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Abstract: For design for safety (DFS), automated compliance checking methods have received exten-
sive attention. Although many research efforts have indicated the potential of BIM and ontology for
automated compliance checking, an efficient methodology is still required for the interoperability
and semantic representation of data from different sources. Therefore, a natural language processing
(NLP)-based semantic framework is proposed in this paper, which implements rules-based automated
compliance checking for building information modeling (BIM) at the design stage. Semantic-rich
information can be extracted from safety regulations by NLP methods, which were analyzed to gen-
erate conceptual classes and individuals of ontology and provide a corpus basis for rule classification.
The data on BIM was extracted from Revit to a spreadsheet using the Dynamo tool and then mapped
to the ontology using the Cellfie tool. The interoperability of different source data was well improved
through the isomorphism of information in the framework of semantic integration, causing data
processed by the semantic web rule language to be transformed from safety regulations to achieve
the purpose that automated compliance checking is implemented in the design documents. The
practicability and scientific feasibility of the proposed framework was verified through a 95.21% recall
and a 90.63% precision in compliance checking of a case study in China. Compared with traditional
compliance checking methods, the proposed framework had high efficiency, response speed, data
interoperability, and interaction.

Keywords: building information modeling; design for safety; natural language processing; ontology;
semantic web; automated compliance checking

1. Introduction

The concept of design for safety (DFS) indicates that the design stage of a construc-
tion project is an important link in the project safety construction cycle, and engineering
drawings or models produced in the design stage are the key documents used to guide
subsequent construction. Noncompliance with the design documents will hurt the safety
and quality of the construction project in the construction phase and the functions in the
later operation phase, and it may even damage the safety of lives, property, and other
public interests. At present, engineering designers, as the direct drafters of engineering
drawings or models, often fail to foresee possible safety risks when carrying out design
work, and problems with improper design and poor constructability are common. To
control the quality of the design documents and maintain the bottom line of building safety,
it is urgent to improve the safety risk control capability in the design stage.
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Previously published data show that in recent years the quality level of design docu-
ments in China has been unsatisfactory, making it difficult to ensure their safety. The initial
inspection pass rate of construction drawings is quite low, and the mandatory provisions
of engineering construction standards are violated repeatedly, all of which indicate that the
safety and compliance problems of design documents need to be effectively solved. An
important reason for this phenomenon is that the current construction drawing inspection
in China is still in the initial stage of digitalization, and it is difficult to avoid the problem
of relying on a lot of manual repetitive work for the safety compliance inspection of design
documents.

In solving this problem, BIM technology has shown great advantages in safety manage-
ment due to the fact of its object-oriented modeling, digitization, visualization, and other
characteristics. With the continuous introduction of policies and industry standards related
to BIM technology, the popularity and application of BIM technology are also accelerating.
Although the delivery method with the BIM model as the design result will gradually
become the mainstream, the problem of data heterogeneity between BIM and DFS process
limits the data interoperability system of automated compliance checking (ACC) based
on computer technology. Many current research works aim to explore overcoming this
difficulty, and some of them point to ontology technology. Ontology technology is an
important technology for knowledge representation, knowledge management, knowledge
sharing, and reuse. It has been widely used in coal mines, subways, medical care, and
other fields. Ontology Web Language (OWL) [1] is a structured knowledge representation
language, which can express the concept level clearly and accurately. Ontology provides a
unified semantic basis that can be recognized by computers for information interaction in a
domain, solving the problem of heterogeneous data interoperability.

Therefore, under the advocacy of developing intelligent drawing inspection, this paper
proposes a DFS ontology framework based on semantic integration, which integrates the
information from the building information model and the DFS process to realize the digiti-
zation of domain knowledge. DFS-related safety rules are used in NLP-based text mining to
extract the conceptual classes contained in the framework for OWL ontology. Furthermore,
BIM data are extracted and mapped to OWL ontology based on Dynamo-Cellfie methods
to complement concept classes and generate individuals. In addition, the content that can
grasp the regularity in the specification is transformed into the semantic web rule language,
and the purpose of intelligent auxiliary inspection of the OWL ontology containing the
semantic information of the design drawing is achieved by computer execution.

The rest of this paper is structured as follows. In Section 2, previous related research
works are reviewed and their significance, gap, and reference value for this paper are
explained. In Section 3, an ontology framework based on semantic integration is proposed,
and methods for generating ontology concept classes and individuals based on BIM and
NLP technologies and methods for transforming safety rules into computer-executable
structured languages are introduced. In Section 4, a case study is applied to validate the
proposed semantically integrated ontology framework. In Section 5, study conclusions are
discussed, and study limitations and recommendations for future research are explored.

2. Related Works

This paper focuses on the application of BIM and semantic web technology in the
safety management of the design phase. Previous related studies were reviewed as follows.

2.1. Design for Safety and BIM Using

The DFS concept was first developed in 1955 in the third edition of the Industrial
Operation Accident Prevention Manual published by the US National Safety Council, which
was the first to document instructions for considering the safe design from a designer’s
perspective. The hierarchy of project safety controls is highlighted and recommendations
are made that designers should play an active role in eliminating hazards in construction
projects [2].
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The health and safety of the participants after the design stage of the construction
project are considered in the design stage in advance, which is the biggest feature of DFS.
The implementation of the DFS concept requires designers to strengthen their awareness of
safety responsibilities, fully consider the constructability and safety compliance of the de-
sign results in the design stage, and start to identify the safety risks in the subsequent stages
in advance. Effective measures need to be taken in the design stage to mitigate or eliminate
potential hazards and to achieve the goal of safety management of construction projects.

