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Abstract: Catastrophic failures of partially or fully submerged structures, e.g., offshore platforms,
hydrokinetic turbine blades, bridge decks, etc., due to the dynamic impact of free surface flows such
as waves or floods have revealed the need to evaluate their reliability. In this respect, an accurate
estimation of hydrodynamic forces and their relationship to instability in structures is required.
The computational fluid dynamics (CFD) solver is known as a powerful tool to identify dynamic
characteristics of flow; however, it commonly consumes a huge computational cost, especially in cases
of re-simulations needed. In this paper, an efficient surrogate model based on the Gaussian process
is developed to rapidly predict the nonlinear hydrodynamic pressure coefficients on submerged
bodies near the water surface. For this purpose, a CFD model is first developed, which is based on
a two-dimensional incompressible Navier–Stokes solver incorporating free surface treatment and
turbulent flow models. Then, an experimental design is adopted to generate initial training samples
considering the effect of the submerged body shape ratio and flow Re number. Surrogate models
of hydrodynamic pressure coefficients and their instability based on Gaussian process modeling
are established using the outcome from the CFD simulations, where optimal trend and correlation
functions are also investigated. Once surrogate models are obtained, the mean and oscillation
amplitudes of hydrodynamic pressure coefficients on a submerged rectangular body, which represents
the shape of most civil structures, can be rapidly predicted without the attempt at re-simulation. The
findings can be practically applied in rapidly assessing hydrodynamic forces and their instability
of existing submerged civil structures or in designing new structures, where a suitable shape ratio
should be adopted to avoid flow-induced instability of hydrodynamic forces.

Keywords: submerged structure; free surface flow; hydrodynamic force; computational fluid dynamics;
surrogate model; Gaussian process; data-driven approach

1. Introduction

Past failures of partially or fully submerged civil structures, e.g., offshore platforms,
hydrokinetic turbine blades, bridge decks, etc., due to the dynamic impact caused by floods,
waves or tsunamis have revealed the significant need for evaluating the reliability of these
structures under hydrodynamic forces [1–3]. Regarding this issue, one of the challenges
is the accurate evaluation of multiphase flows and their impact on submerged structures.
This is essential not only for optimum designs of the newly designed structures but also for
the estimation of the degree of risk for existing ones.

Large-scale structures under free surface flows commonly require time-consuming
experimental analyses. In addition, flow characteristics, e.g., flow patterns, velocities and
pressure fields, are uncertain and nonlinear; hence, resulting in a very high cost and time re-
quired for many experimental setups in order to observe accurate flow characteristics [4,5].
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While analytical models for hydrodynamic forces on submerged bodies have been devel-
oped and incorporated into design codes, they are often overestimated and with a degree
of error [6–8]. An alternative is the development of numerical models for free surface
flows and their impact on structures; this can reduce much effort in terms of cost and time
as compared with experimental models [9]. The numerical models are mainly based on
computational fluid dynamic (CFD) approaches that solve Navier-Stokes equations along
with the treatment of the free surface. However, due to the uncertain flow characteristics,
varying with each particular case, the design of these numerical simulations becomes
complicated and requires numerous computing resources, especially in cases of the large
number of samples considered in a reliability analysis [10,11].

With the development of computer science, besides various computer models which
have been adopted in many fields of CFD [12], machine learning techniques have been
developed and widely used to predict multiphase flow characteristics [13–15], in which,
data-driven techniques, e.g., neural network [13], support vector machine [14] and Gaussian
process [15], have been implemented to build surrogate models for the prediction of
the multiphase flow pattern, as well as the hydrodynamic pressure distribution. These
surrogate models, which are used when an outcome of interest cannot be easily measured
or computed, can efficiently reduce the computational effort and rapidly estimate flow
characteristics in the context of uncertainty treatments and reliability analyses. The first
two methods (i.e., neural network and support vector machine) commonly require an
adequate dataset for a reliable prediction, which depends on the number of input and
output parameters, while the Gaussian process regression makes it possible to predict the
model response with little observed data. In addition, the Gaussian process offers a flexible
kernel method for regression due to various available trends and correlation functions.
Therefore, in many complex problems, this technique is more suitable and efficient in terms
of reducing computational costs [11,16].

