
Citation: Zhang, Y.; Li, H.; Lu, Q.;

Yang, J.; Wang, T. Effect of Different

Admixtures on Pore Characteristics,

Permeability, Strength, and

Anti-Stripping Property of Porous

Concrete. Buildings 2022, 12, 1020.

https://doi.org/10.3390/

buildings12071020

Academic Editor: Gianfranco De

Matteis

Received: 7 June 2022

Accepted: 7 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Effect of Different Admixtures on Pore Characteristics,
Permeability, Strength, and Anti-Stripping Property of
Porous Concrete
Yi Zhang 1,2, Hui Li 3,*, Qingqing Lu 1,2, Jie Yang 3 and Tao Wang 4,*

1 Shanghai Road and Bridge (Group) Co., Ltd., Shanghai 200433, China; zhangyi199010@163.com (Y.Z.);
lqq6677@163.com (Q.L.)

2 Shanghai Engineering Research Center of Green Pavement Materials, Shanghai 200433, China
3 Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University,

Shanghai 201804, China; yangjie_yj@tongji.edu.cn
4 Department of Highway and Railway Engineering, School of Civil Engineering, Beijing Jiaotong University,

Beijing 100044, China
* Correspondence: hli@tongji.edu.cn (H.L.); wangtao1@bjtu.edu.cn (T.W.)

Abstract: To solve the problem of insufficient strength and durability of porous concrete pavement,
seven different admixtures were used in this study so that the above properties could be optimized.
The strengthening effect of admixtures on the strength and anti-stripping property of porous concrete
was evaluated. The effects of different admixtures on the pore characteristics, strength, and anti-
stripping of porous concrete were analyzed with CT tomography technology. The relationship
between the pore characteristics of porous concrete and its strength, the anti-stripping property, was
explored separately, and the correlation between the strength and anti-stripping property was also
investigated. The addition of admixtures affected the pore characteristics of porous concrete, and
there was no significant correlation between them. The strength of porous concrete was improved
by the addition of admixtures, but the addition of different admixtures had different effects on the
improvement of strength. Meanwhile, there was no significant correlation between the strength
and pore characteristics. Adding admixtures could improve the anti-stripping property of porous
concrete, however, different admixtures had different improvement effects. The effect of porosity on
anti-stripping property was limited, while the pore number and equivalent aperture had no effect.
There was no obvious correlation between the strength and anti-stripping property of porous concrete
prepared with different admixtures.

Keywords: porous concrete; pore characteristics; permeability; strength; anti-stripping property

1. Introduction

As a kind of functional ecological material, porous concrete has good properties of
permeability, improving water quality, recharging the groundwater, reducing pavement-tire
acoustic noise, and mitigating the urban heat island effect [1–8]. Due to the above excellent
ecological properties, porous concrete has been widely used in urban squares, ecological
trails, road shoulders, pathways, parking areas, expressway service area, and other ar-
eas [9–13]. The large-scale use of porous concrete has been proven to bring good ecological,
social, and economic benefits [8]. The good ecological performance of porous concrete was
based on its large number of voids inside. However, the strength and durability of porous
concrete are also seriously reduced by these voids [8,14,15].

The environmental properties, mechanical properties, durability properties, and inter-
nal pore characteristics of porous concrete are largely determined by the factors of aggregate
gradation, aggregate type, admixtures, water to cement ratio, cement to aggregate ratio,
mixing, forming, and curing method [1,9,14–17].
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As one of the important ecological properties, the permeability of porous concrete is
usually measured by the falling-head test method and constant-head test method [1,8,9,16].
Although the test methods and devices of permeability adopted by different scholars
in the previous studies may be different, it has been demonstrated that when the other
conditions were the same, the permeability of porous concrete was increased with the
increase of porosity and aggregate particle size, and decreased with the increase of specimen
thickness [16]. Zhang used the two methods to test the permeability of porous concrete with
different mix ratios. It was found that the permeability obtained by the falling-head method
was much larger than that obtained by the constant-head method. Nevertheless, there was
a good positive correlation between the permeability obtained by the two methods and the
porosity [1,16].

