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Abstract: The current expansion of building structures has created a demand for efficient and smart
surface quality evaluation at the acceptance phase. However, the conventional approach mainly relies
on manual work, which is labor-intensive, time-consuming, and unrepeatable. This study presents a
systematic and practical solution for surface quality evaluation of indoor building elements during
the acceptance phase using point cloud. The practical indoor scanning parameters determination
procedure was proposed by analyzing the project requirements, room environment, and apparatus.
An improved DBSCAN algorithm was developed by introducing a plane validation and coplanar
checking to facilitate the surface segmentation from the point cloud. And a revised Least Median
of Square-based algorithm was proposed to identify the best-fit plane. Afterwards, the flatness,
verticality, and squareness were evaluated and depicted using a color-coded map based on the
segmented point cloud. The experiment on an apartment showcases how the system improves
the information flow and accuracy during building acceptance, resulting in a potentially smart
acceptance activity.

Keywords: surface quality evaluation (SQE); point cloud; surface segmentation; building acceptance

1. Introduction

Building structures, including office buildings, shopping malls, residential apartments,
etc., have witnessed a substantial explosion in the past few decades [1]. In order to pro-
vide a safe, comfortable indoor space for human activities, the surface quality of concrete
elements should be ensured prior to the acceptance in case of unexpected system failure
or construction delay, which could result in increased cost. Previous studies have demon-
strated that around 5% of the construction cost is caused by rework because of defects [2]
and that 4% of the total value of a residential construction contract is the defects cost [3].
Therefore, a systematic and deep surface quality evaluation (SQE) of the components is
quite important to reduce the cost and reduce the time to completion.

Verticality, flatness, and squareness are three important indicators [4] to evaluate the
quality and aesthetic of concrete surfaces, which are widely used in practice. To elaborate,
the verticality of building components indicates the deviation between the elements’ actual
centroid line and the reference plane [1], which is usually quantified by the angle tolerance
between them. It represents the continuity and consistency in the vertical direction of
vertical elements, especially in the process of layered construction, which has a substantial
impact on the vertical load transfer and capacity. The flatness indicates the deviation of the
constructed surface from the reference surface, which has a great impact on the installation
quality of the components attached to it and the aesthetics. Moreover, the squareness
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indicates the angle of any two neighboring edges of the elements or structures, which is
another important indicator in the checking list.

In general, the SQE is conducted manually using the contact measuring apparatus
within the building construction, such as tape, straightedges, leaning gauge, etc. [5,6]. The
verticality evaluation (VE) of building structures is mainly divided into two categories:
horizontal deviation method and inclination method. As shown in Figure 1a, the horizontal
deviation method measures the maximum horizontal distance, d, between the tested surface
and the vertical reference surface within a fixed height range. This horizontal deviation is
generally proportional to the height of the layered construction, which is typically measured
by theodolite, plumb-bob, optical plummet, or arc length-based method, etc. Such methods
are appropriate for measuring the verticality with a relatively narrow height range, such
as indoor walls, columns, etc. The second method, the inclination method, measures the
angle between the line of two measured points on the surface of the structure and the
vertical plane, as shown in Figure 1b, which is applicable to a wider range of elements
with higher heights, such as building façades and bridge piers, etc. Similar to VE, flatness
evaluation (FE) is primarily determined by measuring the maximum elevation difference
between the tested surface and the reference surface within a fixed testing area as shown in
Figure 1c. The 2 m leaning gauge is frequently employed, which is normally for low-height
vertical components such as interior walls, beams, etc., and for horizontal elements like
floors and ceilings.
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as the squareness as Equation (1) says. The general tolerance of the above three indicators 
from different codes are summarized in Table 1. 

Figure 1. Definition of verticality assessment: (a) horizontal deviation method, (b) angle method,
and (c) flatness assessment of concrete surface. (Redrawn from [6]).

Figure 2a,b indicate the widely used verticality and flatness evaluation methods with
2 m rulers and feeler gauges according to the standard [6] which are used by building
developers for quality control of buildings [7]. The entire process requires two skilled
technicians to sample, measure, and record, which has a low efficiency and the results are
not repeatable. Furthermore, the VE requires a laser level to make sure that the 2 m ruler is
in the vertical direction. For the squareness evaluation (SE), the purpose is to ensure that
the two adjacent walls of the house are perpendicular to each other. As shown in Figure 2c,
the Laser-liner is used to mark two reference lines La, Lb perpendicular to each other, with
one of them (La) parallel to the shorter wall of the testing room. Then the distance between
Lb from the longer wall is measured as di, and the range, R, is calculated as the squareness
as Equation (1) says. The general tolerance of the above three indicators from different
codes are summarized in Table 1.