In the practice of DFS, since Gambatese et al. [3] first loaded DFS recommendations
into a computer database in 1997 and developed a design toolbox to ensure construction
safety, the idea of assisting designers to identify the risks affecting construction safety
in the design scheme and put forward design suggestions in the design stage has been
widely referred to by subsequent researchers. Taking offshore platform and ship construc-
tion as examples, Wang et al. [4] described the characteristics of large-scale customized
products, studied their design process, and a generic design for safety methodology was
proposed. Weinstein et al. [5] established the relationship between specific safety risks and
design suggestions, and completed risk assessments and scheme selections through risk
identification of a design scheme of an actual subway project, verifying the feasibility of
the method. Tanabe et al. [6] discussed a safe design approach for an onshore modular
liquefied natural gas (LNG) liquefaction plant, where the project environment and specific
design features of onshore and offshore power plants were identified and compared. Based
on this comparison and consideration of modular features, a safety design approach for
onshore modular LNG liquefaction plants was considered. These earlier studies aimed at
revealing the inevitable link between design options and subsequent risks, and the potential
of applying DFS practice to provide insightful information for safety-related problems,
providing a solid foundation for this study.

The research that quantifies the relationship between design options and subsequent
risks based on the DFS concept is also important. Sadeghi et al. [7] established a safety
indicator used for the early design phase. The established safety indicator depends on
two values that indicate the presence or absence of a hazard and the level of importance
of the hazardous condition. These quantitative studies enhanced the scientific level of the
DFS concept, providing the DFS concept with a wider range of applications. For example,
Meacham [8] developed a sociotechnical system framework for performance-based design
for fire safety (DFFS). The expansion of DFS application fields has greatly enriched the
basic knowledge of DFS in different scenarios, which provides theoretical guidance for the
combination of DFS concepts and modern information technology.

With the continuous development of BIM technology, integrating BIM technology
has received more attention in the development of DFS tools [9]. Qi et al. [10] embedded
the summarized safety recommendations in the BIM software through the secondary
development form to achieve the purpose of identifying the unsafe state that may be
caused by the construction personnel in the construction stage during the design stage. In
addition, in a follow-up study [11], integrated BIM and third-party Solibri model checking
software was used to develop a safety design tool to prevent falls from heights. However,
the drawback of this approach is that due to the limitation of the development tools, only a
few DFS rules can be integrated into the BIM software, which makes it difficult to obtain
sound safety design recommendations comprehensively.

Hossain et al. [12] structured the DFS rules and divided them into six hierarchies to
build a DFS rule knowledge base, and a safety risk intelligent inspection system integrating
BIM and knowledge base was established, assisting designers to identify safety risks related
to design elements for DFS. Tang et al. [13] developed an intelligent and safe design tool
integrating the DFS method and BIM platform, which assisted subway station designers
to apply the DFS concept in the design stage to mitigate emergency evacuation risks in
the subway operation stage. Although these methods above strengthen the degree of
computer execution of the DFS rules and lay a foundation for semantic understanding, it is
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still difficult to solve the problem of low efficiency of rule execution caused by low data
interoperability.

2.2. Semantic Web Technology and Automated Compliance Checking

Research on compliance inspection of design documents in the AEC field has trans-
formed traditional design documents into digital design documents. Eastman et al. [14]
proposed the four steps and the technology and framework of building design compliance
checking, which is widely used for compliance checking research after object transforma-
tion.

A semantically richer building information model makes it possible to develop au-
tomated compliance checking systems for building regulations. The current research on
automated compliance checking is difficult to implement independently of BIM. The Indus-
try Foundation Class (IFC)-based format is considered a format well suited for automated
compliance checking. Park et al. [15] proposed that the IFC improves the semantic interop-
erability of building information models, making information models easy to understand
and sharing model data with heterogeneous computer systems. As a result, a set of rules-
based systematic approaches have been developed to address the problems of building
information representation based on the IFC of CAD objects, supplementary information
extension of IFC models, interoperability, and semantic annotation of extensible informa-
tion sets. Malsane et al. [16] analyzed residential fire safety-related building regulations
and, based on this, explained a set of computer-implemented rules to implement automated
compliance checking on semantically rich IFC models. Nevertheless, the IFC standard has
a limited range of expression, which brings certain obstacles to data interaction.

Although semantic web technology is not commonly used in the AEC sector, it is of
great value for integrating the complexity of BIM and heterogeneous data from different
sources. Semantic web technology is considered to activate the potential of BIM, describing
building regulations and BIM in the form of a hierarchical data structure through the
ontology description language, OWL, to fully expand the range of semantic expressions
of the model. Concept classes, relations, functions, axioms, and individuals can all be
described in the form of hierarchical data structures through the ontology description
language OWL [17]. Recently, many publications have recognized the importance of
semantic web technology and BIM integration for automated compliance checking research.

Mohamed et al. [17] proposed an ontology system integrating BIM information and
semantic web technology to enrich the semantics of existing building facilities. Zhong
et al. [18] proposed an ontology framework integrating BIM and environmental monitoring
to implement compliance checking. Dibley et al. [19] proposed the OntoFM, an ontology
framework that supports real-time building monitoring. The development of the ontology
framework lays the foundation for realizing information sharing and semantic interop-
erability. The ontology approach is also applicable to the development of an automated
compliance checking framework incorporating the DFS concept. Jiang et al. [20] proposed
a grey-box checking technique and a BIM-based automated code compliance check method
to ensure the accuracy of design work that utilizes multi-ontology fusion. These studies all
provided information for the development of the ontology framework and its underlying
ontology in this paper.

The rules for automated compliance checking also need to contain rich semantic
information to perform rule checking based on the interpretation of the ontology framework.
Uhm et al. [21] applied context-free grammar (CFG) to natural language processing to
perform computer interpretation processing on specification language, providing guidance
and basic data for the development of a general automated design compliance check
system. Zhang et al. [22] proposed methods based on semantic natural language processing
techniques and expressive data-based techniques to automatically extract and transform
regular language in canonical texts and to represent information based on semantic logic
for fully automated reasoning. These efforts are a beneficial enhancement for automatic
rule-based compliance checking and construction of semantic expressions, but the challenge
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is that matching with the underlying ontology that integrates BIM and domain knowledge
may be difficult due to the differences in the frameworks.

2.3. Natural Language Processing in the AEC Sector

The natural language processing method has not yet been widely adopted in the AEC
industry [23], but it has attracted the attention of researchers to some practical problems.
For example, the use of text mining methods to capture key information in reports or
regulations and documents in this text format are abundant in the AEC domain.