For the optimization and improvement of the mechanical properties of porous concrete,
methods such as reducing the porosity, using high-quality aggregate and high-grade
cement, optimizing the mixing ratio, and adding admixtures, were often used [3,9,13–17].
However, reducing the porosity will affect the ecological property of porous concrete,
and with the improvement of environmental protection requirements, the cost of high-
quality aggregate has risen sharply [16]. Besides, the use of high-grade cement will also
increase the construction cost [15,16]. In addition, after the mix proportion optimization,
the addition of appropriate admixtures has become an effective method to significantly
improve the mechanical properties of porous concrete without significantly reducing the
porosity [3,14,15]. Zhang divided the commonly used admixtures of porous concrete into
four categories: inorganic admixtures, polymer admixtures, fiber admixtures, and nano
admixtures; the influence mechanism and ruler of different admixtures on the strength
of porous concrete were combined [16]. Previous studies have found that the addition
methods of admixtures in porous concrete mainly include a single admixture or a simple
combination of two admixtures, and the studies on the composite addition of multiple
admixtures in porous concrete were not in-depth [3,14,15,18].

For the evaluation of the durability of porous concrete, the freeze-thaw cycle perfor-
mance of its materials was mostly used [16,18–24]. The relative value of the dynamic elastic
modulus, mass loss rate, and strength loss rate of porous concrete after the fixed freeze-
thaw cycles was taken as the evaluation indexes of its freeze-thaw cycle property [16,25,26].
However, some scholars pointed out that the relative dynamic elastic modulus and mass
loss rate were not applicable in the evaluation of frost resistance of porous concrete [16]. The
stripping of surface particles of porous concrete pavement materials under tire friction and
impact can also be considered as insufficient durability. The research on the anti-stripping
property of porous concrete was still insufficient [15,16]. As one of the essential diseases of
porous concrete, surface looseness, threshing, and pit not only affect its appearance, but
also significantly reduce its operation life [15]. Some scholars have tested the anti-stripping
property of porous concrete regarding to the Cantabro scattering test method for asphalt
concrete to evaluate its durability, and it was found that the Cantabro scattering test method
was also feasible in porous concrete [15,18,19].

The internal pore characteristics of porous concrete was generally considered to affect
its ecological properties, mechanical properties, and durability [15,16,27–40]. There are two
main ways to obtain the internal pore characteristics of porous concrete at present: the slice
method and the industrial CT scan [16]. Two-dimensional cross-sectional images of porous
concrete were obtained by the two methods, and then the different pore characteristics
were obtained through image processing and analysis [15,16]. The pore characteristics of
porous concrete can be divided into two-dimensional (2D) and three-dimensional (3D) pore
characteristics [16]. The 2D pore characteristics include porosity, pore number, pore area,
equivalent aperture, and fractal dimension [28–31]. The 3D pore characteristics include
connected porosity, pore size distribution, pore connectivity, pore tortuosity, pore throat,
and pore topological structure [15,30–32]. It was found that the aggregate gradation had
the most significant influence on the pore characteristics of porous concrete [29]. With the
aggregate gradation changing from coarse to fine, the porosity, equivalent aperture, and
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pore connectivity presented an increasing trend, but the uniformity of pore distribution
became worse [29]. Besides, the larger the volume ratio of aggregate in porous concrete,
the larger the porosity, the connected porosity, and the dispersion of pore distribution
inside [27,34]. The studies on the correlation between the pore characteristics and properties
of porous concrete mainly focus on the influence of pore characteristics on its permeability,
compressive strength, and freeze-thaw cycle property. The results presented that the
different pore characteristics had different effects on its different properties [32–40].

