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Abstract: Viscoelastic dampers are conventional passive vibration control devices with excellent
energy dissipation performance. The fractional derivative has a simple form and high accuracy in
the modelling of viscoelastic materials/dampers. The internal variables reflect the internal state
evolution of materials, and are often used to analyze the deformation and thermal process of ma-
terials. In the present work, the mechanical properties of a plate-shear-type viscoelastic damper at
room temperature are tested under sinusoidal displacement excitations. The impacts of frequency
and displacement amplitude on the dynamic properties of the viscoelastic damper in a wide fre-
quency domain (0.1–25 Hz) are investigated. The higher-order fractional derivative model and
the temperature–frequency equivalent principle are employed to characterize the frequency and
temperature influence, and the internal variable theory considering the internal/microscale structure
evolutions is introduced to capture the displacement affection. The higher-order fractional derivative
model modified with the internal variable theory and temperature–frequency equivalent principle
(ITHF) is accurate enough in describing the dynamic behaviors of viscoelastic dampers with varying
frequencies and displacement amplitudes.

Keywords: viscoelastic damper; mechanical properties test; higher-order fractional derivative model;
temperature–frequency equivalent principle; internal variable theory

1. Introduction

Viscoelastic dampers are perfect energy dissipation devices and have been widely used
in seismic/wind vibration control, micro vibration suppression, and platform vibration
isolation, etc. [1–4]. The damping performance and energy dissipation capacity of vis-
coelastic dampers mainly depend on the mechanical properties of viscoelastic materials [5].
Scholars have accomplished a lot of achievements in the research of viscoelastic materials
and dampers [6–9].

In 1992, Zhang et al. [10] proposed a sequential design procedure for optimal place-
ment of viscoelastic dampers in structures, and experimentally verified it with a five-story
steel model structure. Aprile et al. [11] studied the influence of loading frequency and dis-
placement amplitude on the dynamic modulus of viscoelastic dampers. Tsai et al. [12] inves-
tigated the temperature impacts on the seismic control effect of viscoelastically dampered
building structures. Viscoelastic dampers can effectively reduce seismic responses of struc-
tures, and the damping effect decreases with the increment in temperature. Cazenove
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et al. [13] conducted numerical and theoretical observations on the self-heating effect of
viscoelastic dampers. The results show that the self-heating phenomenon of viscoelastic
dampers is very important and should not be neglected in vibration control analysis and
structural design. Xu et al. studied the damping properties of viscoelastic dampers with
different viscoelastic materials [5,14], and utilized the shaking table test to study the seismic
response of structure models retrofitted with viscoelastic dampers [15–18]. Sato et al. [19]
proposed an evaluation method for the practical application of viscoelastic dampers in
wind vibration control by using equivalent sinusoidal waveforms of long-duration random
excitations in along- and across-wind directions. Xu et al. [20] proposed a micro-vibration
isolation and mitigation platform with four viscoelastic damper components to reduce
disturbance generated by flywheels onboard spacecraft. He et al. [21] designed a new type
of viscoelastic damper to control the translational vibration and the rotational vibration of
offshore platforms simultaneously, and shaking table tests were conducted to verify the
capability of dampers in mitigating the multi-dimensional seismic responses of platforms.

The dynamic characteristics and energy dissipation performance of viscoelastic dampers
show a significantly nonlinear variation trend with varying temperatures, frequencies, and
loading displacement amplitudes. The appropriate mathematical model is conducive to
more efficient characterization of mechanical properties of dampers and response analysis
of viscoelastic damper-retrofitted structures. Traditional constitutive models, the Kelvin
model, Maxwell model, Zerner model, and fractional derivative models, etc. [22], of vis-
coelastic materials are mature in characterizing frequency dependence and rheological
properties, but the temperature and frequency reliance of materials cannot be reflected
well. Tsai [23] established a finite element model for viscoelastic dampers by using a
fractional derivative operator and empirical formula to consider the dependence of tem-
perature, frequency, and displacement amplitude at the same time. However, it is rarely
utilized by researchers due to its complex form. Payne et al. [24] assumed that the dis-
placement dependence of the material was mainly due to the influence of the micro filler
network system, and used the Kraus model to explain the correlation characteristics be-
tween dynamic properties of the damper and displacement amplitudes. Liang et al. [25]
built a constitutive model of viscoelastic materials based on a complex combination of
multiple relaxation viscoelastic and viscoplastic models, which can predict the remarkable
temperature- and rate-dependent deformation behaviors of materials well. Bagley et al. [26]
and Lewandowski [27] investigated the mechanical behavior of viscoelastic materials and
conducted a structural seismic analysis of damping structures based on fractional deriva-
tive theory, which has a more concise form and higher accuracy than integral derivative
models. Xu et al. [28,29] formulated the temperature–frequency equivalent principle based
on the W-L-F equation, and theoretically translated the effects of temperature into frequency
impacts. Conti et al. [30] proposed a new mathematical model to describe the aging effects
of viscoelastic materials. The convolution kernel of the integro-differential equation for
describing the viscoelasticity was redefined as a function of time. Wang et al. [31] theo-
retically studied the macro properties of viscoelastic materials with the assumption that
the multi-layer molecular networks interpenetrated together with different chain lengths.
Lu et al. [32] investigated the constitutive relation of viscoelastic materials considering the
friction effect of single molecular chains from surrounding environments at the microscale.