Existing research related to the application of NLP methods in the AEC field can be
roughly divided into three categories: capturing requirements, extracting features, and
acquiring knowledge. Hosseini et al. [24] implemented text mining on BIM-related natural
language text in recruitment websites to extract keywords and co-occurrences, capturing
the competencies and skills required by BIM workers. Zhou et al. [25] conducted a BIM app-
related study in which the feedback, complaints, and expectations of users were extracted
from natural language comments on BIM apps to describe their needs for BIM apps. These
studies revealed the potential of NLP methods to support demand insights in the AEC
field. Lin et al. [26] proposed an NLP-based method to capture key objects and their
specifications in natural language-based sentences. Wang et al. [27] developed a question
answering system for BIM information extraction using NLP methods, including natural
language understanding, information extraction, and natural language generation modules.
Compared to the completely unstructured natural language of users, applying feature
extraction methods from semi-structured corpora requires simpler tools. Nonetheless,
neither type of research is aimed at acquiring reusable domain knowledge.

Current research focuses extensively on the use of NLP methods to acquire knowledge.
Although many studies still use off-the-shelf tools, structured ordinance text-processing
tools can characterize domain knowledge with appropriate refinements. Zhang et al. [28]
proposed a semantic, rule-based NLP method for automatic information extraction from
construction specification documents. Al Qady et al. [29] proposed a natural language
processing system that was effectively used for contract text processing and adopted
the technique for concept relation identification using shallow parsing (CRISP) to extract
semantic knowledge from construction contract documents, improving electronic document
management functions such as document classification and retrieval. The NLP-based
knowledge acquisition methods proposed by these studies provide a reference for this
paper, but emphasizing the importance of incorporating domain knowledge is still a
problem that needs to be considered in this paper.

3. Methodology for the Proposed Framework
3.1. Proposed Framework

As illustrated in Figure 1, the proposed framework was split into three key modules,
and the final output was the result of ACC which proposed safety recommendations for the
design scheme. The proposed framework drew on a classic data mining process advocated
by Shearer [30] and incorporated safety regulation analyses of the AEC sector, building
information modeling technology, and semantic-based ontology modeling to improve
the process. First, raw data were obtained from safety regulations and BIM models. The
regulatory text was transformed into the .txt format, which can be processed by NLPIR
through TxTExtractor. Then, the regulatory text was processed with NLPIR to obtain a user
dictionary based on the new word corpus and the Chinese word-segmented regulations.
As for the BIM, after the .rvt model was preprocessed in the Revit software, the data could
be extracted through Dynamo to obtain the building information in a table format. Second,
the results of text processing are used to create classes, properties, and constraints in the
DFS ontology, and the table containing building information is converted into individuals
in DFS ontology through the Cellfie tool. Third, safety regulations were divided into three
types, and the linguistic characteristics of these different types were analyzed, through
which different types of safety regulations could be extracted. At last, the safety regulations
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were transformed into the SWRL language for a semantic query to realize the automated
compliance checking of the DFS ontology.
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3.2. Data Collection and Processing for DFS Ontology

This section, first, illustrates a method for Chinese word segmentation of safety regu-
lation text through NLPIR. The result of segmentation contained a list of DFS specification
words, according to which a user dictionary containing AEC professional words was cre-
ated. Therefore, professional vocabulary tags were displayed after the words in the word
segmentation results of the text. Such annotated words were considered key vocabularies
to describe the DFS ontology, and they were integrated and analyzed to create the classes,
properties, and constraints of the DFS ontology. Second, a method for preprocessing the
.rvt model using Revit software was provided and building information was extracted
from the processed model by the Dynamo tool. Building information was used to create
the individuals of the DFS ontology, because it reflects the actual condition of a specific
building component.

3.2.1. DFS Regulations Collection and Text Mining

DFS is a systematic project that requires a continuous improvement process. Taking
China as an example, the existing laws, regulations, and standards have made certain re-
quirements for the safety of design work. Although there are some shortcomings, certainly,
the requirements of these laws, regulations, and standards and regulations made by the
State Council and industry departments are formulated according to the current national
conditions of China. Laws and regulations determine the order of the construction market,
which also determines the need to adhere to the DFS principle of construction projects.

Therefore, the content of safety regulations needs to be analyzed and classified in
preparation for the conversion of unstructured text regulations in natural language into
structured language. There are many types of existing construction safety regulations,
among which, Compulsory Provisions of Engineering Construction Standards (Housing
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Construction Part) is a universal standard that can cover 11 aspects of design work. This
section mainly analyzes the design-related content of the regulation.

The NLPIR Chinese word segmentation system is used in this section to segment
and tag the building design regulation text. The Chinese lexical analysis system NLPIR
was developed by the Institute of Computing Technology, Chinese Academy of Sciences.
The main functions of the system include Chinese word segmentation, part-of-speech
tagging, and keyword capture. According to recent research [31], the 973 expert group
evaluation results show that the correct rate of word segmentation was as high as 97.58%,
and the processing speed of word segmentation and part-of-speech tagging was 31.5
KB/s; therefore, the tool had high processing efficiency in word segmentation and part-of-
speech tagging. However, the NLPIR tool was difficult for AEC professional vocabulary
recognition. Therefore, the new word list generated after rule text processing was used
to add a user vocabulary corpus to form a user dictionary containing AEC professional
vocabulary and specified annotation to segment the rule text according to the part of speech
and the specified annotation of the user dictionary.

