glazing and a
plant height of 0.2–0.5 m are also recommended based on the optimal solutions. A floor
number of 3 is recommended, meaning the most compact building shape is preferred. A
cooling temperature setpoint of 24–26 ◦C and heating temperature setpoint of 20–22 ◦C are
recommended, which differ from the recommended values from the design standard [30],
of 26 ◦C and 18 ◦C, respectively. Moreover, it can be noticed that the recommended
value ranges for the overhang length, absorptance of solar radiation, concrete thickness,
and insulation thickness for different parts of the building differ, which means that the
building envelopes can be customized to achieve optimal performance. This is different
from traditional building design approach that has uniform envelope properties. The
above design strategies are consistent with the ones recommended by Climate Consultant
software [55], which also proposes low-E glazing, window overhangs, compact building
size, high level insulation, thermal mass, raising thermal-stat setpoint, and using plant
materials in Shanghai.

Table 9. The optimal design parameter ranges recommended by the MOALO algorithm.

Design Parameter Optimal Range

x1 3
x2 2:1,3:1,3:2,5:2,5:3
x3 (24, 26)
x4 (20, 22)
x5 10
x6 (10, 11)
x7 (10, 11)
x8 (0, 1)

x9

Trp LoE (e2 = .e5 =.1) 3 mm/13 mm Air, Trp
LoE

(e2 = .e5 = .1) 3 mm/13 mm Arg
x10 (0.9, 1)
x11 (0.6, 1)
x12 (0.8, 1)
x13 (0, 0.3)
x14 (0.28, 0.77)
x15 (0.12, 0.54)
x16 (0.36, 0.66)
x17 (0.45, 0.83)
x18 (0.1, 0.15)
x19 (0.17, 0.25)
x20 (0.26, 0.3)
x21 (0.13, 0.21)
x22 (0.1, 0.12)
x23 XPS,EPS
x24 (0.14, 0.23)
x25 (0.1, 0.18)
x26 (0.28, 0.3)
x27 (0.1, 0.23)
x28 (0.1, 0.18)
x29 0
x30 (0.05, 0.24)
x31 (0.2, 0.46)
x32 (0.2, 0.5)
x33 (0.5, 5)
x34 (0.1, 0.24)
x35 70%, 80%, 85%
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5.4. Group Optimization

In order to evaluate the influence of various building parameters on the performance
of the building, the 35 parameters were divided into groups, which were related to building
shape (G1, including x1,x2, and x29), air conditioning system (G2, including x3,x4, and x35),
physical properties of the building envelope (G3, including x5–x28), and green roof (G4,
including x30–x34). A total of 15 different combinations can be formed. Figure 9 presents a
comparison of the Pareto fronts for the 15 combinations. It can be observed that G15 has the
best Pareto front and G4 has the worst Pareto front. This result indicates that as the number
of design parameters increases, the Pareto front becomes lower. Therefore, the inclusion of
more design parameters in the optimization process can lead to better optimal solutions.
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Table 10 lists the ranges and average values of energy consumption and visual dis-
comfort for different groups of combinations. For energy consumption, the optimization of
the air-conditioning (G2) and building physical property (G3) related parameters resulted
in much lower values compared to the optimization of the green roof (G4) and building
shape (G1). However, for visual comfort, building shape (G1) appeared to have the highest
impact on visual comfort. Compared with the reference building, the optimization of G15
leads to 29.96% energy consumption reduction and 71.80% visual discomfort improvement
on average. The inclusion of a green roof (G4) led to an average reduction of 9.88% on the
energy consumption but had no impact on the indoor visual comfort.

Table 10. Group optimization results.

No Group
Combination

Energy
Consumption:

Range/Average (kWh/m2)

Visual Discomfort:
Range/Average (%) Running Time

1 G1 (27.95, 28.18)/28.05 (2.52, 9.06)/6.01 224
2 G2 (25.36, 25.83)/25.48 (8.87, 9.03)/8.97 121
3 G3 (22.99, 29.43)/24.49 (7.14, 12.34)/9.58 127
4 G4 (27.72, 28.89)/28.19 (9.18, 11.07)/9.87 1263
5 G1+G2 (23.97, 25.56)/24.31 (0.58 ,2.16)/1.35 240
6 G1+G3 (22.91, 24.39)/23.39 (0, 1.26)/0.51 362
7 G1+G4 (27.20, 27.92)/27.33 (0.36, 2.65)/1.41 1246
8 G2+G3 (22.09, 29.99)/24.33 (5.05, 7.15)/5.05 284
9 G2+G4 (25.08, 25.44)/25.29 (8.37, 8.50)/8.41 1009