Most of the aforementioned research considers the constitutive relationship and me-
chanical properties of viscoelastic materials from the macroperspective, and there are few
examples of literature from the microperspective. In traditional thermodynamic theories,
the state of materials at an arbitrary moment determined by the macro variables, defor-
mation, temperature, etc., and the internal variables, which could be one or a set of state
variables, such as the damage accumulation, nonelastic deformation, phase transformation,
free volume variation, and changes in material particle size, etc. [33,34]. The internal
variables reflect the evolution process of the internal structure state of materials, and af-
fect the macro mechanical properties and damping performance of viscoelastic materials
significantly. The purpose of the present research is to study the dynamic performance of
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viscoelastic dampers with different frequencies and displacements at room temperature,
and theoretically propose new mathematical models with fractional derivative and internal
variable theory. The mechanical properties of a plate-shear type-viscoelastic damper at
room temperature are tested under sinusoidal displacement excitations. The impacts of fre-
quency and displacement amplitude on the dynamic properties of a viscoelastic damper in
a wide frequency domain (0.1–25 Hz) are investigated. The higher-order fractional deriva-
tive model and the temperature–frequency equivalent principle are employed to predict
the dynamic property variation of the damper with frequency and temperature changes,
and the internal variable theory considering the internal/microscale structure evolutions is
introduced to capture the displacement affection. The higher-order fractional derivative
model modified with the internal variable theory and temperature–frequency equivalent
principle (ITHF) is accurate enough and more appropriate than the higher-order fractional
derivate model modified with the Kraus model and temperature–frequency equivalent
principle (KTHF) in describing the dynamic performance of viscoelastic dampers with
varying temperatures, frequencies, and displacement amplitudes.

2. Performance Test

To study the dynamic properties and vibration reduction efficiency of the viscoelastic
damper with a wide frequency range (0.1~25 Hz), the hydraulic servo fatigue tests were
conducted under external exactions with different loading frequencies and displacement
amplitudes. The results show that the viscoelastic damper has great efficiency in energy
dissipation. The properties parameters storage modulus, loss modulus, loss factor, energy
dissipation, equivalent stiffness, and equivalent damping are importantly affected by the
excitation frequency, and the impact of displacement amplitude on properties parameters
of the viscoelastic damper is relatively slight.

2.1. Test Situation

The viscoelastic damper is fabricated based on the nitrile rubber matrix, and composed
of three steel plates and two viscoelastic layers in parallel, as shown in Figure 1b. The
dimensions of the viscoelastic layers are 60 mm× 50 mm× 10 mm. During the performance
tests, the viscoelastic layers undergo simple shear deformation along the length direction
of the damper and the external mechanical energy can be dissipated through the shear
deformation. The dynamic performance tests of the damper are conducted with a 100 kN
hydraulic servo fatigue test machine manufactured by w+b Company, Switzerland, as seen
in Figure 1a. The viscoelastic damper is fixed tightly on the machine by steel joints and
bolts (see Figure 1b). A temperature controlling box is utilized to adjust the environmental
temperature to 18 ◦C, and the viscoelastic damper is put inside an incubator to make
the temperature stable. The external displacement excitation ud = u0 sin(ωt) is applied
to the viscoelastic damper, where ud is the displacement of the damper and u0 denotes
the displacement amplitude. ω is angular frequency and ω = 2π f , where f denotes the
loading frequency and t is time. All the test conditions of the viscoelastic damper are given
in Table 1, and the force and displacement at each test condition are recorded by the data
record system.

Table 1. Conditions of the dynamic performance tests.

Frequencies
f (Hz)

Amplitudes
d (mm)

Temperature
T (◦C)

Cycle
Number

0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.0,
10.0, 15.0, 20.0, 25.0 0.5, 1.0, 1.5, 2.5 18 5
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2.2. Results Analysis 
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Figure 2. Hysteretic curves of the viscoelastic damper with changing frequencies. (a) d = 0.5 mm, f = 
0.1~1 Hz. (b) d = 0.5 mm, f = 2~10 Hz. (c) d = 1 mm, f = 0.1~1 Hz. (d) d = 1 mm, f = 2~10 Hz. (e) d = 2.5 
mm, f = 0.1~1 Hz. (f) d = 2.5 mm, f = 2~10 Hz. 

Figure 1. Dynamic properties tests of the viscoelastic damper. (a) Schematic diagram of the dynamic
test. (b) Viscoelastic damper inside the incubator.

2.2. Results Analysis

To better analyze the mechanical properties and dynamic damping characteristics
of the viscoelastic damper, the force–displacement hysteresis curves of the damper with
changing external excitation frequencies and loading displacement amplitudes are shown
in Figures 2 and 3, respectively.
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Figure 2. Hysteretic curves of the viscoelastic damper with changing frequencies. (a) d = 0.5 mm, f = 
0.1~1 Hz. (b) d = 0.5 mm, f = 2~10 Hz. (c) d = 1 mm, f = 0.1~1 Hz. (d) d = 1 mm, f = 2~10 Hz. (e) d = 2.5 
mm, f = 0.1~1 Hz. (f) d = 2.5 mm, f = 2~10 Hz. 

Figure 2. Hysteretic curves of the viscoelastic damper with changing frequencies. (a) d = 0.5 mm,
f = 0.1~1 Hz. (b) d = 0.5 mm, f = 2~10 Hz. (c) d = 1 mm, f = 0.1~1 Hz. (d) d = 1 mm, f = 2~10 Hz.
(e) d = 2.5 mm, f = 0.1~1 Hz. (f) d = 2.5 mm, f = 2~10 Hz.

The force–displacement curves of the viscoelastic damper with different loading
frequencies are presented in Figure 2. It reveals that the viscoelastic damper has great
energy dissipation properties, especially at high frequencies. The maximum damping force,
major axis slope, smoothness, and plumpness of the hysteresis curve increase remarkably
with increasing frequencies. Taking the maximum damping forces and areas at 0.1 Hz
and 10 Hz as an example, the maximum damping forces and areas at frequency 10 Hz are
almost twice of those at frequency 0.1 Hz.
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Figure 3. Hysteretic curves of the viscoelastic damper with changing displacement amplitudes.
(a) f = 0.1 Hz. (b) f = 0.5 Hz. (c) f = 1 Hz. (d) f = 5 Hz. (e) f = 7 Hz. (f) f = 10 Hz.