Figure 2 illustrates the process of user dictionary creation, and the results of word
segmentation and part-of-speech tagging of regulatory text based on the user dictionary.
Taking the chapters of building layout and fire zoning as an example, NewTermlist con-
taining 49 new nouns and Keylist containing 497 keywords were generated in NLPIR’s
new word discovery function. The part-of-speech of each word was checked, and words
determined to be professional words of construction engineering were labeled with char-
acters specified by the user. Finally, the parts of speech used to label professional words
of construction engineering were summarized into three types: building objects, build-
ing elements, and attribute constraints. Other parts of speech, such as modal verbs and
comparative words, can be automatically tagged to the corresponding words by NLPIR
without adding them to the user dictionary.
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The user dictionary was imported in the word segmentation function interface of
NLPIR, according to which the system processes the input regulation text. As shown in
Figure 3, the rules text was segmented according to the part of speech and the professional
characters specified by the user.
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3.2.2. Data Interoperability and Information Extraction of BIM

At present, no plug-ins have been developed to directly convert model data into the
OWL format; therefore, data interoperability was the key to completing the inference, which
required preprocessing of BIM. The model information extraction and conversion methods
proposed by the current research efforts were not perfect. The information interaction
based on IFC standards has problems, such as lack of logic and limited-expression range,
and the business model checker was limited to specific rules checking, resulting in poor
scalability and low knowledge utilization of building information. There are several ways
of outputting information that can be applied to Revit in which project parameters can
be extracted to Excel spreadsheets through Dynamo tools. Moreover, the Cellfie tool can
directly convert tabular data into the OWL language and map it to the existing ontology to
realize semi-automatic data structure conversion, which provides a feasible method for data
interoperability between modeling software and ontology application software. Figure 4
provides the process of realizing data interoperability, where the solid line represents the
transfer of data, and the dashed line represents the transition of the software scene.
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The information of the preprocessed model was extracted in batches by the Dynamo
visual programming tool. The Dynamo toolbar contains a series of code blocks, which
can quickly process files and access commands. The button on the far right exports a
snapshot of the workspace, which is important for documentation and sharing. Dynamo’s
basic function input can be accessed through the left search bar or selected from a loaded
library of functions, and nodes are organized hierarchically in libraries, categories, and
subcategories according to whether the node creates data, performs an action, or queries
data. The loaded function library includes very rich code content and can also satisfy the
operation performed on the data such as mathematical or geometric transformation.
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3.2.3. DFS Ontology Development and Mapping

In the field of construction engineering safety, ontology theory has been researched
and practiced to a certain extent, but there is still no unified standard to regulate the
development of DFS ontology. Various scholars have put forward different ontology
development principles according to their research. Influenced by these research efforts,
the DFS ontology development method incorporating BIM technology and NLP technology
is demonstrated in Figure 5.
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The development of the DFS ontology should express the safety knowledge related
to the design as much as possible and assist the designers to conduct safety compliance
checks to meet the needs of safety design. Therefore, focusing on the field of construction
safety design, the safety knowledge of DFS ontology development is obtained from safety
regulations, project practice manuals, and other texts.

Reviewing the existing research efforts related to the development of building DFS
ontology, the building safety ontology model proposed by Zhang et al. [32] and the building
safety automated compliance checking ontology proposed by Huang [33] have important
reference values for the DFS ontology developed in this section. Based on previous research,
the characteristics of NLP technology and BIM technology are combined into the ontology
proposed in this section.

The user dictionary obtained by NLPIR processing of the text of safety regulations
contains key terms for constructing the compliance inspection process from the perspective
of DFS, where building objects, building elements, design points, unsafe factors, potential
risk, and optimization measures are extracted to constitute the main classes of DFS ontology
and the object properties or relationships among them as explained in Figure 6.
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The word segmentation result of NLPIR on the text of safety regulations is naturally a
subclass of the above main class of ontology. The classification standard of BIM components
also serves as the basis for expanding the subclasses of building-related ontology. Corre-
spondingly, building objects can be divided into subclasses according to function, height,
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and fire resistance grade. For example, building objects can be divided into public buildings
and civil buildings according to functions. The hierarchical structure of building elements
mainly refers to the IfcBuildingElement classification standard. For example, building
elements include stairs and ramps and structural elements include beams and columns.
The design points are subdivided into subclasses such as fire protection design, structural
design and selection, and seismic design. According to the summary of the description
of different unsafe factors in the design content, the unsafe factors are divided into three
subclasses: attribute constraints, element settings, and spatial relationships. The attribute
constraint subclass included geometric properties, physical properties, and material prop-
erties, the element setting class was composed of measures taken, supporting settings, and
other subclasses, and the spatial relationship class was composed of spatial distance and
spatial position. Potential hazards were classified according to the most important and
common types of hazards, namely, falls from heights, object strikes, fires, and collapses.
The classes of optimization measures were initially divided into subclasses of optimization
measures and safety measures, and further refinement could be divided into the adjustment
of the overall layout, the adjustment of structural form, the addition of protection systems
and safety training, etc., which could be further expanded in combination with expert
opinions. The expanded and refined hierarchical ontology is presented in Figure 7.
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Properties in ontology include object properties and data properties. Object properties
exist in the relationship between two classes and two individuals, while data properties
describe the relationship between classes or individuals and values. Although the relation-
ship between the main classes was defined in the previous steps, with the change in the
range and domain of ontology properties [34], the object properties and data properties
also need to be expanded to improve the connection of subclasses in the ontology. For
example, the subclass room of the building element was connected to the subclass area of
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the unsafe factor by the object property hasArea, while it was not connected to the subclass
weight of the class Unsafe_factor. The subclass Area of the class Unsafe_factor had the data
property hasArea and the domain was the area value.

The mapping of BIM data to ontology instances was realized by the built-in Cellfie
tool, which needs to use transformation rules to perform the semantic conversion of tables
to OWL ontology. This grammatical rule follows MappingMaster DSL [35]. Mapping-
Master is a domain-specific language (DSL) that defines the content of spreadsheets to
OWL ontology. This section implements the mapping of BIM model information to DFS
ontology by constructing data conversion rules by editing the transformation axioms on
the transformation rules on the Cellfie module interface and defining the unique identifier
of the instance corresponding to each cell address in the Excel spreadsheet by defining the
axioms. The cell content was connected to the ontology class and properties through types
and facts. There are multiple data import modes based on transformation rules, which can
satisfy the mapping of different cell objects. The transformation rule language statements
mainly used in this paper are explained in Figure 8.
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3.3. Semantic Analysis for Automated Compliance Checking Rules

Since the judgment rules of a safety compliance check are structured language, the
parts of the three types of safety knowledge, attribute constraint class, element setting class,
and spatial relationship class that can be digitally converted were selected in this section to
build safety compliance check rules.