From the above, the current studies of porous concrete focus on the effect of the
mix ratio and single admixtures added to its ecological properties, mechanical properties,
durability properties, and pore characteristics. However, the studies only paid attention to
the significant improvement effects of multi admixtures compound on the strength, but the
attention of anti-stripping property was insufficient. In addition, there was no adequate
understanding on whether the compound addition of multiple admixtures have a great
impact on the internal pore characteristics of porous concrete and affect its permeability
under the same grading conditions or not. Therefore, it is very necessary to study the effect
of compound admixtures on the pore characteristics, strength, and anti-stripping property
of porous concretes, which were prepared with the same aggregate gradation.

The objective of this study is to analyze the influence of compound admixture of vari-
ous admixtures on 2D pore characteristics, strength, and anti-stripping property of porous
concrete. The pore characteristics of porous concrete were obtained by industrial CT equip-
ment in the laboratory of school of transportation at Tongji University, Shanghai, China
(the scanning internal is 0.2 mm, and the resolution of CT scanning is 1200 dpi × 1200 dpi)
and Image J software (Image Processing and Analysis in Java, developed by the National
Institutes of Health, Maryland, American). The porosity of porous concrete obtained by
different methods was compared. Besides, the correlations between pore characteristics and
permeability, strength, and anti-stripping property were analyzed. In addition, the relation-
ship between the strength and anti-stripping property of porous concrete was investigated.

2. Materials and Methodology
2.1. Materials

Basalts aggregates with particles sizes of 2.36~4.75 mm and 4.75~9.5 mm were se-
lected as the coarse aggregate to produce pervious concrete in this study, and the physical
properties were shown in Table 1. The 42.5 Ordinary Portland was selected as the main
binder materials, and the main chemical compositions is shown in Table 2. Tap water
from the laboratory was used to prepare the pervious concrete specimens. Superplasticizer
(SP), silica fume (SF), micro-silica (MS), slag (SL), nano-silica (NS), graphene oxide (GO),
and carbon nanotube (CNT) were selected as the admixtures added in porous concrete to
improve the property (as shown in Figure 1).

Table 1. Partial physical properties of the basalt.

Aggregate Size
mm

Density
g/cm3

Bulk Density
g/cm3

Porosity
%

Crushing Value
%

Content of Flat and
Elongated Particles

%

Basalt
2.36~4.75 2.889 1.666 42.3 20.20 -
4.75~9.5 2.906 1.699 41.5 11.55 6.54

Table 2. Main chemical composition of cement (W/%).

Cement SiO2 Al2O3 Fe2O3 CaO MgO SO3 L.O.I

P.O 42.5 21.60 2.35 0.20 63.0 2.0 2.80 4.0
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Figure 1. Appearance of the admixtures.

2.2. Mix Proportion

The porous concrete mixture was prepared with basalt aggregate, P.O 42.5 cement,
different admixtures, and water. The mix proportion scheme of porous concrete is shown in
Table 3, including one control group, seven groups of single admixture added, five groups
of double admixture added, and two groups of triple admixture added. Due to the few
samples of double and triple admixtures of porous concrete, they were collectively called
porous concrete with composite admixtures in this paper.

Table 3. Mix proportion of porous concrete.

Mixture Type
Aggregate Size (mm) Per m3 of Porous Concrete (kg/m3)

2.36~4.75 4.75~9.5 Cement Water SP SF MS SL NS GO CNT

ND

164 1529

440 132.1
SP 472 99.1 0.944
SF 414 132.1 26.4
MS 418 132.1 22
SL 352 132.1 88
NS 436 132.1 4.4
GO 440 132.1 0.044

CNT 440 132.1 0.22
SP + SL 352 92.4 0.944 88
SP + GO 472 99.1 0.944 0.044
SF + MS 392 132.1 26.4 22
SF + SL 326 132.1 26.4 88
SF + NS 411 132.1 26.4 2.2