The force–displacement curves of the viscoelastic damper with different displacement
amplitudes are given in Figure 3. The damping performance of the viscoelastic damper are
significantly influenced by the displacement amplitudes. The maximum damping force,
smoothness, and plumpness of the force–displacement curves are increased rapidly with
increasing displacement amplitudes. However, the impacts of the displacement amplitudes
on the major axis slopes of the force–displacement curves are not obvious, as the equivalent
stiffness changes slightly when the displacement amplitude varies from 0.5 mm to 2.5 mm.

To further analyze the mechanical properties and dynamic damping performance of
the viscoelastic damper, the characteristic parameters of the viscoelastic damper storage
modulus, loss modulus, loss factor, energy dissipation, equivalent stiffness, and equivalent
damping at each test condition are calculated based on the force–displacement curves.
According to the classical theories of viscoelastic dampers [35,36], the hysteresis curve of
the viscoelastic damper can be considered as a standard ellipse as seen in Figure 4. The
analytic equation of the ellipse has the form(

Fd − Keud
ηKeu0

)2
+

(
ud
u0

)2
= 1 (1)

where ud is the displacement and has been given as ud = u0 sin(ωt) in the dynamic fatigue
tests. Fd is the corresponding damping force of the viscoelastic damper at ud. u0 represents
the displacement amplitude of the damper, and F1 is the corresponding damping force at
u0. Ke means the equivalent stiffness, and Ke = F1/u0. F2 denotes the damping force when
ud = 0 and η = F2/F1. F means the biggest damping force at each hysteresis curve.
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The experimental results of the storage modulus, loss modulus, loss factor, energy
dissipation, equivalent stiffness, and equivalent damping can be obtained with follow-
ing equations:

G1 =
F1hv

nv Avu0
(2)

G2 =
F2hv

nv Avu0
(3)

η =
F2

F1
(4)

Ed = πF2u0 (5)

Ke =
F1

u0
(6)

Ce =
F2

ωu0
(7)

where G1 denotes the storage modulus, hv denotes the thickness of the viscoelastic layers, nv
represents the number of viscoelastic layers, and Av means the shear area of the viscoelastic
layers. For the viscoelastic damper utilized in present work, hv = 10 mm, nv = 2, and
Av = 60 mm × 50 mm = 3000 mm2. G2 means the loss modulus and η is the loss factor. Ed
is the energy dissipation at each hysteresis curve, which is calculated as the area of the
ellipse. Ke is the equivalent stiffness and Ce is the equivalent damping.

The characteristic parameters of the viscoelastic damper G1, G2, η, Ed, Ke, and Ce with
changing frequencies and different amplitudes have been obtained in Tables 2 and 3, and
vividly pictured in Figures 5 and 6.

Table 2. Properties parameters G1, G2, and η of the viscoelastic damper under different conditions.

Frequency
f (Hz)

Displacement
Amplitude

d (mm)

Storage Modulus
G1 (MPa)

Loss Modulus
G2 (MPa) Loss Factor η

0.1

0.5 0.8774 0.1891 0.2155
1.0 0.8309 0.168 0.2022
1.5 0.8123 0.1627 0.2002
2.5 0.758 0.1472 0.1941

0.5

0.5 1.0082 0.3025 0.3
1.0 0.9582 0.2836 0.296
1.5 0.936 0.2711 0.2896
2.5 0.8934 0.2501 0.28

1.0

0.5 1.1385 0.4071 0.3576
1.0 1.1018 0.4627 0.42
1.5 0.9952 0.3648 0.3666
2.5 0.9638 0.3379 0.3506

5.0

0.5 1.4372 0.9166 0.6378
1.0 1.3529 0.8668 0.6407
1.5 1.2226 0.8076 0.6605
2.5 1.0845 0.741 0.6833

10.0

0.5 1.6264 1.4151 0.8701
1.0 1.4936 1.328 0.8891
1.5 1.3255 1.2319 0.9294
2.5 1.1564 0.9978 0.8628

20.0

0.5 1.7128 2.1143 1.2344
1.0 1.4687 1.8828 1.2819
1.5 1.2394 1.5164 1.2235
2.5 1.1948 1.0873 0.91
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Table 3. Properties parameters Ed, Ke, and Ce of the viscoelastic damper under different conditions.

Frequency
f (Hz)

Displacement
Amplitude d

(mm)

Energy
Dissipation

Ed (N·m)

Equivalent
Stiffness

Ke (KN/m)

Equivalent
Damping

Ce (KN·s/m)

0.1

0.5 0.0859 526.4681 180.5752
1.0 0.3053 498.5189 160.4234
1.5 0.664 487.4013 155.3158
2.5 1.6705 454.776 140.5169

0.5

0.5 0.1385 604.9157 57.7726
1.0 0.5195 574.9053 54.1656
1.5 1.1186 561.5877 51.7731
2.5 2.861 536.03 47.7705

1.0

0.5 0.1906 683.0747 38.8732
1.0 0.8881 661.0809 44.1857
1.5 1.5401 597.1266 34.8371
2.5 3.9516 578.3022 32.2703

5.0

0.5 0.4665 862.3496 17.5064
1.0 1.7457 811.7594 16.5545
1.5 3.6414 733.5588 15.4236
2.5 9.2452 650.7179 14.1523

10.0

0.5 0.7364 975.8111 13.5127
1.0 2.7693 896.144 12.681
1.5 5.7994 795.3137 11.7641
2.5 13.1152 693.8486 9.5278

20.0

0.5 1.3034 1027.6901 10.0951
1.0 4.7438 881.2364 8.9897
1.5 8.7057 743.6433 7.2403
2.5 18.4049 716.8831 5.1913
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The variations of the characteristic parameters G1, G2, η, Ed, Ke, and Ce with increasing
frequencies are shown in Figure 5. It is shown that all the dynamic parameters increase
rapidly when the loading frequency increases except the equivalent damping Ce, which is
reduced rapidly with frequency increment. The changing rates of the properties parameters
at low frequencies (0.1~1 Hz) are much larger than those at high frequencies (1~25 Hz).
Taking the test conditions with d = 0.5 mm as an example, the characteristic parameters’
changing rates with increasing frequencies are given in Table 4. These phenomena can
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be explained together with the micro structures of viscoelastic materials. The macro
mechanical properties and energy dissipation performance are closely related to the micro
molecular chain structures. When the frequency initially increases, the excitation time of
external loading is gradually shortened, becoming closer to the molecular chain relaxation
time. Therefore, the dynamic modulus and stiffness increase with increasing frequencies in
0.1~1 Hz. The excitation time of external loading is further shortened, becoming far less than
the relaxation time of the molecular chains when the frequency further increases in the range
of 1~25 Hz. The molecular chains cannot keep up with the movement of external excitations,
and the increasing rates of dynamic modulus and stiffness are gradually decreased.