The basic expressions of the selected three types of safety rules are shown in Table 1,
based on which the language structure of the basic expressions of each type was analyzed.
New parts of speech and their corresponding character annotations were added to the
user dictionary, which cannot be directly converted into ontology classes but reflect the
structural characteristics of basic expressions. Table 2 shows the basis for judging the three
types of safety norm knowledge, which is based on the fact that different types of safety
rules contain different types and numbers of parts of speech.

Table 1. Knowledge types of a building safety design code.

Type Premise Constraint Basic Expression

Attribute constraint Building element A Has attribute a Attribute a of element A reaches a
critical value c

Element setting
Building element A With building element B as an

ancillary facility Element A contains element B

Building element A Adopt safety measures a Element A requires measure a

Spatial relationship

Building elements A and B Spatial distance between A
and B

The distance between element A and
element B reaches a critical value c

Building elements A and B The relative position in the
space between A and B

Element A and Element B have a
spatial position relationship adja-

cent/on/below/contain/cover, etc.
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Table 2. Judgment basis for knowledge types of safety regulations.

Type
Building

Object
/obj

Building
Element

/ele

Attribute
Constraints

/pro

Measures
Taken
/mea

Spatial
Distance

/spd

Spatial
Location

/spl

Comparative
Words
/com

Attribute constraint type ≥1 ≥1 ≥1 0 0 0 1

Element
setting

Measures
taken ≥1 ≥1 0 1 0 0 0

Ancillary
facilities ≥1 ≥2 0 0 0 0 0

Spatial
relationship

Spatial
distance ≥1 ≥2 0 0 1 0 1

Spatial
location ≥1 ≥2 0 0 0 1 1

Accordingly, the process of the structured processing of safety knowledge in this paper
is summarized in Figure 9. The safety knowledge in natural language was transformed
into the compliance checking rules in structured language that could be recognized by the
computer.
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Primarily, it consists of identifying the element part-of-speech type and quantification
of the normative text, and then matching the three types of safety knowledge through the
type and quantity of the part-of-speech. The structured expression of the regulation was
obtained according to the basic expression corresponding to the safety knowledge type.
SWRL (semantic web rule language) was used to construct the structured expression of
DFS compliance check rules. It is a standard rule language developed by W3C, which can
integrate DFS knowledge expressed in OWL ontology into rule statements. The SWRL
syntax structure consists of an inference premise (body) and an inference result (head). The
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body derives the head through the built-in logical comparison relationship of SWRL and
is connected to the head by the symbol ->. A model-theoretic semantics is given on the
W3C official website [36] to provide the formal meaning for OWL ontology including rules
written in this abstract syntax, which is not detailed in this section.

4. Case Study
4.1. Case Study Description

To evaluate the feasibility of the framework in practical applications, a construction
project, Southern New City Medical Center, undertaken by the Third Construction Co., Ltd.
of the China State Construction Engineering Corporation (CSCEC), Nanjing, China, was
used as a case study in this section, whose construction area is over 310,000 square meters
including outpatient buildings, emergency buildings, medical technology buildings, ward
buildings, scientific research and administrative complexes, underground parking lots, and
many other facilities. The corresponding building information model was created in Revit,
where the model of the fourth floor of an inpatient building was used for the case study.

4.2. BIM Preprocessing and Information Extraction Module

Autodesk Revit software was used for the building information modeling and model
preprocessing in this section by assigning values to the properties of the created building
model and using the method of adding project parameters to complete the model infor-
mation. The purpose of this step was to make the building component model contain the
information needed to create the DFS ontology. The new project parameter was defined as
a type parameter, and the component type to which it was attached was selected in the filter
as illustrated in Figure 10. For example, the model type to which the property partition
belongs was the room model. The model type to which the property fire resistance limit
belongs was the wall, fire door, etc. The specific values of these properties were entered in
the property column of the corresponding component model.

Buildings 2022, 12, x FOR PEER REVIEW 14 of 26 
 

STEP2：Set 
parameter type, 
data and category

STEP3：Assign values to an individual 
building component model instance 
properties in the properties bar.

STEP1：adding 
project parameters 
to complete the 
model information

 
Figure 10. Process of BIM preprocessing in Revit. 

The BIM data extraction visual programming language based on Dynamo was di-
vided into three modules according to its functions: 

(1) Module 1 was created to select the models that had information that needed to be 
extracted and to obtain their elementIDs and code block Select Model Elements; 

(2) Module 2 was created to extract data for model elements by parameter name, in-
cluding a code block that sorts the parameter name characters by column, and a corre-
sponding number of code blocks Element.GetParameterValueByName and a code block 
List.create. The model element obtained by module 1 and the output result of the code 
block containing the parameter name characters were used as the input values of the code 
block Element.GetParameterValueByName, and then the List.create code block was con-
nected to arrange the obtained parameter information; 

(3) Module 3 was created to generate an Excel spreadsheet and write the BIM data 
extracted by the previous modules in the specified header sequence including a core code 
block Excel.WriteToFile and several code blocks connected to it. The header, file path, 
written data content, and layout of the spreadsheet were determined in this module. 

Eventually, building information from the .rvt model in Revit was exported to an 
Excel spreadsheet by Dynamo, containing the information specified. As illustrated in Fig-
ure 11. 

Figure 10. Process of BIM preprocessing in Revit.

The BIM data extraction visual programming language based on Dynamo was divided
into three modules according to its functions:

(1) Module 1 was created to select the models that had information that needed to be
extracted and to obtain their elementIDs and code block Select Model Elements;
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(2) Module 2 was created to extract data for model elements by parameter name,
including a code block that sorts the parameter name characters by column, and a corre-
sponding number of code blocks Element.GetParameterValueByName and a code block
List.create. The model element obtained by module 1 and the output result of the code block
containing the parameter name characters were used as the input values of the code block
Element.GetParameterValueByName, and then the List.create code block was connected to
arrange the obtained parameter information;

(3) Module 3 was created to generate an Excel spreadsheet and write the BIM data
extracted by the previous modules in the specified header sequence including a core code
block Excel.WriteToFile and several code blocks connected to it. The header, file path,
written data content, and layout of the spreadsheet were determined in this module.