R = maxdi −mindi, i = 1, 2, 3, 4 (1)
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Table 1. Geometry tolerance of surface quality indicators in various standards.

Category GB 50204-2015 [6] PCI MNL-135 [8] ACI-ITG-7M [9] EN 13670 [10]

Verticality
[mm]

Structural column/wall 5 (H ≤ 6000); 5/2400 6/3000 2510 (H > 6000)
Non-structural column 2 5/2400 6/3000 25

Flatness
[mm]

- 8 6/3000 ±1/8 in. per 10 ft
±1/2 in. maximum

9/2000 (Molded surface)
15/2000 (Not molded surface)

Squareness
[mm] - 10/2000 - ±1/8 in. per 6 ft,

±1/2 in. maximum -

The manual evaluation methods clearly indicate their shortcomings: they are labor
intensive, time-consuming, and unrepeatable [7]. The above-mentioned approaches need
manual instrument setup and calibration, which calls for a high level of patience and
professionalism from the inspectors. In addition, the evaluation results rely on the sampling
method, which is not clearly defined in the codes [6,8], and thus cannot reflect the overall
quality of the concrete element. Moreover, these methodologies do not produce visual
findings that are easily interpretable by both professionals and non-specialists [4]. Therefore,
there is an increasing demand for a clear, effective, precise, and visual way to automatically
evaluate the surface quality of concrete elements.

Due to the high accuracy (millimeter level in the effective scanning range) and scanning
speed (up to 976,00 points/s), 3D laser scanning has been incredibly popular in construction
and civil engineering quality assessment in recent years. For instance, Zhao et al. [11]
proposed an automated procedure to recognize and measure the dimensions of rebars,
concrete surface, and sleeves of PC components based on point cloud (PCD), which has
improved the automation of the quality inspection process. Wang et al. [12] developed
a geometry evaluation method focusing on the transverse side of the irregular precast
elements’ surface using laser scanning. Celestino et al. [13] designed a close-range and
low-cost dimension measurement system with a laser scanner, which was used for building
façade measuring. Moreover, laser scanning is also used for the damage recognition and
assessment of concrete and steel structures. For instance, Alireza et al. [14] proposed a
method for evaluating the building-level damage after tornadoes using UAV-based PCD,
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while Zhou et al. [15] proposed the feasibility of using PCD from image-based three-
dimensional (3D) reconstruction to assess the surface damage on residential buildings. As
reviewed by Wang et al. [16], PCD data have been widely utilized during different phases
in the construction industry, including the 3D model reconstruction, geometry quality
inspection, progress monitoring, and deconstruction and waste management. These studies
demonstrated that PCD has distinct advantages in the quality inspection of structures, due
to its high precision, large sampling points, and visual graphical interface. Regarding the
SQE, however, only a few studies [1,4,17,18] have been performed, which have focused on
the prefabricated elements with small dimensions (≤20 m) or the internal walls of residence
building; there is still a lack of a comprehensive and reliable automated SQE system using
PCD at the building acceptance stage.

In order to overcome the limitations of manual measurement and develop the existing
building acceptance approaches, this study proposes a completely automated acceptance
system for assessing the flatness, verticality, and squareness of concrete elements using
PCD data. The proposed system mainly includes three parts: data preparation, surface
segmentation and plane fitting, and surface quality evaluation. Firstly, the efficiency and
accuracy of PCD acquisition using a laser scanner are analyzed to obtain the optimal
parameters for indoor PCD collection. Secondly, the surface of the as-built components is
extracted from the raw PCD and the plane is fitted using the developed algorithms. Finally,
the surface quality is evaluated based on the outcomes from the previous step, and the
results are visualized using a color-coded map.

The rest of this paper is organized as follows: Section 2 presents the related existing
works within the topic of SQE, PCD segmentation, and plane fitting. Section 3 illustrates
the details of the proposed system for SQE. Subsequently, an experiment is conducted to
verify the feasibility and improvement of the proposed algorithm, and a case study and the
results of a real residential building are discussed in Section 4, followed by a summary and
foresight of the proposed system in Section 5.

2. Related Works
2.1. SQE Using PCD

Flatness is described as the deviation that the evaluated surface has from a reference
plane [19]. To improve the accuracy and efficiency, PCD-based FE is studied by several
studies, which can be divided into two main categories based on the principles: the
geometry-based method and the frequency-based method.