Buildings 2023, 13, 239 8 of 19 
 

(a) (b) (c)

(d)

0.1 1 10

0.8

1.2

1.6

2.0

St
or

ag
e 

M
od

ul
us

 G
1 (M

Pa
)

Frequency (Hz)

 d = 0.5mm
 d = 1mm
 d = 1.5mm
 d = 2.5mm
 

0.1 1 10
0.0

0.5

1.0

1.5

2.0

Lo
ss

 M
od

ul
us

 G
2 (M

Pa
)

Frequency (Hz)

 d = 0.5mm
 d = 1mm
 d = 1.5mm
 d = 2.5mm

0.1 1 10
0.0

0.6

1.2

1.8

Lo
ss

 fa
ct

or
 η

Frequency (Hz)

 d = 0.5mm
 d = 1.0mm
 d = 1.5mm
 d = 2.5mm

0.1 1 10
0

5

10

15

20

En
er

gy
 d

is
sip

at
io

n 
E d (N

·m
)

Frequency (Hz)

 d = 0.5mm
 d = 1.0mm
 d = 1.5mm
 d = 2.5mm

0.1 1 10
400

600

800

1000

1200

Eq
ui

va
le

nt
 S

tif
ne

ss
 K

e (k
N

/m
)

Frequency (Hz)

 d = 0.5mm
 d = 1.0mm
 d = 1.5mm
 d = 2.5mm
 

0.1 1 10
0

50

100

150

200

Eq
ui

va
le

nt
 D

am
pi

ng
 C

e (k
N

·s
/m

)

Frequency (Hz)

 d = 0.5mm
 d = 1.0mm
 d = 1.5mm
 d = 2.5mm
 

(e) (f)  
Figure 5. Dynamic properties parameters with varying frequencies. (a) Storage modulus. (b) Loss 
modulus. (c) Loss factor. (d) Energy dissipation. (e) Equivalent stiffness. (f) Equivalent damping. 

(a) (b) (c)

(d) (e) (f)

0.5 1.0 1.5 2.0 2.5

0.8

1.2

1.6

2.0

St
or

ag
e 

M
od

ul
us

 G
1 (

M
Pa

)

Displacement (mm)

 f =   0.1 Hz
 f =   0.5 Hz
 f =   1.0 Hz
 f =   5.0 Hz
 f = 10.0 Hz

0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

Lo
ss

 M
od

ul
us

 G
2 (

M
Pa

)

Displacement (mm)

 f =  0.1 Hz
 f =  0.5 Hz
 f =  1.0 Hz
 f =  5.0 Hz
f = 10.0 Hz

0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5
 f =  5.0 Hz
f = 10.0 Hz

Lo
ss

 F
ac

to
r η

Displacement (mm)

 f =  0.1 Hz
 f =  0.5 Hz
 f =  1.0 Hz

0.5 1.0 1.5 2.0 2.5
0

5

10

15

En
er

gy
 D

iss
ip

at
io

n 
E d (k

N
·s

/m
)

Displacement (mm)

 f =   0.1 Hz
 f =   0.5 Hz
 f =   1.0 Hz
 f =   5.0 Hz
 f = 10.0 Hz

0.5 1.0 1.5 2.0 2.5
400

600

800

1000

Eq
ui

va
le

nt
 S

tif
ne

ss
 K

e (
kN

/m
)

Displacement (mm)

 f =   0.1 Hz
 f =   0.5 Hz
 f =   1.0 Hz
 f =   5.0 Hz
 f = 10.0 Hz

0.5 1.0 1.5 2.0 2.5
0

50

100

150

200

 f=   5.0 Hz
 f= 10.0 Hz

Eq
ui

va
le

nt
 D

am
pi

ng
 C

e (k
N

·s
/m

)

Displacement (mm)

 f =  0.1 Hz
 f =  0.5 Hz
 f =  1.0 Hz

 
Figure 6. Dynamic properties parameters with varying displacement amplitudes. (a) Storage mod-
ulus. (b) Loss modulus. (c) Loss factor. (d) Energy dissipation. (e) Equivalent stiffness. (f) Equivalent 
damping. 

The variations of the characteristic parameters 1
G , 2

G , η , dE , e
K , and eC  with in-

creasing frequencies are shown in Figure 5. It is shown that all the dynamic parameters 
increase rapidly when the loading frequency increases except the equivalent damping eC
, which is reduced rapidly with frequency increment. The changing rates of the properties 
parameters at low frequencies (0.1~1 Hz) are much larger than those at high frequencies 
(1~25 Hz). Taking the test conditions with d  = 0.5 mm as an example, the characteristic 
parameters’ changing rates with increasing frequencies are given in Table 4. These phe-
nomena can be explained together with the micro structures of viscoelastic materials. The 
macro mechanical properties and energy dissipation performance are closely related to 
the micro molecular chain structures. When the frequency initially increases, the excita-
tion time of external loading is gradually shortened, becoming closer to the molecular 
chain relaxation time. Therefore, the dynamic modulus and stiffness increase with increas-
ing frequencies in 0.1~1 Hz. The excitation time of external loading is further shortened, 
becoming far less than the relaxation time of the molecular chains when the frequency 

Figure 6. Dynamic properties parameters with varying displacement amplitudes. (a) Storage mod-
ulus. (b) Loss modulus. (c) Loss factor. (d) Energy dissipation. (e) Equivalent stiffness. (f) Equiva-
lent damping.