The objective of this paper is to develop surrogate models, which are based on Gaus-
sian process modeling, to rapidly predict nonlinear hydrodynamic pressure coefficients
and their instability effect on submerged bodies. As a case study, rectangular submerged
bodies near the water surface are considered. This type of shape is standard and represents
the shape of many engineering applications such as bridge decks, offshore platforms and
hydrokinetic turbine blades. Firstly, a modeling approach of the flow passing a submerged
body is presented based on a two-dimensional incompressible Navier–Stokes solver. The
free surface is treated using the volume of fluid method and the effect of the turbulent
flow is also considered by using the shear stress transport turbulence model. Then, an
appropriate experimental design is used to generate initial training samples considering the
effect of the aspect ratio of the submerged body and the Re number of the flow. Surrogate
models of hydrodynamic pressure coefficients based on the Gaussian process modeling
are established using the outcome from the CFD simulations, where optimal trend and
correlation functions are also investigated. Once surrogate models are obtained, the mean
and oscillation amplitudes of hydrodynamic pressure coefficients of the free surface flow
on a submerged cylinder with an arbitrary aspect ratio can be accurately and rapidly
predicted without the need for attempt at re-simulation. The findings from the work can
be practically applied in rapidly assessing hydrodynamic force and its instability effect on
existing submerged civil structures, or in designing new structures, where a suitable shape
ratio range is recommended to avoid the detrimental effects of flow-induced instability
from hydrodynamic forces.

2. Numerical Model of Free Surface Flow

In this study, a two-dimensional (2D) incompressible Reynolds-averaged Navier-
Stokes (RANS) homogeneous two-phase mixture model is adopted to simulate the non-
linear interactions of a submerged cylinder beneath the free surface [9,17]. The model
solves the mixture continuity and momentum equations to obtain the mean flow velocity
and pressure fields. The RANS model is closed by including a turbulence model to predict
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fluctuating velocity components; thus, the shear stress transport k−ω model is adopted. In
addition, to capture complex free surface behaviors and non-linear hydrodynamic pressure
coefficients, the interface between the water and air phases is numerically treated using the
volume-of-fluid (VOF) method [18,19]. These equations can be described in the Cartesian,

∂uj

∂xj
= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρm

∂p
∂xi

+ gi + µm
∂2ui
∂xj
−

∂u′iu
′
j

∂xj
, (2)

∂αg

∂t
+

∂
(
αguj

)
∂xj

= 0, (3)

Here, the subscripts i, j = 1, 2 represent two directions of x and y in the computational
domain, respectively; t is the computation time; p denotes the pressure, u and u′ are the
mean and the fluctuating velocities; g is the gravitational term; and ρm and µm are the
mixture density and viscosity, respectively.

The interface position is numerically treated via the phasic volume fraction of the gas
phase, αg. Here, the pure gas phase is obtained in the case of αg equals 1.0, while the pure
water phase is obtained in the case of αg equals 0.0. The interfaces with a limited thickness
between two phases are identified by the values in the range from 0.0 to 1.0. The properties
of the mixture phase at the interface are predicted by a function of the volume of fraction of
the individual phase, an example, for the calculation of the mixture values for density and
mixture valuables

ρm = αgρg +
(
1− αg

)
ρw, (4)

µm = αgµg +
(
1− αg

)
µw, (5)

where ρw, µw and ρg, µg are the density and viscosity of the individual water and gas
phases, respectively.