Eventually, building information from the .rvt model in Revit was exported to an Excel
spreadsheet by Dynamo, containing the information specified. As illustrated in Figure 11.
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4.3. DFS Ontology Development Module

The development tool of ontology was Protégé 5.5.0 developed by Stanford University
School of Medicine, which has the advantages of being open source, easy to use, convenient
for modification, and convenient for storage [37]. In this section, the development of DFS
ontology is introduced, which was split into three main steps: (1) Define and enumerate the
classes, subclasses, and sibling classes of the ontology, which are the sum of the concepts
in the field with the same characteristics to describe the concepts in the ontology. (2)
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Define properties and semantic relationships to express relationships between concepts.
Properties in the ontology are descriptions of the characteristics of the classes, including
object properties and data properties, and determine the classes that the properties act on
by defining the domains and ranges. (3) Create individuals at the bottom of the hierarchical
ontology, including those created directly in Protégé and those obtained by mapping data
from BIM through Cellfie tools, which are the most basic parts of ontology.

4.3.1. Classes of the DFS Hierarchical Ontology

As noted in Figure 12, the domain of the DFS ontology is to construct a building
safety design hierarchy, limited in scope to the text mining results of the specified safety
regulations. The main classes were the key components extracted from the relevant rules,
and subclasses I and subclasses II were further subdivisions and extensions of the main
classes based on the NLP results. According to the previous content, six main classes,
including Design_point, Building_object, Building_element, Unsafe_factor, Potential_risk,
and Optimization_measures, were created in the classes hierarchy of Protégé.
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4.3.2. Definition of Properties and Related Constraints

Properties in the ontology included object properties and data properties, which
constrain the defined classes. Object properties exist by the relationship between two
classes or instances, while data properties describe the relationship between classes or
individuals and values. Set the domain to determine the subject of the property, and set
the range to determine the object of the property in defining a property [35]. Defining
properties is a key step in developing an ontology. It is not only related to whether the
relationship between concepts in the field can be accurately described but also whether the
logical reasoning of the ontology can be accurately realized.

Moreover, as a mapping relationship linking domains and ranges, object properties
have seven main properties that can affect the transitivity of properties, thereby affecting the
inference engine to form previously unnoticed but legal connections between other classes.
Therefore, in addition to the object property relationship is a connecting the subclass and
the superclass, the five main object properties between the six main classes defined in this
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section and their domains, ranges, and characteristics are illustrated in Table 3. The Protégé
wiki [38] can be consulted for a detailed explanation of property characteristics.

Table 3. Definition of object properties of the DFS ontology.

Object Property Domain Range Characteristic

containsEle Building_object Building_element Inverse functional
hasFac Building_element Unsafe_factor Inverse functional

causesRis Unsafe_factor Potential_risk Inverse functional
matchsMea Unsafe_factor Optimization_measures Inverse functional
involvesPoi Building_element Design_point Inverse functional

An instance of object properties defined in Protégé is shown in Figure 13. The property
containsEle has the inverse function characteristic, and the domain and range of it are
defined as Building_object and Building_element in the corresponding tab.
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A data property describes the relationship between a class or an individual and a
value, of which the class is the domain, and the value is the range. The data types mainly
used in this section included the xsd:integer type for describing integers, the xsd:decimal
type for describing decimals, the xsd:string type for describing strings, and the xsd:boolean
type for describing true or false. According to the previous NLP processing results of the
safety regulation text, the attributes involved in digitization were defined as data properties,
some of which are shown in Table 4.

Table 4. Definition of data properties of the DFS ontology.

Data Property Domain Range Characteristic

hasEleID Building_element xsd:integer Functional
hasHeight Geometric_attributes xsd:decimal Functional
hasWidth Geometric_attributes xsd:decimal Functional
hasLength Geometric_attributes xsd:decimal Functional

hasAreaValue Geometric_attributes xsd:decimal Functional
hasMaterial Material_parameters xsd:string Functional

hasFireproofLevel Fireproof_door xsd:integer Functional
. . . . . . . . . . . . . . . . . . . . . . . .
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According to the above definitions, the data properties of the DFS ontology classes
were established in Protégé, an instance of which can be seen in Figure 14 below. The data
property hasAreaValue has the function characteristic, and the domain and range of it are
defined as Geometric_attributes and xsd:decimal in the corresponding tab.
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The conceptual classes, individuals, and connections between them in DFS ontology
are presented in a visual view, a part of which is shown in Figure 15. The types of arcs and
nodes are illustrated on the right side of the figure.
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4.3.3. Individuals Creation and BIM Data Mapping

In an ontology, individuals are concrete representations of classes that are indispens-
able parts of implementing ontology reasoning as inspection datasets. Furthermore, the
properties defined by the DFS ontology have meaning only if they exist, depending on
the individuals. Before the mapping step based on BIM data, some individuals of related
concept classes need to be added in the individual by class of Protégé to form a complete
inference chain. For example, individuals, such as fire and falling hazards, are the basic
concepts derived from NLP-based text mining, but there is no corresponding information
in BIM data. In addition, other information to be checked for safety compliance is mapped
from the output data of the BIM project instance.

According to the MappingMaster DSL mentioned above, the language of mapping
BIM data to ontology individuals is edited in the transformation rules editor of Protégé.
The transformation rules used in this section can be generated as follows:

Create classes according to column B, which are subclasses of Room.
Class: @B*
SubClassOf: Room
Create partition individuals named with the content in column D that belong to a class

named Fire_layout_plan.
Individual: @D*
Types: Fire_layout_plan
Create room individuals named with the content in column C, which are connected to

elementIDs in column G through the data property hasEleID and connected to partitions
in column D through the object property involvesPoi. The name of the classes to which these
individuals belong is in column B. An individual named Southern_New_City_Medical_Center,
of class Hospital_building, was created previously, and is connected with the individ-
uals above through the object property containsEle. Therefore, the room individuals
above were connected with Southern_New_City_Medical_Center through object property
is_contained_by (inverse property of containsEle).