SP + SL20% +
GO0.0075% 352 92.4 0.944 88 0.033

SP + SL25% +
GO0.01% 330 92.4 0.944 110 0.055

2.3. Specimen Preparation

The porous concrete specimens were prepared by the China Standard CJJ/T 135-2009
Technical Specification for Pervious Cement Concrete Pavement at the laboratory [26]. The
cylinder porous concrete specimen with a diameter of 100 mm and height of 50 mm was pre-
pared to test the porosity, pore characteristics, permeability, and anti-stripping performance.
The cube specimen with a size of 100 mm × 100 mm × 100 mm was prepared for the com-
pressive strength test, and the cuboid specimen with a size of 100 mm × 100 mm × 400 mm
was prepared to test the flexural strength. Besides, in order to make the test results more
reliable, five replicate specimens were prepared for each test groups to obtain the reliable
mean values.
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2.4. Porosity

The porosity of porous concrete was tested by the underwater gravity method. The
cylinder specimens should be immersed in water that exceeds 24 h to make the specimen
saturated before being measured. After throwing out the flowing water and wiping the
surface of the specimen with a wet towel, we weighed the specimen in the air immediately.
We then put the specimen into the drainage bucket, and recorded the weight in the water
when the weight of the hydrostatic balance was stable. The porosity of porous concrete
could be calculated by the two different weights of the specimens in air and water, as in the
following Equation (1) [41]:

p =

[
1 −

(
(m1 − m2)/ρw

v

)]
× 100%, (1)

where p is the porosity of porous concrete; m1 is the weight of porous concrete in the air, g;
m2 is the weight of porous concrete in the water, g; ρw is the density of water, g/cm3; v is
the volume of porous concrete, cm3.

2.5. Pore Characteristics

The internal pore characteristics of porous concrete were obtained by industrial CT
scanning at School of Transportation Engineering of Tongji University. Image J software
was used to analyze the two-dimensional image to obtain the 2D pore characteristics such
as porosity, pore number, and equivalent aperture. The mean value of 11 sections with
an interval of 4 mm from top to the bottom (from 0.5 cm to 4.5 cm on the upper forming
surface) was regarded as the pore characteristics value of the specimen. Part of the image
processing process was shown in Figure 2.
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2.6. Permeability

The permeability of porous concrete was tested using the falling-head method. The
test device is shown in Figure 3, and the permeability of porous concrete could be calculated
by the following Equation (2) [1]:

k =
αl
At

ln(h1 − h2), (2)

where k is the permeability of porous concrete, cm/s; α is the inside cross-sectional area of
water cylinder, cm2; A is the cross-sectional area of the specimen, cm2; l is the thickness
of porous concrete, which was taken as 5 cm in this study; t is the time displayed by the
stopwatch when the water level dropped from the upper recorder level to the lower water,
s; h1 is the upper water level which taken as 15 cm in this study; h2 is the upper water level,
which taken as 0 cm.
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2.7. Strength

The compressive strength and flexural strength of porous concrete were tested ac-
cording to the China standard Testing Methods of Cement and Concrete for Highway
Engineering (JTG 3420-2020) [42]. Besides, the specimens used for testing were a non-
standard size sample, therefore the test results of strength should be converted to the
strength of standard size specimens through the size conversion coefficient. The compres-
sive strength and flexural strength of porous concrete could be calculated by the following
Equations (3) and (4) [42], respectively:

fc =
FC
A

, (3)

where fc is the compressive strength of porous concrete at 28d, MPa; FC is the failure load of
the porous concrete sample under press, N; A is the cross-sectional area of the sample, mm2.

f f =
Ff L
bh2 , (4)

where ff is the flexural strength of porous concrete at 28d, MPa; Ff is the ultimate load of
porous concrete sample, N; L is distance between the supports, mm; b and h is the width
and height of porous concrete specimen respectively, mm.