Table 4. Parameters’ changing rate with different frequencies when d = 0.5 mm.

Frequency f (Hz) 0.1~0.5 0.5~1 1~5 5~10 10~20

Storage modulus G1 +14.91% +12.92% +26.24% +13.16% +5.31%
Loss modulus G2 +59.97% +34.58% +125.15% +54.39% +49.41%

Loss factor η +39.21% +19.2% +78.36% +36.42% +41.87%
Energy dissipation Ed +61.23% +37.62% +144.75% +57.86% +77%
Equivalent stiffness Ke +14.9% +12.92% +26.25% +13.16% +5.32%
Equivalent damping Ce −68.01% −32.71% −54.97% −22.81% −25.29%

The equivalent damping Ce decreases with the increment of frequency, which can be
explained by Equation (7). Furthermore, the characteristic parameters G1 and Ke, and G2
and Ed have the same change ratio with increasing frequencies, because there is a positive
correlation between G1 and Ke, and G2 and Ed, as formulated in Equations (2)–(6). In
conclusion, the dynamic performance of the viscoelastic damper is significantly affected by
the excitation frequency.

Figure 6 shows the dynamic parameters’ variation when displacement amplitude
changes from 0.5 mm to 2.5 mm. The dynamic properties and damping parameters
decrease slightly with displacement amplitude increment. This trend is more obvious at
high frequencies (5 Hz and 10 Hz). The energy dissipation increases notably with the
increment of excitation amplitudes. Taking the test conditions with f = 5 Hz as an example,
the characteristic parameters’ changing rates with varying displacement amplitudes are
shown in Table 5.
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Table 5. Parameters’ changing rate with varying displacement amplitudes when f = 5.0 Hz.

Displacement d (mm) 0.5~1.0 1.0~1.5 1.5~2.5

Storage modulus G1 −5.87% −9.63% −11.3%
Loss modulus G2 −5.43% −6.83% −8.25%

Loss factor η +0.45% +3.09% +3.45%
Energy dissipation Ed +274.21% +108.59% +153.89%
Equivalent stiffness Ke −5.87% −9.63% −11.29%
Equivalent damping Ce −5.44% −6.83% −8.24%

The intermolecular force, van der Waals force, between filler particles, carbon black,
silicon, etc., and the micro molecular chains adsorption on filler particle surfaces signifi-
cantly enhance the modulus and strength of viscoelastic materials. With the increment of
displacement amplitudes, the van der Waals force between filler particles and the molecular
chain adsorption will be gradually weakened, which leads to the reduction in characteristic
parameters G1, G2, η, Ke, and Ce. The energy dissipation Ed clearly increases when the
displacement amplitude increases, which can be explained with the positive proportional
relationship shown in Equation (5). The displacement amplitudes possess slight influ-
ence on mechanical behaviors but have great significance for the damping properties of
viscoelastic dampers.

3. Theoretical Modeling

From the abovementioned experimental results, it can be seen that the dynamic load-
ing frequency and displacement amplitude are two factors that significantly affect the
mechanical and energy dissipation performance of viscoelastic dampers. Accurate and rea-
sonable mathematical models are essential to describe the dynamic behaviors of viscoelastic
dampers. In this part, the higher-order fractional derivative model is modified with the
internal variable theory and temperature–frequency equivalent principle to characterize the
performance of viscoelastic dampers with changing frequencies, displacement amplitudes,
and temperatures.

3.1. Higher-Order Fractional Derivative Model

The higher-order fractional derivative model consists of a fractional Kelvin model and
a fractional Maxwell model in parallel, as shown in Figure 7, which has three fractional
derivative parameters and is more accurate in describing the static creep and dynamic
damping characteristics of viscoelastic materials.
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Figure 7. The higher-order fractional derivative model.

The stress–strain expressions of the higher-order fractional derivative model has
the form

c2

η1
σ(t) +

1
η1

Dασ(t) = Dα+γε(t) + c1Dαε(t) +
µ2

η1
Dβε(t) + c2Dγε(t) + c1c2ε(t) (8)

where µ1 and µ2 are elastic modules of the spring elements. η1 and η2 are viscous param-
eters of the fractional dashpots. c1 = µ1/η1 and c2 = µ2/η2. α, β, and γ are the α-order,
β-order, and γ-order fractional derivatives, respectively.
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By applying the Fourier transform to Equation (8), the complex form modulus of the
higher-order fractional derivative model can be obtained as

G∗(ω) =
σ∗(ω)

ε∗(ω)
= µ1 + η1(iω)γ +

µ2(iω)β

c2 + (iω)α (9)

The dynamic modulus can be gained by decomposing Equation (9) into two parts; the
real part is the storage modulus, the imaginary part is the loss modulus, and the loss factor
is the ratio of the imaginary part to the real part:

G1 = µ1 + η1ωγ cos(γπ/2) +
µ2c2ωβ cos(βπ/2) + µ2ωα+β cos[(α− β)π/2]

c2
2 + 2c2ωα cos(βπ/2) + ω2α

(10)

G2 = η1ωγ sin(γπ/2) +
µ2c2ωβ sin(βπ/2) + µ2ωα+β sin[(β− α)π/2]

c2
2 + 2c2ωα cos(βπ/2) + ω2α

(11)

η =
G2

G1
(12)

3.2. Internal Variable Theory

The dynamic modulus of carbon black-filled viscoelastic materials not only has tem-
perature and frequency dependence, but also has displacement/strain amplitude reliance.
Therefore, it is of crucial significance to describe the temperature, frequency, and strain
amplitude dependence of the dynamic modulus of carbon black-filled viscoelastic materials
with an appropriate model. Payne et al. [24] believed that the dynamic modulus of materi-
als decreased with increments of strain amplitudes, which was due to the destruction of the
filler network structures. The energy dissipation is mainly caused by the destruction and
rebuilding of the filler network structures, and the Kraus model is introduced to describe
the strain amplitude influence.