10 G3+G4 (22.76, 26.02)/23.81 (6.7, 11.26)/8.16 1030
11 G1+G2+G3 (21.78, 24.17)/22.68 (0, 3.92)/1.19 498
12 G1+G2+G4 (24.06, 25.20)/24.74 (0, 1.47)/0.21 541
13 G1+G3+G4 (21.51, 23.20)/21.9 (3.89, 4.76)/4.38 1321
14 G2+G3+G4 (22.04, 26.18)/23.84 (4.32, 6.48)/5.18 1021
15 G1+G2+G3+G4 (20.44, 29.33)/21.91 (0.00, 4.71)/2.51 1048
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6. Conclusions

In this paper, a passive building with a green roof located in Shanghai in the hot
summer and cold winter region of China, was optimized by taking the building energy
consumption and visual discomfort as the objectives. A total of 35 design parameters
related to building shape, building envelope properties, air-conditioning system settings
and green roof configurations were considered. Four machine learning approaches were
used to develop prediction models for building energy consumption and visual comfort,
and six optimization algorithms were evaluated to find the optimal design solutions. The
following conclusions can be made:

(1) Among the four machine learning prediction models, the BPNN models had the best
performance in predicting both building energy consumption and visual comfort,
with R-squares of 0.987 and 0.966, respectively.

(2) The evolutionary algorithms converged faster than the group intelligent algorithms.
However, the group intelligent algorithms led to lower Pareto front solutions. The
MOALO algorithm coupled with BPNN prediction models had the best performance,
resulting in a 29.96% energy consumption reduction and 71.80% visual discomfort
improvement on average.

(3) The thermal performance of a building can be improved by involving more design
parameters in the optimization process. The building envelope physical properties
and air conditioning system setpoints have a greater impact on building energy
consumption, and the building shape related design parameters have a greater impact
on the visual discomfort.

(4) The inclusion of a green roof lead to an average reduction of 9.88% in the energy
consumption (28.19 kWh vs. 31.28 kWh). However, its impact on the indoor visual
comfort is minimal. Meanwhile, the recommended value ranges for the overhang
length, absorptance of solar radiation, concrete thickness, and insulation thickness
for different parts of the building were not uniform, which means that the building
envelopes can be customized for 3-D printing.

The outcomes of this study could help architects and building design engineers
during the design process, for the optimization of visual comfort and energy consumption.
The optimal design solutions can provide a more comfortable living environment to
improve the occupants’ productivity and well-being, and yet have less energy consumption,
which would be a selling point for investors when considering the construction of passive
buildings. Difficulties that may be encountered by the users of the proposed methods
and algorithms coud the need to use the design parameters in the recommended ranges,
together with the prediction model for accurate prediction of the thermal and visual
performance of buildings. However, this could be overcome by embedding the prediction
model into a spreadsheet for quick calculation.
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Abbreviations

List of Acronyms
ACH Air Change rate per Hour
ALO Ant Lion Optimization
ASE Annual Sunlight Exposure
BPNN Back-Propagation Neural Networks
CDD 26 Cooling Degree Day indoor setpoint temperature of 26°C
CFD Computational Fluid Dynamics
COP Coefficient Of Performance
DA Dragonfly Algorithm
EA Evolutionary algorithm
HDD 18 Heating Degree Day with indoor setpoint temperature of 18°C
lr Leaf reflectivity
LAI Leaf area index
LHSM Latin Hypercube Sampling Method
MOALO Multi-Objective Ant Lion Optimization
MOALO Multi-Objective Ant Lion Optimization Algorithm
MODA Multi-Objective Dragonfly Algorithm
MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition
MOPSO Multi-Objective Particle Swarm Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm -II
NSGA-III Non-dominated Sorting Genetic Algorithm -III
RF Random Forest
SHGC Solar Heat Gain Coefficient
SLR Step Linear Regression
SVM Support Vector Machine
SVR Support Vector Regression
WWR Window-to-Wall Ratio
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