2.8. Anti-Stripping Performance

The Cantabro Scattering Test method was chosen to evaluate the anti-stripping prop-
erty of porous concrete in this research (as shown in Figure 4). The test was carried out
according to China standard “Standard Test Methods of Bitumen and Bituminous Mixture
for Highway Engineering” (JTG E20-2011) [43], but the partial adjustment was made ac-
cording to the characteristics of porous concrete. The standard Marshall specimen was
changed into a cylindrical specimen with a diameter of 100 mm and a height of 50 mm, and
it was also not treated with a constant temperature water bath. The stripping mass loss rate
could be calculated by the following Equation (5) [43]:

ml =
m3 − m4

m3
× 100%, (5)

where ml is the stripping mass loss rate of porous concrete; m3 is the mass of porous
concrete sample before stripping, g; m4 is the mass of porous concrete sample after 300 times
stripping, g.
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3. Results and Discussion
3.1. Porosity

The porosity of porous concrete could be obtained by two methods as mentioned
previously. The first method was the underwater gravity method (M1), and the second
method was the CT image processing (M2). The comparison of porosity obtained by two
methods of porous concrete is shown in Figure 5. It could be seen from Figure 5 that:

(1) When the aggregate gradation and aggregate to binder ration of porous concrete
were the same, the porosity of porous concrete with different admixtures added was
significantly different. The difference in the porosity of porous concrete with differ-
ent admixtures was within 4%, and the porosity of the porous concrete containing
superplasticizer in the admixture component was obviously large. This results can be
considered for the following reasons: (a) The water consumption of porous concrete,
which used superplasticizer, was decreased, and the density of cement or other ad-
mixtures replacing the same mass of water was significantly higher than that of water;
therefore, the volume of cement paste and the gap between aggregates that could be
filled by it was significantly reduced, resulting in the large porosity of porous concrete.
(b) The density of different admixtures was different (compared with cement, the
density was relatively low). When using equal quality admixtures to replace cement,
the volume of cement paste of admixtures with a larger amount was larger than that
of the control group, and it could fill more gaps between the aggregates, therefore,
the porosity of porous concrete was reduced. (c) Different admixtures had different
particle sizes. Some admixtures with relative smaller particle sizes could enter the
voids between cement particles during mixing, which could also affect the volume
of cement paste and the porosity of porous concrete. (d) The forming and porosity
testing process of porous concrete could also affect its porosity;

(2) The porosity obtained by the two methods was relatively closed. It showed that it was
feasible to test the porosity by the two methods. Besides, the porosity obtained by the
CT image processing method was slightly higher (within 0.5%) than the underwater
gravity method. It was mainly related to the fact that the porosity obtained by the
underwater gravity method did not contain closed pores.
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admixtures.

3.2. Permeability

The permeability of porous concrete with different admixtures was presented in
Figure 6. It could be clearly seen from Figure 6 that when the aggregate gradation and
aggregate to binder ratio were the same, the permeability of porous concrete containing
superplasticizers was significantly higher than those with other admixtures. Moreover, the
permeability of porous concretes mixed with other admixtures were also slightly different
from each other. It showed that when the cement cementitious materials for preparing
porous concrete were different, the density could not directly determine the value of its
permeability.
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In order to clarify the relationship between the permeability and pore characteristics
of porous concrete, the relationship between the permeability and porosity, pore number,
and equivalent aperture of porous concrete was analyzed, and the results are shown in
Figure 7. It can be obtained from Figure 7 that:

(1) When the aggregate gradation and aggregate to binder ratio were the same, there was
a significant positive correlation between the permeability and the porosity of porous
concrete. The relationship equations between them were shown in Equations (6) and (7),
and the correlation coefficient R2 of both equations exceeded 0.96. It showed that
porosity was the key factor that can determine the permeability.

k1 = −1.10 + 10.19p, R2 = 0.96, (6)

k11 = 312.2 × p3.49, R2 = 0.97, (7)
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where k1 and k11 are the permeability of porous concrete, cm/s; p is the porosity of porous
concrete.