The numerical discretization of the equation system in the generally structured grid is
based on the finite volume method with a pressure-based solver. For time discretization,
the first-order implicit method is applied. The first-order upwind scheme is adopted for
both the convective and viscous terms and the advection equation is approximated using
the implicit compressive scheme. The main reason behind using first-order and implicit
schemes is to obtain better convergence than high-order and explicit schemes, especially for
strongly deformable free surfaces with breaking wave phenomena. All simulation results
are performed using the Ansys Fluent software [20].

3. Surrogate Model of Hydrodynamic Pressure Coefficients
3.1. Basic Formulations

Gaussian process regression uses a set of observed training data to predict spatially
correlated data, which postulates a combination of a functional basis and departure in the
following form [21],

Yi = ∑p
j=1 β j f j(x(i)) + Z(x(i)) with i = 0, . . . , m, (6)

where the first term is the unknown multivariate polynomial function, f =
{

f j(x(i))
}

with
j = 1, . . . , p, called the trend, and Z(x) is the realization of the Gaussian process having
zero mean and variance σ2; Z(x) is expressed as

Cov
[
Z(x), Z

(
x′
)]

= σ2R
(
x− x′, `

)
, (7)

where σ2 is the variance of the Gaussian process, whereas R is the correlation function
which is the function of the difference x− x′ and scale parameters ` (`i > 0, i = 1, . . . , n).
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Several correlation functions are proposed, e.g., the exponential (Equation (8)), Gaus-
sian (Equation (9)), and Matérn-3/2 (Equation (10)),

R
(
x− x′, `

)
= ∑n

i=1 e−1/`i |xi−x′i |, (8)

R
(
x− x′, `

)
= ∑n

i=1 e
− 1

2 (
|xi−x′i |

`i
)

2

, (9)

R
(
x− x′, `

)
=

n

∑
i=1

(
1 +

√
3

`i

∣∣xi − x′i
∣∣)e−

√
3/`i |xi−x′i | (10)

The vector of the prediction Ŷ0 and the true response Y = {Yi} with i = 1, . . . , m is
normally distributed, {

Ŷ0
Y

}
∼ N1+m

{
fT
0 β

Fβ

}
, σ2
[

1 rT
0

r0 R

]
, (11)

where f0 is the vector of regression models evaluated at x(0), F is the regression matrix, r0

is the vector of cross-correlations between the point x(0), r0i = R
(

x(0) − x(i), `
)

, R is the

correlation matrix of the true response, Rij =
(

x(i) − x(j), `
)

.
The best linear unbiased predictor of the unknown quantity of interest y0 is the

Gaussian random variate Ŷ0 with mean and variance,

µŶ0
= fT

0 β̂+ rT
0 R−1(y− Fβ̂

)
, (12)

σ2
Ŷ0

= σ2
(

1− rT
0 R−1r0 +

(
FTR−1r0 − f0

)T(
FTR−1F

)−1(
FTR−1r0 − f0

))
, (13)

where β̂ =
(
FTR−1F

)−1FTR−1y.
The maximum likelihood estimation technique is better suited for deriving estimators.

Here, the likelihood of the observations y is defined concerning its multivariate normal
distribution, which depends on β, σ2, and `,

L
(

y
∣∣∣β, σ2, `

)
=

1

((2πσ2)
m
[detR(`)])

1/2 exp
[
− 1

2σ2

(
y− FβT

)
R(`)−1(y− Fβ)

]
. (14)

By maximizing the quantity described in Equation (14), the following analytical
estimates of β and σ2 that are functions of ` are obtained as

β̂(`) =
(

FTR(`)−1F
)−1

FTR(`)−1y, (15)

ˆ
σ2(`) =

1
m

(
y− Fβ̂T

)
R(`)−1(y− Fβ̂

)
. (16)

By substituting these two solutions into Equation (14), its corresponding opposite
log-likelihood reads

− log L
(

y
∣∣∣β, σ2, `

)
=

m
2

log(ψ(`)) +
m
2
(log(2π) + 1) with ψ(`) = σ̂2(`)[detR(`)]

1
2 ,
(17)

and thus, the maximum likelihood estimate of ` is given as

ˆ̀ = argmin
`

ψ(`). (18)

3.2. Procedure of Surrogate Model-Based Hydrodynamic Pressure Coefficient Prediction

The overall procedure for the development of a Gaussian process based-surrogate
model is as follows:
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(i) In the first step, the most important variables and their distribution functions should
be identified. An appropriate DOE is then conducted within the range of interest
variables. As a result, several initial training samples are generated and corresponding
CFD models are then built.