Both classical irreversible thermodynamics and rational thermodynamics use internal
variables to describe the thermomechanical state of materials. These internal variables
are microscale state variables such as damage accumulation, phase transformation, free
volume variation, grain size change, inelastic strain, stress, etc., which are impossible to be
observed at the macroscale. Their changes reflect the internal state evolution of materials,
and have an important impact on the deformation and thermal process of materials. The
deformation history and strain amplitude have a critical influence on the viscosity of
viscoelastic materials. Lion et al. [37] introduced the intrinsic time with internal variables
to characterize this correlation and describe the evolution process of materials:

u(t) = ψ(ω, ε0)t (13)

where u(t) is the intrinsic time, and ε0 denotes the excitation strain amplitude. ψ(ω, ε0) is
the reduction factor, which has the form

ψ(ω, ε0) = 1 +
2
π

χωζ ε0 (14)

where χ and ζ are material parameters, and ω = 2π f .
Based on the Riemann–Liouville-type definition, the ith order fractional derivative of

stress has the form

Di[σ(t)] =
di

dti σ(t) =
1

Γ(1− i)

∫ t

0

.
σ(s)

(t− s)i ds (15)
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According to Equation (13), by defining z = ψ(ω, ε0)s, the ith order fractional deriva-
tive of stress with intrinsic time has the form

Di[σ(u)] =
di

dti σ(u) =
1

Γ(1− i)

∫ u

0

.
σ(z)

(u− z)i dz =
1

ψi(ω, ε0)Γ(1− i)

∫ t

0

.
σ(s)

(t− s)i ds (16)

Then, we obtain

Di[σ(u)] =
1

ψi(ω, ε0)
Di[σ(t)] (17)

It also can be obtained that

Di[ε(u)] =
1

ψi(ω, ε0)
Di[ε(t)] (18)

By replacing the physical time t in the constitutive equation of viscoelastic materials
in Equation (8) with the intrinsic time u(t), the viscoelastic constitutive equation based on
the internal variable theory can be obtained as

c2

η1
σ(t) +

1
η1ψα

Dασ(t)

=
1

ψα+γ
Dα+γε(t) +

c1

ψα
Dαε(t) +

µ2

η1ψβ
Dβε(t) +

c2

ψγ
Dγε(t) + c1c2ε(t)

(19)

Then, Equations (10) and (11) can be rewritten as

G1 = µ1 + η1(ω/ψ)γ cos(γπ/2)

+
µ2c2(ω/ψ)β cos(βπ/2) + µ2(ω/ψ)α+β cos[(α− β)π/2]

c2
2 + 2c2(ω/ψ)α cos(απ/2) + (ω/ψ)2α

(20)

G2 = η1(ω/ψ)γ sin(γπ/2)

+
µ2c2(ω/ψ)β sin(βπ/2) + µ2(ω/ψ)α+β sin[(β− α)π/2]

c2
2 + 2c2(ω/ψ)α cos(απ/2) + (ω/ψ)2α

(21)

The performance of viscoelastic dampers is significantly affected by ambient tempera-
ture and excitation frequency, and temperature and frequency impacts are closely related.
Especially for the temperature regions of Tg to Tg +100 ◦C, the storage modulus and loss
modulus at high frequency are equal to those at low temperature, and the dynamic modules
at low frequency are also equivalent to those at high temperature, which has been defined
as the temperature–frequency equivalent principle [38]:

G1(ω, T) = G1(aTω, T0)
η(ω, T) = η(aTω, T0)

(22)

where Tg is the glass transaction temperature, aT is the shaft factor, and
aT = 10−12(T−T0)/[525+(T−T0)]. T represents the environmental temperature and T0 is
the reference temperature. By applying Equation (22) to Equations (20) and (21), we have

G1 = µ1 + η1(αTω/ψ)γ cos(γπ/2)

+
µ2c2(αTω/ψ)β cos(βπ/2) + µ2(αTω/ψ)α+β cos[(α− β)π/2]

c2
2 + 2c2(αTω/ψ)α cos(απ/2) + (αTω/ψ)2α

(23)
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G2 = η1(αTω/ψ)γ sin(γπ/2)

+
µ2c2(αTω/ψ)β sin(βπ/2) + µ2(αTω/ψ)α+β sin[(β− α)π/2]

c2
2 + 2c2(αTω/ψ)α cos(απ/2) + (αTω/ψ)2α

(24)

Equations (22)–(24) are the expressions of the higher-order fractional derivative model
modified with the internal variable theory and temperature–frequency equivalent principle
(ITHF), which can reflect the impacts of surrounding temperature, excitation frequency,
and loading displacement/strain amplitude on the dynamic behaviors of viscoelastic
dampers well.

4. Experiments Verification

To verify the effectiveness and progressiveness of the ITHF model in describing the
dynamic behaviors of viscoelastic dampers with changing displacement amplitudes and
frequencies, the Kraus model [24] is introduced to modify the higher-order fractional
derivative model and the comparisons of the experimental and numerical results of the
viscoelastic damper are conducted. According to the Kraus model, the storage modulus

G1(ε) is proportional to 1
1+(ε/εc)

2m , and the loss modulus G2(ε) is proportional to 2(ε/εc)
m

1+(ε/εc)
2m ,

as seen below. 
G1(ε) = G1(0)− G1 +

G1

1 + (ε/εc)
2m ;

G2(ε) = G∞
2 +

2(Gmax
2 − G∞

2 )(ε/εc)
m

1 + (ε/εc)
2m .