(2) When the other conditions were the same, the permeability of porous concrete pre-
pared with different admixtures showed an increasing trend with the increase of the
pore number, but the correlation between them was not significant, indicating that
the influence of the pore number on the permeability of porous concrete was limited;

(3) The permeability of porous concrete prepared with different admixtures showed a
random distribution trend with the increase of equivalent aperture. It showed that
the equivalent aperture had no effect on the permeability.
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3.3. Strength
3.3.1. Compressive Strength and Flexural Strength

Figures 8 and 9 presented the effects of different admixtures on the compressive
strength and flexural strength of porous concrete. Figure 10 showed the correlation between
the compressive strength and flexural strength of porous concrete. It could be observed
from Figures 8–10 that:

(1) When the aggregate gradation and aggregate to binder ratio were the same, the added
admixtures could significantly improve the compressive strength and flexural strength
of porous concrete. It showed that adding admixtures was a method to effectively
improved the strength of porous concrete. However, it could also be seen that dif-
ferent admixtures and their combinations had significant differences in improving
the strength of the porous concrete. Taking the compound addition of admixtures
as an example, the compressive strength and flexural strength of porous concrete
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with the best combination of admixtures (SF + MS) could be increased by 52.6% (from
23.1 MPa to 35.24 MPa) and 22.8% (from 3.29 MPa to 4.04 MPa), respectively, while
the compressive strength and flexural strength of the worst combination (SF + GO)
could be increased by only 17.9% (from 23.1 MPa to 27.24 MPa) and 17.9% (from
3.29 MPa to 3.88 MPa), respectively;

(2) When other conditions were the same, there was a significant difference between
the increase of compressive strength and flexural strength of porous concrete with
different admixtures, which showed that different admixtures and their combinations
had different effects for improving the strength of porous concrete. Therefore, it
should not be assumed that an admixture may significantly improve the flexural
strength of porous concrete just because it can effectively improve the compressive
strength of porous concrete;

(3) The compressive strength to flexural strength ratio (C/F ratio) of porous concrete
prepared with different admixtures was presented in Figure 10c. It can be seen from
Figure 10c that the value of C/F ratio was concentrated in the range 7.0–9.0 and
presented the characteristics of random distribution with the increase of porosity.
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3.3.2. Correlation between Strength and Pore Characteristics

The relationship between the strength and pore characteristics of porous concrete
was shown in Figure 11. It could be clearly indicated from Figure 11 that the distribution
of compressive strength and flexural strength of porous concrete prepared with different
admixtures had no apparent rule with the increase of porosity, pore number, and equivalent
aperture. This demonstrated that when the aggregate gradation and aggregate-to-binder
ratio were fixed, the strength of porous concrete prepared with different cementitious
materials was mainly affected by the quality of the cement mortar, but had little relationship
with the pore characteristics caused by its different distribution in the porous concrete.
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3.4. Anti-Stripping Property
3.4.1. Mass Loss Rate

The mass loss rate of porous concrete after 300 times scatting was chosen as the index
to evaluate the anti-stripping property of porous concrete, and the results was presented in
Figure 12. It could be seen from Figure 12 that:

(1) It was feasible to evaluate the anti-stripping property of porous concrete by the
improved Cantabro scattering test method which was used to evaluate the asphalt
bonding performance of asphalt concrete, and it was not inapplicable due to the
porous concrete being a brittle material;

(2) When the aggregate gradation and aggregate to binder ratio were the same, adding
different admixtures into porous concrete could effectively improve the anti-stripping
property of porous concrete, and the improvement effects of different admixtures
were significantly different;

(3) For the porous concrete prepared with single admixtures, the anti-stripping property
of porous concrete prepared with slag was the best compared with others, while the
superplasticizers were the worst. The porous concrete prepared by the compound ad-
dition of admixtures also showed that the scattering mass loss rate of porous concrete
containing superplasticizers was much larger than other admixtures combinations
(except for the combination of superplasticizers and slag). The results showed that the
slag could effectively improve the anti-stripping property of porous concrete, while
the effect of superplasticizers was significantly lower than that of other admixtures.
There were two reasons for the phenomenon: (a) The water consumption of porous
concrete mixed with superplasticizers was greatly reduced, and the water in the mix-
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ture evaporated during the molding process, especially on the upper molding surface,
resulting in insufficient adhesion of the aggregate on the surface of the specimen due
to the water loss of the mixture. The aggregate on the surfaces was easy to peel off
during the scattering process, resulting in a large mass loss rate; (b) the porosity of
porous concrete mixed with superplasticizers was relatively larger, and it meant that
the thickness of cement film wrapped on the surface of aggregate was thinner, and
the aggregate was easier to peel off during the scattering.
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3.4.2. Relationship between Anti-Stripping Performance and Pore Characteristics

