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Abstract: This paper proposes the use of Gaussian Bayesian networks (GBNs) for damage detection
of steel truss bridges by using the strain monitoring data. Based on the proposed damage detection
procedure, a three-layer GBN model is first constructed based on the load factors, structural deflec-
tions, and the stress measurements of steel truss bridges. More specifically, the load factors of the
structures are defined as the first-layer network nodes, structural deflections are considered as the
second-layer network nodes, and the third-layer nodes of the GBN model are built based on the stress
data of the truss elements. To achieve the training for the constructed GBN model, the finite element
analysis of the bridge structures under the different load factors is performed. Then, the training of
the network is performing by using the maximum likelihood estimation approach, and the optimized
network parameters are obtained. Based on the trained network model, the measured load factors
and the corresponding stress monitoring data of a limited number of truss elements are considered
as input, and the stress measurements of all truss elements of bridges can be accurately estimated
by searching the optimized topological information among network nodes. For a steel truss bridge,
when the truss elements are damaged, the stress states of the damaged elements will be changed.
Therefore, a damage index is further constructed for damage detection of steel truss bridges based
on the changed stress states of those damaged elements. To verify the feasible and effective use of
the proposed damage detection approach, an 80 m steel truss bridge with various damage cases was
conducted as numerical simulations, and the investigation results show that the trained GBN can be
accurately used for stress prediction of steel truss bridges, and the proposed damage index with the
estimated stress data can be further applied for structural damage localization and quantification
with a better accuracy. Furthermore, the results also suggest that the proposed damage detection
procedure is accurate and reliable for steel truss bridges under vehicle loads.

Keywords: steel truss bridges; Gaussian Bayesian networks; damage detection; damage index

1. Introduction

Structural health monitoring is a strategy and process to evaluate the condition of a
structural system by monitoring the load, environmental conditions, and dynamic response
of the structure. Bridge structure damage detection has always been one of the hot research
topics in the field of health detection, including the identification of damaged areas and the
assessment of damage degree [1,2]. Its purpose is to judge whether the civil engineering
structure is damaged and its location and damage degree, then predict the remaining life,
and make future maintenance decisions for the monitored structure.

According to the applied characteristic data, damage detection methods can be divided
into static identification methods [3–5], dynamic identification methods [6–8], and static–
dynamic identification methods [9,10]. The damage detection of a bridge structure based
on static tests is to carry out a static load test on the bridge structure under the closed
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condition of bridge operation and measure the static parameters such as deflection and
strain of the bridge under static load. The method of structural damage detection based on
dynamic tests [11,12] has been widely used in structural damage detection. Through the
dynamic load test of the bridge structure, the overall dynamic performance of the bridge
structure is obtained, and the amount of changes in the dynamic characteristics of the
structure is taken as the basis for judging the operation condition and damage degree of the
bridge [13,14]. Fabrizio vestronil et al. [15] deduced from the partial differential equation
of vibration that the eigenvalue of the equation is a function of the damage position and
degree of the structure. Through the vibration test of a simply supported beam, the
damage degree and position of the beam can be determined qualitatively by using the
minimum frequency difference before and after the damage. Perera et al. [9] proposed
a damage detection method that can combine static and dynamic measurements in the
model updating program. In the proposed method, global and local damage detection are
combined to simplify the inspection procedure. Chang et al. [6] studied the influence of
vehicle parameters and speed on damage detection by conducting mobile vehicle bridge
crossing experiments in the laboratory. The results show that higher vehicle speed can
increase the accuracy of damage detection. Deng et al. [16] proposed a probability-based
damage detection method for long-span bridges. By eliminating the temperature effect of
the measured modal frequency, small abnormalities of the bridge modal can be detected.
Chen et al. [17] proposed a multi-cross reference method to identify the damage of highway
bridges using long-gauge fiber Bragg grating sensors with high durability. The results of
numerical simulation and field experiment prove the accuracy of this method. Mohsen
Mousavi et al. [18] conducted damage detection research on the bridge according to the
instantaneous frequency and amplitude of the bridge under dynamic loads.