(ii) CFD simulations of the flow field are conducted for each combination of training
conditions. The flow field characteristics, as well as hydrodynamic pressure coeffi-
cients, are obtained at each simulation. In this study, the mean and oscillation values
of hydrodynamic pressure coefficients, i.e., drag, lift and moment, are considered as
the model responses.

(iii) Once the training dataset has been established based on the DOE and the correspond-
ing model responses, a surrogate model of the model response is built using the
Gaussian process modeling incorporated in a Matlab-based software, Uqlab [22]. In
this step, different trend and correlation functions that compose the Gaussian pro-
cess are tested. An optimal surrogate model is finally obtained based on the error
estimation from the cross-validation.

4. Case study of Submerged Bodies beneath the Water Surface
4.1. CFD Simulation and Design of Experiments

In this study, a rectangular shape body fully submerged beneath a free surface is
selected, which represents the shape of most bridge deck or other civil structure components
under the free surface flow. The computational domain and simulation conditions are
adopted following the experimental work by Chu et al. [23], in which the problem of an
open channel with a particular size is shown schematically in Figure 1. The rectangular
body submerges in the water at a depth of h and a distance between the channel bed and
the cylinder S. To reduce the computational cost, a planar symmetric numerical model is
used under the main assumption that there are no effects in the spanwise direction. This
assumption was also adopted for numerical computations of free surface flows over a
submerged body in many studies [9]. The boundary conditions are applied as follows:
(i) the fixed uniform velocity is specified at the inlet condition, (ii) at the outlet condition,
the extrapolation values are applied for the pressure and velocity fields, (iii) at the top
boundary condition, open conditions are applied and (iv) at the bottom line and cylinder,
non-slip wall conditions are used.
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Figure 1. Computational model of the free surface flow around a submerged body.

The mesh distribution for the whole computational domain and zoomed regions
near the submerged body are presented in Figure 2. Here, the meshing strategy with a
high-resolution value close to the body and free surface is used to obtain high accuracy
predictions for the pressure and velocity fields, particularly for the free surface shape
motion. The grid and time step sensitivity tests were performed through convergency
analyses in the previous work [9]; thus the fine grid with a total number of nodes of 112,649,
the y+ value at the body surface of 1.1, and the time step of 0.002 (s) are used in the
present simulations.
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The complex simulation of the above-mentioned CFD model reveals the need for
developing a more efficient surrogate model to possibly and rapidly identify nonlinear
hydrodynamic pressure coefficients on a submerged body under free surface flows. The
development of a surrogate model or metamodel first requires the generated samples
that involve modeling parameters. In this study, Latin Hypercube Sampling (LHS) [24] is
utilized to generate training samples; this technique is widely used and has demonstrated
its efficiency in the construction of surrogate models, especially ones based on the Gaussian
process [25,26].

Many studies have demonstrated that the shape ratio (AR) (i.e., the length and depth
ratios of the rectangular body, AR = L/W) and the Re number are the most significant
parameters that affect the flow characteristic and impact hydrodynamic pressure [8,10].
Therefore, these two parameters are chosen as input random variables in the study with
the ranges selected and presented in Table 1, which are assumed to be a uniform distri-
bution. The other geometry parameters, such as the depth h and the clearance distance S,
are deterministic.

Table 1. Modeling parameters for the design of experiments.