Individual: @C*
Types: @B*
Facts: hasEleID@G*(xsd:integer),
involvesPoi @D*,
is_contained_by Southern_New_City_Medical_Center,
hasArea@C*(rdfs:label = (@C*,”_Area”))
Create area individuals, names of which are contents in column C adding a suffix

_area. Define the value on column E as the data property value and connect them through
the data property hasAreaValue. The name of the classes to which these individuals belong
is Area.

Individual: @C*(rdfs:label = (@C*,”_Area”))
Types: Area
Facts: hasAreaValue @E*(xsd:decimal)
The edited conversion rules can be stored in the database. When reusing or updating

instance data, rules can be edited. The individuals generated by the Cellfie tool are rendered
in Figure 16.
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4.4. Semantic Transformation Module

The editing of the rules in the SWRLTab of Protégé is completed through the method
proposed previously. The SWRL statements used in this section to implement the safety
compliance check on the ontology developed above can be generated as follows for example,
wards, delivery rooms, operating departments, rooms for precision, and valuable medical
equipment in the fire compartment should be separated from other parts by noncombustible
bodies with a fire-resistance rating of no less than 1.0 h.

Rule 1:
OperatingRoom(?a)ˆFirewall(?b)ˆHospital_building(?x)ˆcontainsEle(?x,?a)ˆcontainsEle

(?x,?b)ˆFire_resistance(?c)ˆhasFireRes(?b,?c)ˆhasFirewall(?a,?b)ˆhasFireResValue(?c,?m)ˆ
involvesPoi(?a,FireCompartment)ˆswrlb:lessThan(?m,1)->causesRis(?c,fire)ˆmatchsMea
(?c,Adjusting_fire_resistance)

The usage area of the front room of the smoke-proof stairwell in public buildings
should not be less than 6.0 m2.

Rule 2:
Public_building(?x)ˆStairwell_Anteroom(?a)ˆArea(?c)ˆinvolvesPoi(?a,FireCompartment)

ˆSmoke-proofStairwell(?b)ˆhasAntroom(?b,?a)ˆcontainsEle(?x,?a)ˆcontainsEle(?x,?b)ˆhas
Area(?a,?c)ˆhasAreaValue(?c,?m)ˆswrlb:lessThan(?m,6)->causesRis(?c,fire)ˆmatchsMea(?c,
Adjust_usage_area)

The SWRL editing interface is presented in Figure 17. The Drools inference engine
in Protégé is invoked, which is a rule inference engine based on description logic and
supports the Java language and has good compatibility and inference functions. Run the
inference on the engine interface, and the inference result is returned to the individuals
of the ontology to update the DFS ontology. e.g., after rule 1 runs, the results fed back
from Drools to the OWL ontology showed that two object properties were added to the
Firewall_1_fire_resistance individual.
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4.5. Framework Testing and the Result

The NLP-based semantic framework proposed for DFS was tested with the above case.
The SWRL sentences used for the test were the previously proposed Rule 1 and Rule 2,
which were designed to identify noncombustible objects with noncompliant fire ratings
in hospital buildings and fire stairwell front rooms in public buildings that do not meet
the area value requirements. Based on the project parameters of Revit, design information
related to compliance checking rules was added to the BIM model. Four information
sets with 50 items were generated based on this design information, corresponding to the
scenarios that were (1) compliant fire resistance with rule 1, (2) noncompliant fire resistance
with rule 1, (3) compliant area value with rule 2, and (4) noncompliant area value with
rule 2.

For compliance checking of these information sets, precision, recall, and the F1-
measure were used to evaluate the NLP-based semantic framework. The set of items
retrieved could be divided into related items and irrelevant items, and the set of related
items in the database could be divided into retrieved items and non-retrieved items. The
related items in the retrieved itemset are identical to the retrieved items in the related
itemset in the database. The number of items in these information sets is listed in Table 5.

Table 5. The number of items in the information sets corresponding to the scenarios (1)–(4).

Information Sets for
the Scenarios (1)–(4)

The Number of
Items Contained in
the Relevant Item

Sets in the Database

The Number of
Items Contained in
the Retrieved Item

Sets

The Number of
Intersection Sets.

(1) 16 16 15
(2) 16 16 15
(3) 3 4 3
(4) 15 14 14

The ratio of the number of these items to the number of items contained in the retrieved
item sets was defined as precision, and the ratio of these items to the number of items
contained in the relevant item sets in the database was defined as recall. The F1-measure
was defined as the harmonic mean of precision and recall. The specific interpretation of
these indicators and the test results based on the data in Table 5 were summarized in
Figure 18. The test results indicate that the precision, recall, and the F1-measure of the
NLP-based semantic framework for DFS were 95.21%, 90.63%, and 92.44%.
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Figure 18. The specific interpretation recall, precision, and the F1-measure and the test results.

An error analysis was conducted to determine the reasons for compliance check devia-
tions in the framework tests. Due to the limitations of semi-automatic data isomorphism
technology, information errors may be caused by incorrect operations in the process of
information transformation. Figure 19 provides an excerpt from the error analysis table,
and errors in TEST24 were caused by the room of cleaning and disinfection of the endo-
scope being erroneously identified as a non-fire compartment, while TEST30 and TEST33
were caused by improper manipulation during data entry. Furthermore, recall was more
significant than precision for automated compliance checking frameworks. This was be-
cause the noncompliance in the design work should be identified as much as possible,
while precision deviation can be improved using analysis and elimination. The proposed
framework has higher recall than precision, which indicates the efficiency and applicability
of the framework for automated compliance checking.
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Figure 19. An excerpt from the detection error analysis table.