With the increasing application of health monitoring systems in large-scale structures,
data-driven safety assessment technology has been widely used [19]. Machine learning
can expand a large amount of input data and summarize the problems with similar basic
characteristics distribution. Therefore, the structure damage detection theory based on
machine learning has been studied [20,21]. Xiang et al. [22] proposed a novel two-stage
approach based on convolutional neural networks and an improved hunter–prey optimiza-
tion algorithm to identify the structural damage. A numerical model of a frame structure
and a test structure of a three-story frame were adopted to verify the effectiveness of the
proposed method. Luo et al. [23] presented a review of the technical literature concerning
variations in the vibration properties of civil structures under varying temperature condi-
tions and damage detection methods for bridge structures. The progress in research on
the probability analysis method, the artificial intelligence method, and the optimization
algorithm method in this field was reviewed. Lei et al. [24] proposed a structural damage
detection method based on convolutional neural network, which can identify structural
damage under unknown load.

The Bayesian network is derived from the theory of probability theory and graph the-
ory. It has a rigorous mathematical theoretical interpretation basis of probability theory. It is
one of the most efficient theoretical models in the field of uncertain knowledge expression
and reasoning in the current period [25]. In engineering, when using a Bayesian network
to study uncertainty, it mainly includes reasoning diagnosis and reasoning prediction,
which are two key research directions. Sousa and Einstein [26] developed a geological case
prediction model and construction strategy decision-making model. These two models
are based on the Bayesian network and combine professional domain knowledge and
actual field measurement data to guide tunnel tunneling and risk decision-making. Xia
et al. [27] established a life-cycle risk assessment system for large-scale infrastructure by
using a Bayesian network, on the basis of summarizing the risk factors existing in previous
infrastructure projects and combining expert opinions. Feng et al. [28] applied a Bayesian
network to predict the degree of tunnel extrusion. The research shows that the prediction
error rate of a Bayesian network to the actual results is low, and it supports the prediction
of results under incomplete data. In applying Bayesian networks for safety evaluation
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and damage detection of engineering structures and mechanical systems, Fang et al. [29]
proposed the use of a nested discrete Bayesian network-based approach to construct the
mapping relationship between structural responses and failure states of truss structures,
and the failure risk of truss elements were evaluated by using the topology results of
the trained Bayesian networks. Moreover, in the literature [30], a Bayesian network was
developed for providing a potential tool of the automatic damage detection of the yaw
system, and the results show that the proposed three-layer Bayesian network model is
capable of accurately identifying the drawbacks of the yaw system by combining with a
BIC-based optimization strategy.

Compared with the traditional neural network algorithms [31], if the logical relation-
ship of network nodes for Bayesian networks can be clearly defined based on the prior
information of structures, it would significantly reduce the requirements of training sam-
ples and enhance the training efficiency of the network model. In addition, the prediction
results of Bayesian networks are usually presented by using probability distributions,
which can be further applied for the reliability evaluation of structures [29]. However,
when using Bayesian networks for response prediction of large-scale structures, the number
of network nodes are significantly increased due to the low correlation of network nodes.
Furthermore, the prediction accuracy of Bayesian networks partly depends on the prede-
fined network architecture, and an unreasonable network structure may cause inaccurate
prediction results.

Based on the superior topology characteristics of Bayesian networks, in this study, the
continuous Gaussian Bayesian networks were used for response prediction of steel truss
bridge structures, and the prediction results were further applied for damage detection
of such type of structures with a defined damage index. The proposed procedure can
be described as: (1) According to the structural characteristics of steel truss bridges, a
three-layer GBN model was first constructed based on the load factors and structural
responses. (2) The finite element analysis of a bridge structure was performed to obtain
the training data subjected to the various load excitations. (3) The training of a three-layer
GBN model was achieved by using the maximum likelihood estimation. (4) Based on the
trained network model, the stress measurements of all truss elements of bridges can be
accurately estimated by searching the optimized topological information among network
nodes. (5) The damage detection of steel truss bridges can be achieved by using the defined
damage index with the estimated stress values of all truss elements.