Parameter Distribution Function Lower Value Upper Value

Shape ratio AR Uniform 0.2 4

Re number Uniform 8000 16,000

By using the LHS on two modeling parameters, a total of 40 samples are generated, as
distributed in Figure 3. It should be noticed that there is no specific standard for the number
of initial training samples, depending on the number of input variables, particular problem
and training method. Since the Gaussian process has not needed the pre-assuming of a
specified model and just requires a small number of initial training samples, an optimized
design of 40 samples is chosen, as proposed by [26].
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Figure 3. Design of experiments using LHS.

As examples of the flow characteristic, Figure 4 shows the velocity field and pressure
contour for three cases of AR and Re values, marked by large circles in Figure 3. The free
surface shape is plotted by the red solid line using the air volume fraction value of 0.5.
Under the presence of the submerged body, significantly increasing free surface flow and
reduction in the depth at the upward and the downward regions is observed. Therefore, a
high-velocity water flow in the downstream region is formed. In addition, submerged wake
vortices behind the body are generated under the effects of the inclination of the free surface,
as shown by streamline fields on the left side of Figure 4. This nonlinear evolution behavior
is found to be a major mechanism that increases the hydrodynamic force coefficients in
comparison with the unbounded free surface flow. The pressure distributions around the
submerged body are also shown on the right side of Figure 4. In the presence of the free
surface, asymmetric low-pressure regions at the top and bottom of the submerged body
are observed.
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Figure 4. Velocity and pressure fields around the submerged body with the free surface interactions:
(a) AR = 0.208, Re = 8689.223, (b) AR = 2.036, Re = 12,958.475, (c) AR = 3.989, Re = 9339.984.

For each sample, hydrodynamic pressure coefficients (i.e., drag, lift and moment coeffi-
cients) acting on submerged bodies are obtained from CFD analyses. Figure 5 shows an example
of the time evolution of hydrodynamic pressure coefficients for AR = 0.208, Re = 8689.223
(Figure 5a), AR = 2.036, Re = 12,958.475 (Figure 5b), and AR = 3.989, Re = 9339.984 (Figure 5c).
The numerical results show that the hydrodynamic force coefficients are significantly
varied under the nonlinear interaction with the free surface. In the cases of lower AR
values (AR = 0.208), the force coefficients are in periodic evolutions with time and are
characterized by a mean value and oscillated magnitude. These predicted values are de-
termined by an averaged method over five oscillation cycles. In the case of higher values
(AR = 2.036 and 3.989), stable behaviors of the force coefficients without oscillation features
are observed.
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Similarly, the outcomes of interest including six above-mentioned quantities (the mean
values of CL, CD, CM and their oscillations) are obtained and summarized in Table A1
(Appendix A), resulting in a total of 40 examples of training data in the dataset. The ob-
served responses from the dataset are later used to train surrogate models of the outcomes.

4.2. Surrogate Model Development

Based on the above model output, the surrogate model is then developed using the
above-mentioned Gaussian process modeling. The major advantage of this modeling
approach is that it requires less observed data for the regression as compared to other data-
driven techniques, such as support vector machine or artificial neural network. To optimize
the surrogate model for the prediction, several trend and correlation functions are tested in
this study. Due to the nonlinearity of the hydrodynamic pressure coefficients, nonlinear
regression and correlation models are selected. In particular, for the trend, polynomial
(one, two, and three degrees) functions are employed. On the other term, Matérn 3/2,
exponential and Gaussian (in Equations (8)–(10)) correlation functions are examined.

To estimate the accuracy of each tested surrogate model, the leave-one-out (LOO)
cross-validation is adopted, where one point is randomly ignored for the cross-validation
and the other points are for training the surrogate model. This procedure is repeated until
all the points are used. Therefore, to perform the LOO, one point x(i) from the initial DOE
is subsequently removed and the surrogate model Ŷ0,(−i)

(
x(i)
)

is built from the remaining
points of the design. The LOO cross-validation error is calculated on the true response
design and its corresponding predicted responses as

εLOO =
1
n

∑n
i=1

[
Y(xi)− Ŷ0,(−i)(xi)