The results of checking the safety compliance of building design documents with the
above developed SWRL statement were compared with the database-based information
retrievals and the traditional and manual information contradistinction methods. The
comparison results are illustrated in Table 6.
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Table 6. A comparison of compliance checking methods in different items.

Comparison Items The NLP-Based Semantic
Framework

The Information Retrievals
Based on Database

The Manual
Contradistinction Measures

Types of compliance detection
for DFS

According to Table 1, the
proposed framework can

identify noncompliance based
on 5 digitized rule types,

covering most of the
compliance checking

regulations

Due to the highly structured
retrieval language, it is

possible to retrieve according
to the rules of direct

digitization, but it is difficult
to execute the retrieval rules

of indirect digitization

Noncompliance can be
identified by almost all of the

compliance detection
regulations based on

manual judgment

Detection speed
and efficiency.

Batch processing of ontology
data, and has a quite fast

detection response speed and
high detection efficiency

Batch processing of
spreadsheet data, and has a
quite fast retrieval response

speed and high
retrieval efficiency

Processing building design
document inspection items
one by one, and has a slow

detection response speed and
low detection efficiency

The safety performance
improvement

The proposed semantic
framework can understand
noncompliance in design

documents and match
appropriate solutions based

on the SWRL syntax and
logical connections among
ontology concept classes

formed through properties to
improve the safety of the

design document

Although the solution can be
matched to the

noncompliance of building
design through SQL-based
retrievals, the relationship

between noncompliance and
resolution measures is

difficult to understand by the
database, which may lead to
biased safety performance
improvement measures.

Inspectors can accurately
understand the meaning of
noncompliance in design

documents and obtain
solutions according to
regulations to improve

safety performance.

To sum up, the NLP-based semantic framework combined the advantages of computer
retrieval technology and human recognition. The database-based automatic compliance
checking method had high information processing efficiency, but the checking results may
be biased due to the limitations of SQL retrieval syntax and methods. For example, this
approach failed to identify building types based on building characteristics and, thus,
failed to provide safety performance enhancements for hospital building design. Rules-
based manual contradistinction compliance checking method was considered to have high
precision but low recall and efficiency. The NLP-based semantic framework not only had
the corresponding speed and efficiency of database-based computer retrieval technology
but also understood the design documents similar to how the human brain processes
information; thus, it identified more types of noncompliance and provided appropriate
solutions to improve safety performance via the semantic web. The comparison indicated
that the method based on semantic knowledge proposed in this paper was more accurate
and effective than the traditional compliance checking method based on paper documents,
which implies that the proposed framework may substantially reduce the problem of wrong
information in the compliance checking of building design documents.

5. Conclusions

Design for safety (DFS) is an effective way to improve safety management in the con-
struction industry, which has been verified in previous research work. With improvement in
China’s construction digitization level, the process of BIM-related drafting standards, data
standards, and delivery standards is also advancing. In this environment, the design work
puts forward higher requirements, and it is necessary to meet the complicated mandatory
safety regulations to improve the safety and reliability of design documents. Computer-
based automated compliance checking technology has improved the efficiency of the DFS
process, but there is still a lack of an efficient method for the semantic and knowledge-based
description of BIM information in the design phase of construction projects.

To solve these problems, we made some efforts. In this paper, an NLP method was
proposed for dealing with safety regulations, and the results of text mining and data from
BIM were used to develop an OWL ontology for DFS. The developed ontology provided
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a semantically isomorphic description of the design phase information contained in BIM,
the information of the DFS process, and the rule-based and knowledge-based constraint
information. This process homogenized information from different sources, improved data
interoperability and, in turn, optimized the efficiency of DFS-based automated compliance
checks. The work conducted is specifically summarized as:

(1) A DFS automated compliance checking framework based on semantic integration
was proposed to improve the format and information management of construction design
documents and regulations;

(2) A DFS ontology hierarchy was developed based on NLP text mining of safety
regulations and deconstruction of BIM design documents;

(3) A visual programming code written by Dynamo was used to extract the BIM data
into a spreadsheet, where the data were mapped to the individuals in the OWL ontology
for DFS through the Cellfie tool;

(4) SWRL-based safety compliance checking rules were written to support semantic-
integration-based DFS knowledge and constraint expression;

(5) A case study was used to validate the proposed DFS automated compliance
checking framework, and 95.21% recall and 90.63% precision in ACC were achieved.

The efforts in this paper had a positive effect on the practice of the DFS concept and
the development of the integration of building design and computing technology based
on ontology and BIM. Existing typical safety regulations were used for NLP text mining,
from which new concept classes for enriching the DFS ontology knowledge base and safety
regulation knowledge structured rule expressions for compliance checking were extracted.
In addition, not only the content of the DFS ontology knowledge base was enriched, but
the proposed method still took effect after the safety regulations were updated or the BIM
model was iterated, which can meet the needs of semantic ontology expansion. Moreover,
the proposed Dynamo–Cellfie-based BIM data extraction and ontology mapping methods
provide a solution for realizing data interoperability in compliance checking.

Although the current efforts were demonstrated in theory and practice, and the
primary goals of DFS compliance checking can be achieved, the gap in this paper and
subsequent research recommendations still need to be explained. The process of BIM
model preprocessing, adding data, and establishing the mapping relationship requires
a lot of manual work, which is still unresolved in this paper. Before implementing DFS
compliance checks, the required data need to be added to building model elements to
ensure that the BIM can contain the semantic information required for ontology-based
compliance checks. Moreover, with the development of the AEC sector, DFS ontology has a
process of continuous updating. What this paper conducted was preliminary work based
on the current DFS concept. Existing DFS theoretical research requires the participation of
a large number of scholars and practitioners from academia and industry to achieve safety
management goals. With the progress of DFS-related research results, the DFS ontology
framework proposed in this paper will face considerations that need to be improved
and adjusted. In addition, this paper only uses the basic part of the NLP method, and
subsequent research should consider deepening the application of NLP. For example,
combining machine learning to mine conceptual classes terms for DFS ontology from text to
eliminate the reliance on the creation of user dictionaries that require tedious manual work.
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