The geometry-based method is similar to manual inspection due to the principle. By
comparing the measured surfaces with the reference surface, the deviation between them
can reflect the flatness of the elements, which was completed in the space domain. For
instance, Tan et al. [7] and Kim [1] used the BIM model as a reference to evaluate the
geometric quality of precast elements. Bosche et al. [18] proposed an evaluation method
by combining the PCD data with the BIM model of elements, and assessed the flatness
based on the F-number method [20,21]. The key point is to register the scan with the BIM
model in a uniform coordinate system, within which the principles of normal similarity and
proximity [22] are widely used. Furthermore, the reference surface can also be obtained
by fitting the PCD to an ideal surface according to several algorithms, such as RANSAC,
the Least Squares Method (LSM), etc. For instance, Li et al. fitted the PCD data for a
residential room by the RANSAC method in [4,22], and LSM in [23], respectively; both of
them proved the feasibility of the proposed method. Cao et al. [24] segmented the surface
PCD data by DBSCAN for the flatness evaluation of a residence room, while Shih and
Wang [25] fitted the reference plane of the decoration walls and floors for finishing quality
inspection by a commercial software. In addition, Nuttens et al. [26] used 3D scanning to
monitor the ellipticity of a circular train tunnel based on the best-fit cylinder of the surface.
However, the existing studies have only proposed implementable frameworks, with fewer
in-depth studies on component/surface segmentation and plane fitting, which are the
keys of SQE. As one of the keys of the evaluation result, the measurement directions and
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sampling methods are not clearly specified in the current standards, nor have they been
discussed in detail in the existing studies. In addition, most of the previous works have not
paid attention to the defects and noises on the PCD during segmentation and plane fitting,
which can cause considerable errors for the reference plane generation.

On the other hand, the frequency-based method has been also proposed to rely on
PCD data. Bosche et al. [27] firstly introduced the Continuous Wavelet Transform into the
analysis of PCD data from the element surface, transforming the surface features in the
space domain into waviness features within the frequency domain. Puri et al. [28] extended
the methodology into 2D, achieving the recognition of magnitude and location of surface
undulation. Neza et al. [29] applied this method to evaluate the surface waviness of different
types of materials in experiments, which demonstrated the feasibility and visualization
value. Nevertheless, the methodology does not establish a clear mathematical relationship
between Waviness Index (WI) and surface flatness. Furthermore, the differences between
various material properties can result in a different threshold of WI, which limits its
wide adaptation.

Regarding the verticality of concrete elements, fewer studies have been conducted
on this topic, which can be divided into two methods: the central axis method and the
normal vector method. The first method connects the geometric centers of all sliced PCDs
as the centerline of the component, and then calculates its deviation from the designed one.
Han et al. [30] and Hamzi et al. [31] utilized this method to evaluate the verticality of bridge
piers with a rectangular cross-section and a tower with a circular cross-section, respectively,
and Wang et al. [32] applied it for the verticality inspection of a building façade. Within
the study of Li et al. [4], the verticality of a wall was determined as the angle between the
normal vector of the wall and that of the floor by fitting the planes of them, respectively,
which is referred to as the normal vector method.

The squareness of structural elements is another significant item on the acceptance
checklist, defined as the difference in length between the longer sides of a space (or el-
ement) [1]. Several studies have used PCD data to assess the squareness, for example,
Tan et al. [7] and Kim et al. [1,33] inspected the precast elements with 3D scanning and
evaluated the squareness with the above principle. According to the time and cost analysis
of Terrestrial Laser Scanning (TLS)-based geometry QA/QC [34] including squareness,
the TLS-based approach can reduce 60% of the time and higher cost efficiency compared
with manual work when the gross floor area exceeded 666,900 m2. Meanwhile, there are
several commercial software packages that enable squareness evaluation based on PCD,
e.g., FARO, StructionSite, etc., but all of them are semi-automatic, which requires manual
operation by choosing the suitable program and data.

2.2. Surface Segmentation and Fitting

The main geometries in the building PCDs, flat surface and curved surface [35], as
well as the intersecting line between different surfaces, are valuable information for the
laser scanning application. The curved surface is not discussed in this section since most of
the surfaces designed in residential buildings are planar.