The organization of this paper is as follows: Section 2 describes the basic structure
and characteristics of Bayesian networks and derives the parameter learning process of
the GBN based on Bayesian parameter estimation. Then, the damage index and damage
detection method of the steel truss bridge based on the GBN are proposed. Section 3 takes
an 80 m steel truss bridge under static load as a numerical example to verify the feasibility
of the method. Section 4 studies the damage detection of steel truss bridges under moving
loads. Finally, conclusions are drawn in Section 5.

2. Damage Detection Based on Gaussian Bayesian Networks

In this section, the damage detection method of a steel truss bridge under static load
and dynamic load based on Gaussian Bayesian networks (GBNs) was studied. Firstly, a
GBN model with load factor, node displacement, and maximum stress of the truss element
as the node variables was constructed. Then, based on finite element analysis, the response
data of the structure under different load factor combinations were obtained, and the
obtained structural response data was used as the training data of the network to realize
the parameter learning of the GBN model. Based on the trained GBN, the known load
information and a limited number of stress test data of truss elements were further input
into the GBN to deduce the maximum stress of the remaining truss elements. Finally, by
constructing the damage index based on the residual of the element peak stress, the damage
state of the steel truss bridge was evaluated.
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2.1. Parameter Learning of GBN
2.1.1. Bayesian Network Theory

A Bayesian network is a network structure composed of conditional probability and a
directed loop-free network. It consists of nodes and directed arcs, each node represents an
arbitrary variable, and the directed curve segment between nodes represents the causal
relationship between random variables. According to the probability distribution type
of nodes, Bayesian networks can be divided into discrete and continuous types. When
the probability distribution of each node is continuous and approximately conforms to
the Gaussian distribution, such a Bayesian network is called a Gaussian Bayesian net-
work (GBN). The basic concept of a Bayesian network includes three aspects: network
establishment, network learning, and network reasoning. In Bayesian network learning,
a large amount of data is needed to train the model and establish the mutual topological
relationship between nodes in the form of conditional probability. Based on the completion
of network training, Bayesian network reasoning solves specific problems according to new
evidence, including forecasting and diagnosis.

With the development of artificial intelligence and machine learning, Bayesian network
theory has attracted more and more attention and research from many scholars. The
advantages of Bayesian networks are shown below. First, a Bayesian network has the
characteristics of Bayesian theory, which means that the network has a unique two-way
reasoning ability. For the trained Bayesian network, the prior information can be updated
by means of data input, i.e., when some new variables are observed, the calculation results
of Bayesian network can be updated by evidence, and the posterior probability of other
variables can be calculated. In addition, the establishment of a Bayesian network model can
combine historical experience and expert opinions, which reduces the dependence on data
scale to a certain extent and embodies the characteristics of data-driven and knowledge-
experience integration modeling. Moreover, a Bayesian network is not very demanding
of data integrity. In the case of incomplete data, a Bayesian network can supplement data
samples by learning algorithms, such as the Gibbs sampling method, the expectation-
maximization method, etc.

2.1.2. Bayesian Parameter Estimation

In the parameter learning of the GBN, the Bayesian parameter estimation method was
used in this study. The theory of Bayesian parameter estimation is described below.

Suppose a parameter space Θ. π(θ) is recorded as the prior distribution function of the
unknown parameters θ (θ ∈ Θ). Bayesian parameter estimation can be described as solving
the conditional probability distribution, i.e., posterior distribution, by combining the prior
distribution information π(θ) of the unknown parameter θ with the known samples.

Given that the prior information of the parameters is known, assume the conditional
distribution density function of population X is f (x | θ). Then, the conditional distribution
density function of the sample in X is shown as

f (x1, x2, · · · , xn|θ ) =
n

∏
i=1

f (xi|θ ) (1)

The joint distribution density function of (X1, X2, · · · , Xn, θ) is expressed as

ϕ(x1, x2, · · · , xn, θ) = π(θ) f (x1, x2, · · · , xn|θ ) (2)

where π(θ) is the prior distribution information. Then, the marginal distribution density
function of (X1, X2, · · · , Xn, θ) is given as

g(x1, x2, · · · , xn) =
∫

Θ
ϕ(x1, x2, · · · , xn, θ)dθ (3)
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When the sample observations are known, the joint distribution density function can
be decomposed into