]2

Var (Y)
, (19)

where Var(Y) defines the estimated variance of the output variable.
Table 2 shows the cross-validation error of the tested surrogate models as combinations

of different trend and observation functions. It can be observed that the estimated LOO
errors vary with different combinations and outcomes of interest. In most of the cases, the
combination of 3rd degree polynomial function and Matérn 3/2 correlation function results
in the best performance with a minimum mean error of the prediction for the outcomes
(highlighted in bold in Table 2). Also of note is that combinations of 2nd degree polynomial-
Matérn 3/2 and 3rd degree polynomial-Gaussian also exhibit a good prediction.

Table 2. Cross-validation error estimation of the tested surrogate models.

Trend Function Correlation
Function

LOO Error
Mean Error

CD (Mean) CD (Oscil.) CL (Mean) CL (Oscil.) CM (Mean) CM (Oscil.)

1st degree polynomial

Matérn 3/2

0.0222 0.0244 0.0010 0.0631 0.0956 0.0350 0.0402

2nd degree polynomial 0.0102 0.0250 0.0023 0.0620 0.1004 0.0371 0.0395

3rd degree polynomial 0.0074 0.0270 0.0045 0.0610 0.0745 0.0259 0.0334

1st degree polynomial
Exponential

0.0264 0.0449 0.0100 0.0728 0.1306 0.0672 0.0586

2nd degree polynomial 0.0079 0.0452 0.0068 0.0787 0.1131 0.0486 0.0500

3rd degree polynomial 0.0072 0.0616 0.0060 0.1173 0.0906 0.0367 0.0532

1st degree polynomial

Gaussian

0.0314 0.2446 0.0026 0.0590 0.1250 0.0441 0.0845

2nd degree polynomial 0.0155 0.2637 0.0042 0.3129 0.1111 0.0327 0.1234

3rd degree polynomial 0.0105 0.0316 0.0046 0.0677 0.0841 0.0216 0.0367

Examples of optimal surrogate models for the drag coefficient outcomes, i.e., mean
and oscillation amplitude quantities, are shown in Figure 6, where the red dots represent
the DOE. The estimated parameters of all six models for six quantities of interest are
summarized in Table A2 (Appendix B). Once a surrogate model is built with its estimated
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parameters, the hydrodynamic pressure coefficients of an arbitrary design of AR and Re
can be rapidly predicted without the need for an attempt at re-simulation.
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4.3. Validation of Surrogate Models with a Test Set

A test set of the hydrodynamic pressure coefficients is obtained from the previous
work to validate the developed surrogate models. In particular, five different designs of
the submerged body under free surface flows were numerically performed, which were
uniformly composed by Re = 11,850 and five body shape ratios, AR = 0.25, 0.5, 1.0, 2.0, and
4.0. As a comparison, the plots of observed mean and oscillation magnitude together with
those predicted for three hydrodynamic pressure coefficients are shown in Figure 7. Careful
readers can see a good fit between the observed and predicted values both for the mean and
oscillation quantities. To quantify the goodness of fit between the observed and predicted
data, the mean square error (MSE) and coefficient of determination (R2) are calculated and
presented in Table 3. It can be re-confirmed that the surrogate models predict the mean
and oscillation amplitude of the hydrodynamic pressure coefficients with a high degree of
accuracy. Hence, the developed models are reliable in prediction and efficient in terms of
computational effort.

Table 3. Error estimations of the observed and predicted hydrodynamic pressure coefficients in the
case of Re = 11,850.

Quantity of Interest MSE R2

CD (Mean) 0.0033 0.9776

CD (Oscil.) 0.0009 0.9868

CL (Mean) 0.0060 0.9866

CL (Oscil.) 0.0150 0.9955

CM (Mean) 4.4359 0.9727

CM (Oscil.) 8.8146 0.9030
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Figure 7. Comparisons of predicted hydrodynamic pressure coefficients with observed values from
Nguyen et al. [9]: (a) Drag, (b) Lift, and (c) Moment coefficients.