(25)

where G1(0), G1, G∞
2 , Gmax

2 , εc, and m are constants. By applying Equations (22) and (25)
to Equations (10) and (11), the higher-order fractional derivative model modified with the
Kraus model and temperature–frequency equivalent principle (KTHF) can be obtained as

G1 = k1


µ1 + η1(αTω)γ cos(γπ/2)

+
µ2c2(αTω)β cos(βπ/2) + µ2(αTω)α+β cos[(α− β)π/2]

c2
2 + 2c2(αTω)α cos(απ/2) + (αTω)2α


1

1 + (ε/εc)
2m + b1 (26)

G2 = k2


η1(αTω)γ sin(γπ/2)

+
µ2c2(αTω)β sin(βπ/2) + µ2(αTω)α+β sin[(β− α)π/2]

c2
2 + 2c2(αTω)α cos(απ/2) + (αTω)2α


2(ε/εc)

m

1 + (ε/εc)
2m + b2 (27)

where k1, b1, k2, and b2 are material parameters.
The least squares method is utilized for parameter identification of the models. By

optimizing min F(ω, ε, T) in Equation (28) with test data of the storage modulus G1 and
the loss factor η, the parameters of the ITHF model and KTHF models can be achieved.

F(ω, ε, T) = p1{[G1(ω, ε, T)− G10(ω, ε, T)]/G10(ω, ε, T)}2

+p2{[η(ω, ε, T)− η0(ω, ε, T)]/η0(ω, ε, T)}2 (28)

where p1 and p2 are weighting parameters, p1 + p2 = 1.0, G1(ω, ε, T) and η(ω, ε, T) are
numerical results, and G10(ω, ε, T) and η0(ω, ε, T) are experimental results.

Some experimental data from the viscoelastic damper with randomly selected fre-
quencies and displacement amplitudes are used for data fitting, and the parameters of
the ITHF model are determined as µ1 = 3.695 × 105, η1 = 2.0993 × 10−9, µ2 = 6.3021 × 105,
c2 = 1.2507 × 103, χ = 0.6368, ζ = 0.7114, α = 0.0853, β = 0.2187, γ = 0.9654, and T0 = 570.2816 K.
Similarly, the parameters of the KTHF model are also determined as µ1 = 1.6086 × 1010,
η1 = 3.8768 × 108, µ2 = 7.0468 × 108, c2 = 3.4705 × 108, α = 0.1766, β = 0.5678, γ = 0.2032,
k1 = 2.2937 × 10−8, b1 = 8.0575 × 105, k2 = 1.1537 × 10−8, b2 = 5.2489 × 104, εc = 0.0125,
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m = 0.3685, and T0 = 634.3185 K. The comparisons of the numerical results of the ITHF model,
KTHF model, and experimental results with frequency 1.0 Hz and displacement 1.0 mm are
presented in Figure 8a,b, respectively.
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perimental results are very small. The experimental and numerical results of the viscoe-
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Figure 8a shows the experimental and numerical results of the storage modulus and
loss factor with varying displacement amplitudes when f = 1.0 Hz. It reveals that the
deviations of numerical results of both the ITHF model and the KTHF model from the ex-
perimental results are very small. The experimental and numerical results of the viscoelastic
damper with changing displacement amplitudes are given in Table 6. For the storage mod-
ulus with frequency 1.0 Hz, the maximum error and root mean square error of the ITHF
model in different displacement amplitudes are 7.44% and 5.28%, respectively, and the
maximum error and root mean square error of the KTHF model in different displacement
amplitudes are 8.59% and 6.03%, respectively. For the loss factor, the maximum error and
root mean square error of the ITHF model with different displacement amplitudes are
12.04% and 7.38%, respectively, and the maximum error and root mean square error of the
KTHF model in different displacement amplitudes are 16.25% and 8.78%, respectively. The
ITHF model is more accurate in reflecting the dynamic behaviors of viscoelastic dampers
with changing displacement amplitudes.

The experimental and numerical result comparisons with varying frequencies at
displacement amplitude 1 mm are shown in Figure 8b, and the test and numerical data
with the ITHF model and KTHF model are listed in Table 7. The maximum error and root
mean square error of the ITHF model for the storage modulus in different frequencies
are 8.53% and 4.98%, respectively, and the maximum error and root mean square error of
the KTHF model for the storage modulus in different frequencies are 15.08% and 6.34%,
respectively. The maximum error and root mean square error of the ITHF model for the loss
factor in different frequencies are 20.98% and 8.13%, respectively, and the maximum error
and root mean square error of the KTHF model for the loss factor in different frequencies
are 30.34% and 11.79%, respectively.
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Table 6. The comparisons of the ITHF model and KTHF model when f = 1.0 Hz.

Displacement Amplitude
d (mm)

Characteristic
Parameters

Experimental
Results

Numerical Results

ITHF Model Error KTHF Model Error

0.5
G1 (MPa) 1.1385 1.0538 7.44% 1.0953 3.94%

η 0.3576 0.3836 7.23% 0.4157 16.25%

1
G1 (MPa) 1.1018 1.0379 5.8% 1 3.64%

η 0.42 0.3694 12.04% 0.4015 4.41%

1.5
G1 (MPa) 0.9952 1.0238 2.87% 0.96 6.54%

η 0.3666 0.3573 2.53% 0.3841 4.78%

2.5
G1 (MPa) 0.9638 1 3.76% 0.91 8.59%

η 0.3506 0.3377 3.68% 0.3559 1.5%

Table 7. The comparisons of the ITHF model and KTHF model when d = 1.0 mm.