ϕ(x1, x2, · · · , xn, θ) = g(x1, x2, · · · , xn)π(θ|x1, x2, · · · , xn ) (4)

π(θ|x1, x2, · · · , xn ) =
ϕ(x1, x2, · · · , xn, θ)

g(x1, x2, · · · , xn)
=

π(θ) f (x1, x2, · · · , xn|θ )∫
Θ π(θ) f (x1, x2, · · · , xn|θ )dθ

(5)

where π(θ|x1, x2, · · · , xn ) is the conditional distribution density function of θ: that is, the
posterior distribution. Equation (5) is the Bayesian formula in the form of distribution
density function.

Compared with other parameter estimation methods, Bayesian parameter estimation
uses prior information, which makes the convergence speed faster and the inference result
more accurate. In the parameter learning based on Bayesian parameter estimation, the
prior distribution of parameters has to be assumed first. Then, the optimal parameters
will be found by using Bayesian posterior probability formula with training data. The
parameters of the complete data set are assumed to be mutually exclusive, and the poste-
rior distribution of the parameters can also be proved to have independence. Therefore,
parameter estimation can be performed on the basis of separately calculating the posterior
distributions of each parameter.

2.2. GBN Model

Considering that the force transmission path of the steel truss bridge under static load
is relatively clear, when constructing the GBN, first determine the nodes and structure of
the Bayesian network, and then learn the network parameters through the training data.
This method can significantly improve the learning efficiency of the network.

Combined with the stress characteristics of steel truss bridges and the architecture
characteristics of the Bayesian network, this paper takes the external load factors of steel
truss bridges as the first-layer nodes of the GBN, then takes the displacement of structural
nodes as the second-layer nodes of the GBN, and further takes the maximum stress of
truss members as the third-layer nodes of the GBN. Based on the above assumptions, the
initial GBN with three-layer nodes is established, and the established GBN structure is
shown in the Figure 1. According to the finite element model of the steel truss bridge, the
response data of the structure under different loads are obtained, and the response data are
used as the training data to realize the parameter learning of the GBN model by Bayesian
parameter estimation method.
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2.3. Damage Index

Using the trained GBN and the stress test data of a limited number of members, the
stress inference of the remaining members of the steel truss bridge can be realized. In order
to use the inference results of the GBN to realize the damage detection of steel truss bridges,
a damage index based on the element peak stress residual was constructed, as shown in
the following equation

DIi =
‖yi − yhealth

i ‖2

‖yhealth
i ‖2

× 100% (6)

where yhealth
i and yi are the stress inference result of the ith member of the bridge in the

healthy state and in the service period, respectively. DIi is the damage index of the ith
member of the bridge.

In summary, the damage detection process of steel truss bridges based on the GBN
network is shown in the Figure 2, which can be expressed as: (1) Establish a GBN model
with load factors, node displacements, and the maximum stress of structural elements as
node variables. (2) The finite element model of the steel truss bridge was established to
obtain the response data of the steel truss bridge under different loads. (3) The acquired
structural response data is used as training data to realize the parameter learning of the
GBN network model. (4) Under the condition of damage, the known load information
and a limited number of element stress test data are substituted into the GBN network to
deduce the maximum stress of the remaining truss elements. (5) Construct damage indexes
and use the inference results in steps (3) and (4) to realize the damage location and damage
degree quantification of bridge structures.
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3. Static Damage Detection Based on GBN

In order to verify the feasibility and accuracy of the damage detection method of
steel truss bridge based on the GBN, this section takes a steel truss bridge under 80 m as
a numerical example to carry out the damage detection research of a steel truss bridge
under static load. Firstly, according to the damage detection process proposed in this
paper, the GBN network model with three-layer nodes was established. Then, the finite
element model of a steel truss bridge was used to calculate its response under different
load factors. The obtained structural response data were used as the training samples of
the GBN network to realize the parameter learning of the GBN network model and obtain
the trained GBN network. Finally, the known load information of the steel truss bridge
and a limited number of element stress test data were used as input and substituted into
the trained GBN network to realize the inference of residual stress of the web members.
Based on the stress inference results of the steel truss bridges, the damage location and
damage degree of bridge structures were realized by using the damage index proposed in
this paper.