In the practice design of potentially submerged civil structures, such as bridge decks,
offshore platforms and hydrokinetic turbine blades, it is important to avoid unstable regions
caused by the oscillation of the hydrodynamic forces. By considering a wide range of Re
number and shape aspect ratio (Re = 6000–20,000, AR = 0.1–10), the unstable or oscillation
regions are plotted based on the developed surrogate models for the three coefficients,
as shown in Figure 8, in which the bar color represents the oscillation amplitude of the
examined coefficients. It can be observed that the most unstable region appears with small
aspect ratios of the submerged body. The amplitude of the oscillation mostly decreases
with the increase of both Re and AR. In the cases of AR > 2, the oscillation amplitude
significantly drops and almost equals zero. These observations are criteria for the dynamic
instability assessment of existing submerged civil structures or for practice design of new
ones under the free surface flow to avoid adverse effects of the dynamic impact.
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5. Conclusions

This study aimed to develop a computationally efficient and accurate surrogate model
to estimate hydrodynamic pressure coefficients on submerged bodies beneath the water
surface. Using the LHS sampling method, several computational fluid dynamics analyses,
based on a Navier-Stokes solver implemented with the shear stress transport turbulence
model and the volume of fluid method, were performed to extract hydrodynamic pressure
coefficients and their instability.

From the outcomes of the CFD analyses, a Gaussian process modeling-based surrogate
model was trained to predict the hydrodynamic pressure coefficients around submerged
bodies with a rectangular shape considering a range of shape ratio and Re number values.

As cross-validation for several testing surrogate models, the optimized model was found
to be a combination of the 3rd degree polynomial and Matérn 3/2 correlation functions.

Since the surrogate models were developed, the hydrodynamic pressure coefficients
were then predicted for a wide range of input parameters. The finding from the study
highlighted the efficiency of the surrogate model in rapidly estimating the hydrodynamic
pressure coefficients in place of complex and expensive CFD analyses.

By plotting unstable regions of the hydrodynamic pressure coefficients within the
ranges of the shape ratio and Re number, it is concluded that the most unstable region
appeared at small aspect ratios of the submerged body. In most of the cases, the oscillation
amplitude significantly dropped with the increase of both AR and Re and reached almost
zero with AR > 2.

The surrogate model in this study can be practically applied in rapidly assessing the
hydrodynamic force and its instability effect on existing submerged civil structures, or
in designing new structures, where a suitable shape ratio should be adopted to avoid
flow-induced instability of hydrodynamic forces.

The present study can also be enabled and facilitate future sensitivity, fragility and
reliability studies across a broad range of submerged bodies and flow conditions that are
involved in civil structures under flood and wave flows.
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Appendix A

Table A1. Observed response from CFD simulations for the initial training samples.

Input Variable Output Hydrodynamic Pressure Coefficients

AR Re CD CL CM

Mean Oscillation
Amplitude Mean Oscillation

Amplitude Mean Oscillation
Amplitude

1.623 14,665.087 1.653 0.146 0.405 0.492 −3.511 12.653

3.476 12,640.045 2.087 0 −1.465 0 −3.957 0

2.403 15,783.894 1.451 0.087 0.260 0.305 −1.895 5.741
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Table A1. Cont.