Frequency
f (Hz)

Characteristic
Parameters

Experimental
Results

Numerical Results

ITHF Model Error KTHF Model Error

0.1
G1 (MPa) 0.8309 0.7729 6.98% 0.8895 15.08%

η 0.2022 0.2093 3.51% 0.1902 5.96%

0.2
G1 (MPa) 0.8874 0.8376 5.62% 0.9117 8.85%

η 0.2342 0.2405 2.67% 0.233 0.51%

0.3
G1 (MPa) 0.9158 0.8798 3.93% 0.9282 5.5%

η 0.2533 0.2641 4.25% 0.2651 4.65%

0.5
G1 (MPa) 0.9582 0.938 2.11% 0.9538 1.69%

η 0.296 0.302 2.02% 0.3146 6.28%

1
G1 (MPa) 1.1018 1.0263 6.85% 1 2.56%

η 0.42 0.3741 10.93% 0.4015 4.41%

1.5
G1 (MPa) 1.0734 1.0831 0.9% 1.0352 4.42%

η 0.3565 0.4313 20.98% 0.4647 30.35%

2
G1 (MPa) 1.1868 1.1256 5.15% 1.0648 5.4%

η 0.4482 0.4803 7.15% 0.5157 15.06%

3
G1 (MPa) 1.2141 1.1887 2.09% 1.1145 6.25%

η 0.5197 0.5629 8.31% 0.597 14.86%

4
G1 (MPa) 1.2393 1.2356 0.3% 1.1565 6.4%

η 0.614 0.6322 2.97% 0.6614 7.72%

5
G1 (MPa) 1.3529 1.273 5.91% 1.1935 6.24%

η 0.6407 0.6925 8.08 0.7153 11.65%

7
G1 (MPa) 1.4552 1.3311 8.53% 1.2582 5.47%

η 0.7325 0.7944 8.45% 0.803 9.62%

10
G1 (MPa) 1.4936 1.3945 6.64% 1.3404 3.87%

η 0.8891 0.9171 3.14% 0.9038 1.66%

15
G1 (MPa) 1.4949 1.4684 1.78% 1.4547 0.93%

η 1.0592 1.0739 1.38% 1.0272 3.02%

20
G1 (MPa) 1.4687 1.5217 3.61% 1.5521 2%

η 1.2819 1.1954 6.75% 1.1194 12.67%

The ITHF model possesses enough precision in characterizing the dynamic and damp-
ing properties of the viscoelastic damper with changing displacement amplitudes and
frequencies, and is more accurate than the KTHF model because it introduces the internal
variable theory at the microscale to consider the displacement amplitude impacts. The
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ITHF model has fewer parameters than the KTHF model and is more appropriate to be
utilized in describing the dynamic properties of viscoelastic dampers.

5. Conclusions

Viscoelastic dampers are well-known passive vibration control devices and have been
widely used in seismic/wind vibration control, micro vibration suppression, and platform
vibration isolation, etc. In the present work, the dynamic properties of a viscoelastic damper
at room temperature (18 ◦C) are tested under sinusoidal displacement excitations with a
wide frequency band (0.1–25 Hz). The impacts of frequency and displacement amplitude on
the dynamic properties of the viscoelastic damper are discussed. The higher-order fractional
derivate model and the temperature–frequency equivalent principle are employed to
characterize the frequency and temperature influence, and the internal variable theory
considering the microscale structure influence is introduced to reflect the displacement
amplitude affection. The ITHF model is proposed and verified with experimental results.
Some notable conclusions can be obtained, such as:

(1) The viscoelastic damper has great energy dissipation properties at room tempera-
ture with frequencies 0.1 Hz~25 Hz, especially at high frequencies (1 Hz~25 Hz).
The damping performance and stiffness of the damper are crucially affected by the
excitation frequency, while the damping performance is greatly influenced by the
displacement amplitude, and the stiffness is slightly affected.

(2) The characteristic parameters of viscoelastic dampers are significantly dependent
on the external excitation frequencies and loading amplitudes. The parameters G1,
G2, η, Ed, and Ke increase remarkably with increasing frequency, while Ce decreases.
The energy dissipation Ed rises prominently with displacement amplitude, while and
other parameters reduce mildly.

(3) The ITHF model possesses enough precision in characterizing the dynamic and
damping properties of viscoelastic dampers with changing displacement amplitudes
and frequencies, and has higher accuracy and fewer parameters than the KTHF model.

(4) The ITHF model introduces the internal variable theory to reflect the displacement
amplitude impacts, which considers the internal structures’ evolution process at the
microscale and is of great significance for material design and damping property
improvement.
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Nomenclature

ud Displacement of the viscoelastic damper
u0 Displacement amplitude of the damper
f Loading frequency
ω Angular frequency of the sinusoidal displacement loading.
d Excitation displacement amplitude
Fd Damping force of the viscoelastic damper at ud
F1 Damping force of the viscoelastic damper at u0
Ke Equivalent stiffness of the viscoelastic damper
F2 Damping force when ud = 0
F Biggest damping force at each hysteresis curve
G1 Storage modulus of the viscoelastic material/damper
G2 Loss modulus of the viscoelastic material/damper
η Loss factor of the viscoelastic material/damper
Ed Energy dissipation of the viscoelastic damper at each hysteresis curve
Ke Equivalent stiffness of the viscoelastic damper
Ce Equivalent damping of the viscoelastic damper
hv Thickness of the viscoelastic layers of the viscoelastic damper
nv Number of viscoelastic layers of the viscoelastic damper
Av Shear area of viscoelastic layers of the viscoelastic damper
µ1, µ2 Elastic modules of the spring elements
η1, η2 Viscous parameters of the fractional dashpots
Di ith order fractional derivative, i = α, β, γ, etc.
t Time
u(t) Intrinsic time
ε0 Excitation strain amplitude.
ψ(ω, ε0) Reduction factor
χ, ζ Material parameters considering the internal variable theory
Tg Glass transaction temperature
T Temperature
T0 Reference temperature
aT Shaft factor
G1(0), G1, G∞

2 , Gmax
2 Storage modulus with initial strain, difference between the storage modulus

of an arbitrary strain and that of an infinite strain, loss modulus of an infinite
strain, and the maximum loss modulus

εc Characteristic strain
m Fractal dimension of filler structures
k1, b1, k2, b2 Linear regression parameters
F(ω, ε, T), p1, p2 Objective optimization function and weighting parameters
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