3.1. Bridge Finite Element Model

The finite element model of the 80 m steel truss bridge was established, as shown in
Figure 3. The structure of the bridge is a simply supported underpass steel truss girder
composite girder bridge. The internode length of the steel truss girder is 8 m, the height
of the main truss is 11 m, and the ratio of height to span is 1/7.3. The upper and lower
strings of the main truss adopt a box-type section, and the web members adopt an H-type
section. The deck of the bridge is composed of composite beams, which are combined with
concrete bridge panels on the upper layer and steel beams on the lower layer. The material
parameters of the model are shown in Table 1.
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Table 1. The material parameters.

Materials Young’s Modulus (E) Poisson’s Ratio (ν) Density (ρ)

Q345 steel 206 GPa 0.30 7850 kg/m3

C50 concrete 34.5 GPa 0.17 2500 kg/m3

For the purpose of studying the influence of load positions on the structural responses,
the lane line of the bridge was set as the load position. Twenty-one nodes on the lane line
were selected as load action nodes and are numbered from L1 to L21.

To distinguish the detailed locations of truss elements, the symmetrical truss elements
on the sides of the lane line were divided into two parts that are “loading side” and “non-
loading side”. For the steel truss bridge model as shown in Figure 4, the web members on
the “loading side” are numbered as 1~19, while the web members on the “non-loading
side” are set as 20~38. The specific numbers of the loading side web members and the
nodes of upper and lower chord are shown in Figure 5.
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3.2. Establishment of GBN

For the steel truss bridge structure, the factors affecting the effect of static load mainly
include vehicle weight and vehicle position. In the construction of the GBN, the first-layer
nodes correspond to the vehicle weight and vehicle position, respectively, the second-layer
nodes correspond to the displacement of upper and lower chord nodes, and the third-layer
nodes correspond to the stress of 38 web members, respectively.

In the process of data extraction, all node variables were assumed to follow Gaussian
distribution: assuming that the load variable is G1 (unit: kN) and follows the distribution
of G1~N (300, 56.25). As for the load position, we considered lane nodes 1~7, 8~14, and
15~21 as three intervals, and established the GBN under three different intervals. When the
load was located in the range of lane nodes 1~7, the position variable of load was assumed
to be X1, which follows the distribution of X1~N (4, 0.56). When the load was located in the
range of lane nodes 8~14, it was assumed that the load position variable was X2, which
follows the distribution of X2~N (11, 0.56). When the load was located in the range of
lane nodes 15~21, it was assumed that the variable of load position was X3, which follows
the distribution of X3~N (18, 0.56). According to the distribution of the above variables,
300 groups of samples were obtained by random sampling method. The finite element
model was used to calculate the bridge response data under different combinations of
variables, and the GBN training was realized based on the 300 sets of data obtained. The
GBN parameters were trained by extracting the calculation results of the finite element
model under different working conditions. In the three different action intervals, the node
displacement of the loading side and the peak stress of the truss members were significantly
larger than that of the non-loading side. In order to facilitate the discussion of the data
reasoning performance of the GBN network and the damage detection effect, the node
displacement and element stress of the loading side were taken as the research objectives.

3.3. Data Inference Analysis of GBN

With the trained GBN model, the load information and stress monitoring data of some
web members can be used as input to realize the stress inference of the remaining web
members. To investigate the accuracy and reliability of using a trained GBN model for
response prediction under the effects of different numbers of testing points, three cases
are further discussed in this study. The corresponding three types of cases are as follows.
(1) The stress data of 26 web members are known, of which the numbers are 1, 2, 4, 5, 7,
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8, 10, 11, 13, 14, 16, 17, and 19 on the loading side and numbers 20, 21, 23, 24, 26, 27, 29,
30, 32, 33, 35, 36, and 38 on the non-loading side. (2) The stress data of 20 web members
are known, which are numbers 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 of the loading test and
numbers 20, 22, 24, 26, 28, 30, 32, 34, 36, and 38 of the non-loading side. (3) The stress test
data of 8 web members are known, which are numbers 1, 7, 13, and 19 members measured
under loading, and numbers 20, 26, 32, and 38 members on the non-loading side.