Input Variable Output Hydrodynamic Pressure Coefficients

AR Re CD CL CM

Mean Oscillation
Amplitude Mean Oscillation

Amplitude Mean Oscillation
Amplitude

3.144 15,153.660 1.632 0.018 −0.273 0.084 −1.909 0

2.036 12,958.475 1.920 0.007 0.410 0.042 −3.720 1.029

2.890 8416.533 3.441 0 −2.661 0 −8.266 1.504

1.297 8857.737 3.429 0.102 −0.361 0.433 −9.072 15.586

0.208 8689.223 4.600 0.578 0.290 1.433 −29.590 57.009

2.704 11,139.096 2.458 0.030 −1.416 0.103 −5.916 3.124

1.435 10,833.029 2.569 0.139 −0.065 0.446 −7.160 14.355

2.244 15,512.939 1.487 0.055 0.283 0.333 −2.195 6.928

3.538 9615.309 2.959 0 −2.973 0 −6.677 0

1.926 15,258.790 1.521 0.029 0.382 0.145 −0.823 3.406

1.183 14,304.394 1.737 0.128 0.600 0.465 −1.907 11.747

1.751 14,974.758 1.589 0.098 0.396 0.464 −3.120 11.481

3.755 13,004.791 2.040 0 −1.717 0 −3.330 0

3.879 13,368.033 1.987 0 −1.747 0 −1.323 0

3.377 11,959.480 2.199 0 −1.608 0 −4.654 0

3.651 8313.764 3.372 0 −3.584 0 −7.782 0

0.927 10,719.160 2.701 0.040 0.650 0.190 −1.448 6.000

0.404 12,170.650 3.099 0.541 0.303 1.663 −9.008 42.218

0.846 13,654.136 2.122 0.142 0.597 0.472 −1.460 12.568

1.459 11,762.251 2.170 0.143 0.171 0.463 −6.291 14.129

0.647 11,271.221 2.905 0.262 0.575 1.080 −5.339 26.001

2.786 9449.139 3.077 0.012 −2.200 0.037 −7.400 2.408

1.869 8157.854 3.678 0.036 −1.774 0.158 −11.104 6.056

3.258 14,079.809 1.828 0.001 −0.660 0.025 −2.805 0

0.736 10,250.214 3.081 0.128 0.617 0.650 −7.770 20.596

3.220 15,872.356 1.509 0.016 −0.151 0.081 −1.194 0

1.077 9880.575 2.986 0.028 0.336 0.153 −3.508 4.934

2.641 10,540.904 2.681 0.031 −1.625 0.105 −6.511 3.687

1.650 12,453.679 2.040 0.122 0.010 0.427 −5.513 12.430

0.319 13,810.938 2.893 0.483 0.162 1.227 −11.899 39.283

1.034 11,514.888 2.253 0.013 0.775 0.071 2.268 2.172

3.030 9043.564 3.200 0 −2.554 0 −7.586 0.260

2.176 10,188.772 2.835 0.024 −1.431 0.146 −7.570 5.035

2.371 12,232.946 2.111 0.064 −0.759 0.223 −5.168 6.053

0.544 13,561.550 2.693 0.382 0.291 1.676 −3.352 34.293

2.572 14,520.981 1.699 0.063 −0.116 0.225 −2.922 4.254

3.989 9339.984 2.910 0 −3.380 0 −7.600 0
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Appendix B

Table A2. Estimated parameters of the Gaussian process-based surrogate model.

Surrogate Model β σ2 `

CD (Mean) (2.120; −0.665; 0.150; 0.235; −0.003; 0.002; −0.138; −0.0690; 0.037) 0.009 (0.220;
0.9696)

CD (Oscil.) (0.445; 0.0807; −0.402; −0.027; −0.067; 0.0667; 0.003; 0.052; 0.034; −0.063) 3.661 (1.886; 8.554)

CL (Mean) (−1.531; 0.743; −0.521; −0.037; 0.152; 0.193; −0.061; −0.060; 0.031; −0.094) 58.317 (2.010; 9.945)

CL (Oscil.) (0.140; 0.070; −0.181; 0.014; 0.198; 0.010; −0.008; −0.101; 0.004; −0.035) 0.036 (0.137; 9.991)

CM (Mean) (−3.577; 2.452; −3.368; −0.934; −1.127; 0.049; 0.03; 2.114; 1.166; 0.033) 2.186 (0.148; 1.225)

CM (Oscil.) (3.223; 0.982; −3.512; 0.696; 6.151; 0.755; −0.183; −3.423; −0.919; −1.282) 9.040 (0.178; 1.785)
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