In order to evaluate the influence of pore characteristics on the anti-stripping property
of porous concrete better, the correlation between the scattering mass loss rate and pore char-
acteristics was analyzed (as presented in Figure 13). It could be seen from Figure 13 that:

(1) The mass loss rate of porous concrete showed a trend of increasing with porosity.
However, the correlation between the two was weak (R2 = 0.51), indicating that
the porosity was not the only factor affecting the anti-stripping property of porous
concrete, and its influence was limited. When the aggregate gradation and aggregate
to binder ratio of porous concrete were fixed, the porosity could characterize the
thickness of cement paste wrapped on the surface of aggregate with a certain extent.
It indicated that the thickness of the cement paste wrapped in the aggregate affected
its anti-stripping property. Thus, when other conditions were fixed, reducing the
porosity was one way to improve the anti-stripping property of porous concrete;

(2) There was no significant correlation between the mass loss rate of porous concrete
and the pore number/equivalent aperture, indicating that the two pore characteristics
had little effect on the anti-stripping property. This may be related to the random
distribution of the two pore characteristics among the aggregates with different
cement pastes.
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3.5. Relationship between Strength and Anti-Stripping Property

The relationship between anti-stripping property and strength was presented in
Figure 14. The scattering mass loss rate showed a random distribution with the increase in
compressive strength and flexural strength. It means that the anti-stripping property and
strength of porous concrete prepared with different admixtures had no apparent relation-
ship. Therefore, the strength and anti-stripping property of porous concrete prepared with
different admixtures cannot be characterized by each other.
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4. Conclusions

In this study, the porosity, pore characteristics, permeability, strength, and anti-
stripping property of porous concrete prepared with different admixtures were experimen-
tally examined. In addition, the relationship between permeability, strength, anti-stripping
property, and pore characteristics of porous concrete, as well as the correlation between the
strength and anti-stripping property, were investigated. The main conclusions are shown
as follows:

(1) The porosity of porous concrete prepared with different admixtures was significantly
different, indicating that when the cement mortar of porous concrete was different,
the density value cannot characterize its porosity. The porosity of porous concrete
obtained by the underwater gravity method was slightly lower than the CT image
processing method (within 0.5%);

(2) Permeability of porous concrete made of different admixtures was obviously different
(over 131%). Permeability of porous concrete had a high correlation with porosity
(R2 ≥ 0.96), and it had no obvious relationship with the pore number and equivalent
apertures;

(3) The addition of appropriate admixtures could greatly improve the strength of porous
concrete, and the effect of the same admixture on the improvement of compressive
strength and flexural strength was not completely consistent. The strength of porous
concrete had no obvious relationship with its pore characteristics, indicating that
the type of cement mortar material composed of different admixtures had a more
significant impact on its strength than pore characteristics;

(4) The addition of admixtures could effectively improve the anti-stripping property of
porous concrete. The anti-stripping property of porous concrete containing slag was
relatively good, while that of porous concrete containing superplasticizers was poorer.
Besides, the anti-stripping property of porous concrete had a weak correlation with
porosity, and has no correlation with pore number, equivalent apertures, or strength;

(5) There was no significant correlation between the strength and anti-stripping property
of porous concrete prepared with different admixtures.

Based on the results obtained in this study, the authors recommend the following pro-
cedures to improve the strength and anti-stripping property of porous concrete: (a) Choose
the appropriate admixtures to prepare porous concrete, (b) reduce the porosity under the
condition of satisfying the requirement of permeability, (c) adjust the water consumption
and cement amount according to the type of admixtures added.
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