The load size is 290 kN, 300 kN, 310 kN, and 320 kN, respectively, and the load position
is at node No. 4, 11, and 18 of the driveway. There are 12 load combinations in total. The
test data under 12 working conditions were input into the trained GBN to infer the stress
of the remaining web members. Finally, the accuracy of the stress inference results of
steel truss bridges based on the GBN was verified by comparing and analyzing the error
between the finite element model calculation results and the GBN inference results. The
stress inference errors of the three types of cases are shown in Figures 6–8.
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Under the cases of three different test data, the trained GBN can accurately infer the
stress of the remaining web members, and the maximum prediction error is controlled
within 0.5%. By comparing the stress prediction errors of the web members in the three
cases, it can be found that with the decrease in the number of known members, the
fluctuation of the stress inference results of the GBN gradually increases, but the overall
prediction is still accurate.

3.4. Single-Point Damage Detection

In this section, the single-point damage detection of the steel truss bridge based on
the GBN is discussed. In order to simulate the damage state of the steel truss bridge,
the stiffness of web member 10 in the bridge model was reduced by 4%, 9%, and 16%,
respectively. Through the static analysis of the steel truss bridge model, the responses of the
structure under different damage states were obtained. The stress data of 20 web members
selected in case 2 in Section 3.3 were substituted into the trained GBN model, and the stress
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data of the remaining 18 web members were inferred. Then, the damage state of the steel
truss bridge was identified by Equation (6).
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In the process of damage detection, three load conditions were considered for each
damage condition. Among them, the load size was 310.6 kN, and the action position
corresponded to node 4, 11, and 18 of the lane, respectively. Therefore, three damage
detection results were obtained under each damage condition. When 4%, 9%, and 16%
damage occur to the web member element, the obtained damage detection results are
shown in Figures 9–11. It can be inferred from the damage detection results that the
proposed method can not only accurately locate the damage of the steel truss beam, but
also quantify the damage degree of the web member element. In addition, it can be seen
from these figures that when the load is applied to node 11, the damage index is closest to
the actual damage degree of the web member. The damage detection results of node 11
under load are listed in Table 2. According to the table, when the single point damage was
4%, 9%, and 16%, the damage indexes were 3.68%, 8.40%, and 15.10%, respectively.
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3.5. Multi-Point Damage Detection of the Steel Truss Bridge

In this section, the effectiveness of the proposed method for multi-point damage
detection of steel truss bridges was verified. In the finite element model, it was assumed
that the stiffness of No. 6 member was weakened by 10% and that of No. 16 member was
weakened by 20%. A load of 310.6 kN was applied at node 11 of the lane, and the response
of the structure under multi-point damage was calculated by finite element model. The
stress data of the selected 20 web members were substituted into the trained GBN model,
and the stress data of the remaining 18 web members were inferred. Then, Equation (6)
was used to calculate the damage index value of the steel truss bridge under multi-point
damage condition. The result of damage detection is shown in Figure 12. It can be found
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from Figure 12 that the proposed method can realize multi-point damage location of steel
truss bridges. The calculated value of the damage index is 9.36% at No. 6 member and
17.28% at No. 16 member. Through the above analysis, it can be seen that the method can
not only effectively realize the single-point damage detection of steel truss bridges, but also
has high accuracy in multi-point damage detection.
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Table 2. Damage detection results with the load applied on node 11.

Stiffness Reduction Damage Detection Results Identification Errors

4% 3.68% 8.00%
9% 8.40% 6.67%

16% 15.10% 5.63%
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4. Dynamic Damage Detection Based on GBN

In this section, based on the steel truss bridge model established in Section 3, the
damage detection of the steel truss bridge under moving loads was studied. First, a vehicle–
bridge coupled system was established using Universal Mechanism software to obtain the
dynamic responses of the bridge under vehicle loads. Then, the GBN based on vehicle
loads was constructed. The results of multi-point damage detection under the conditions of
no noise and 5% noise were calculated, respectively, and the effect of multi-point damage
detection of the steel truss bridge based on the GBN was verified.

4.1. Establishment of GBN

The bridge model was imported into the Universal Mechanism software as a flexible
subsystem. The software was used to build the multi-body model of the vehicle. Then, the
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vehicle–bridge coupled system was established by combining subsystems of the bridge
and vehicle. For convenience of calculation, vehicle loads were symmetrically arranged in
two lanes. The established vehicle–bridge coupled system is used to calculate the dynamic
response of the bridge under vehicle load.

When the GBN is constructed under dynamic loads, the first-layer nodes of the net-
work correspond to the weight and speed of the vehicle, the second-layer nodes correspond
to the maximum vertical deflection of the upper and lower chord joints of the steel truss
bridge, and the third-layer nodes correspond to the peak stress of 38 web members. In
the process of data extraction, it was assumed that all the node variables follow normal
distribution. The vehicle weight G1 (unit: t) and the vehicle speed V1 (unit: km/h) are
assumed to follow the distributions of G1~N (41, 10) and V1~N (65, 15), respectively. All
400 groups of samples conforming to the above rules were generated through random sam-
pling and were used to calculate the bridge response data by the vehicle–bridge coupled
system. The initial GBN was trained based on the extracted training data. The trained
network was used to identify the damage of steel truss bridges to verify the feasibility of
the proposed damage detection approach.

4.2. Damage Detection without Noise

Based on the finite element model in the health state, the vehicle mass was set to
50 T and the vehicle speed was set to 70 km/h. The peak stress data of the selected 20 web
members were obtained. Then, the stress data calculated by the vehicle–bridge coupling
was input into the trained GBN, and the peak stress of the remaining web members was
inferred by using the topological relationship between network nodes.

The stiffness of web members 6 and 16 in the finite element model was weakened by
10% and 20%, respectively. The finite element model of the bridge considering damage was
used to analyze the vehicle–bridge coupled vibration under the condition of vehicle weight
50 t and vehicle speed 70 km/h, and the peak stress data of 20 selected structural elements
were obtained. Then, the monitoring data were input into the GBN as new evidence
to infer the stress of the remaining members. The inference results of injury model and
health model were compared, as shown in Figure 13. The damage index value obtained
by Equation (6) is plotted in Figure 14. The damage index of web members 6 and 16 were
9.07% and 16.72%, respectively. It can be proved that the GBN can effectively locate the
damage of the steel truss bridges by using the dynamic response and can quantify the
damage degree of members.

Buildings 2022, 12, 1463 14 of 17 
 

 

Figure 13. Stress inference results based on the vehicle loads without noise. 

 

Figure 14. Multi-point damage detection results based on the vehicle loads without noise. 

4.3. Damage Detection with 5% Noise 

In this study, to further validate the reliability of using the proposed approach for 

damage detection of steel truss bridge structures under the effects of measurement noise, 

5% random error was added to the element peak stress data to simulate the measured 

structural responses. In previous studies [32], 5% noise level, in fact, indicates a relatively 

large error that is capable of interpreting the uncertainty of the measured structural re-

sponses caused by data acquisition devices and sensing systems, and thus, the effects of 

5% measurement noise was considered in this study. Then, the data were fed into the 

trained GBN to infer the peak stress of the remaining web members. The calculation re-

sults of the damage index are shown in the Figure 15. The damage index of web members 

6 and 16 were 8.40% and 14.63%, respectively. With the addition of noise, the GBN-based 

damage detection still achieves high accuracy, which indicates that the proposed method 

has good noise resistance. 

2 4 6 8 10 12 14 16 180 20

0

2

4

6

8

10

12

14

16

18

(6,9.07%)

(16,16.72%)

D
am

ag
e 

in
d

ex
 (

%
)

Number of web members

Figure 13. Stress inference results based on the vehicle loads without noise.



Buildings 2022, 12, 1463 14 of 16

Buildings 2022, 12, 1463 14 of 17 
 

 

Figure 13. Stress inference results based on the vehicle loads without noise. 

 

Figure 14. Multi-point damage detection results based on the vehicle loads without noise. 

4.3. Damage Detection with 5% Noise 

In this study, to further validate the reliability of using the proposed approach for 

damage detection of steel truss bridge structures under the effects of measurement noise, 

5% random error was added to the element peak stress data to simulate the measured 

structural responses. In previous studies [32], 5% noise level, in fact, indicates a relatively 

large error that is capable of interpreting the uncertainty of the measured structural re-

sponses caused by data acquisition devices and sensing systems, and thus, the effects of 

5% measurement noise was considered in this study. Then, the data were fed into the 

trained GBN to infer the peak stress of the remaining web members. The calculation re-

sults of the damage index are shown in the Figure 15. The damage index of web members 

6 and 16 were 8.40% and 14.63%, respectively. With the addition of noise, the GBN-based 

damage detection still achieves high accuracy, which indicates that the proposed method 

has good noise resistance. 

2 4 6 8 10 12 14 16 180 20

0

2

4

6

8

10

12

14

16

18

(6,9.07%)

(16,16.72%)

D
am

ag
e 

in
d

ex
 (

%
)

Number of web members

Figure 14. Multi-point damage detection results based on the vehicle loads without noise.

4.3. Damage Detection with 5% Noise

In this study, to further validate the reliability of using the proposed approach for
damage detection of steel truss bridge structures under the effects of measurement noise,
5% random error was added to the element peak stress data to simulate the measured
structural responses. In previous studies [32], 5% noise level, in fact, indicates a relatively
large error that is capable of interpreting the uncertainty of the measured structural re-
sponses caused by data acquisition devices and sensing systems, and thus, the effects of
5% measurement noise was considered in this study. Then, the data were fed into the
trained GBN to infer the peak stress of the remaining web members. The calculation results
of the damage index are shown in the Figure 15. The damage index of web members 6 and
16 were 8.40% and 14.63%, respectively. With the addition of noise, the GBN-based damage
detection still achieves high accuracy, which indicates that the proposed method has good
noise resistance.
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5. Conclusions

In this paper, a damage detection method for steel truss bridges based on a Gaussian
Bayes network was proposed. A GBN model with load factors, node displacements, and
maximum stress of structural elements as network node variables was constructed, and
the analysis results of the finite element model of the bridge were used as training data
to realize the parameter learning of the GBN. The known load information and a limited
number of structural element stress test data were taken as input and replaced into the
trained GBN. Then, combined with the damage index of element peak stress residual,
the damage detection of the steel truss bridge based on the GBN was studied. Taking
an 80 m steel truss bridge as a numerical example, the proposed GBN was trained by
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using the response data of the bridge model under load. The trained network model was
used to verify the effect of the GBN on the stress inference of truss members of steel truss
bridges under different damage degrees. Combined with the proposed damage index, the
damage state of the bridge under static load and dynamic load was identified. Based on
the identification results of different working conditions, the following conclusions were
obtained:

(1) The static damage detection results were 3.68%, 8.40%, and 15.10%, respectively,
when 4%, 9%, and 16% damage occurred to the web member 10 of the bridge. Based on
the calculation results, it indicates the proposed damage detection method is capable of
being used for damage localization and quantification of the steel truss bridges based on
the trained GBN model.

(2) The static damage detection results were 9.36% and 17.28% when 10% damage
occurred to web member 6 and 20% damage occurred to the web member 16 of the bridge.
The results showed that the damage detection method based on GBN can effectively identify
multi-point damage of the steel truss bridge under static loads.

(3) For the steel truss bridge under moving loads, the damage detection results of the
two web members with 10% and 20% damage were 9.07% and 16.72%, respectively. With
the condition of 5% noise, the calculated values of damage index were 8.40% and 14.63%.
The calculation results showed that the proposed GBN can identify multi-point damage of
the steel truss bridge under moving loads, even under the effects of 5% noise.

(4) Although the proposed approach is reliable for damage detection of steel truss
bridges, how to further extend the Bayesian network for damage identification of other
types of structures still needs to be studied.
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