Since most of the buildings follow the Manhattan World scheme, i.e., a Cartesian
coordinate system in which walls, floors, and ceilings are perpendicular to each other [36],
the semantic segmentation of indoor PCD can be performed based on this feature, which
is called the ‘prior knowledge based approach’ [16]. For instance, Cao et al. [24] and
Hu et al. [37] projected the PCD onto the vertical plane (XZ plane or YZ plane) to conduct
the segmentation of floors, ceilings, and walls from raw PCD, while other research [38–40]
also sliced and projected the PCD onto the horizontal plane to isolate the walls individually,
which uses the orientation feature for distinguishing elements. Similarly, the size, normal
vector, point density, and the position can also be used as a basis for segmentation. Although
the prior knowledge-based method is simple and efficient for simple scenarios such as
indoor building, it can only work on the distinct geometric constraints defined, and most
of them are semi-automatic processes.
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Model fitting [41], which indicates matching the PCD to different geometries, is
another widely used surface segmentation method when encountering the parametric
models, such as planes, spheres, etc. Two main algorithms are widely used in previous
studies, Hough Transform (HT) and RANdom SAmple Consensus (RANSAC). HT is one
kind of feature extraction technique that could find out the best-fit model from PCD by
detecting peaks on the parametric space of each point after voting in the transformed
parametric space. For instance, several studies have applied it for line detection and plane
fitting [42,43]. Furthermore, Rabbani et al. [44] adopted it to detect the cylinder, and a
sphere recognition method based on 3D HT was introduced in [45]. However, the high
complexity and sensitivity to noise when dealing with large datasets makes it limited in
terms of the segmentation of interior building elements. RANSAC, by hypothesizing an
inlier group from the sample and then verifying it through iteration, eventually finds all
the most compatible hypotheses for the final result [40]. As a robust nondeterministic
algorithm, RANSAC is widely used in shape detection, segmentation, and fitting, such as
in building façades [41,46] and indoor scenes [47–49]. Nevertheless, its main shortcoming
is the spurious surface; it may detect a surface that does not exist although the conditions
are all satisfied [41]. This may cause mis-segmentation and mis-fitting afterwards for
the surface.

As a density-based clustering method, DBSCAN is a widely-used algorithm for the
clustering and segmentation of building PCD due to the independence of the shape of the
clusters as well as its good identification of noise [50]. Instead of pre-defining the cluster
number, DBSCAN automatically determines it based on the density of the PCD, which
makes it suitable for point clouds with various data distributions and shapes. Therefore,
many studies [51,52] have used it for the indoor plane, cylinder clustering, and segmenta-
tion. However, one main obstacle has limited its development in the PCD segmentation
of building surfaces: for points on the intersection planes, they have the same definition
based on DBSCAN, which may cause the intersection planes of PCD to be interpreted as
the same cluster.

With the overview above, it is clear that the existing research has demonstrated the
feasibility and potential of SQE using PCD due to its high accuracy, large representative
samples, and visualization interface [16]. However, the acquisition of PCD data is still a
challenging problem for indoor buildings. Furthermore, an automated and reliable process
should be proposed to ensure high accuracy since the component/surface segmentation,
PCD sampling, and surface fitting result in the basic data source of the measurement, which
determines the accuracy of the subsequent measurement results. Finally, both visualization
and quantification results should be provided to locate and quantify the regions for subse-
quent maintenance. This study is intended to improve the above-mentioned shortcomings.

3. System Framework

The proposed SQE system is carefully discussed in this section, including the key
processes and data flow. As illustrated in the flowchart (see Figure 3), the main processes
include three phases: data preparation, surface segmentation and plane fitting, and SQE,
described as the following:

1. Data preparation. The PCD acquisition parameters and corresponding scanning
modes are discussed by gathering the data from the literature and testing the scanner
with different modes in the laboratory, in order to ensure the data quality. Then the
dense PCD is registered and reduced for computational efficiency.

2. Surface segmentation and plane fitting. An improved DBSCAN algorithm is in-
troduced in this study to segment various surfaces accurately by introducing the
additional processes of plane validation and coplanar parameter. Moreover, a slide
window-based sampling method is applied to obtain the sample PCD for SQE. Then
a revised Least Squares Method (LSM) algorithm is proposed to remove the outliers
and obtain the best-fitted reference plane for the later processes.
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3. Automated SQE and result visualization. The flatness, verticality, and squareness
evaluation are performed based on the reference plane, and a color-coded map is
produced for a clear visualization. 
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3.1. Data Preparation

Since laser scanning is an application-oriented technique in the construction industry,
it is important to ensure that the acquired PCD data meet the requirements of the applica-
tion. Therefore, several factors need to be taken into account for scanner and parameter
determination [1,53]:

Tolerance is the most important factor as indicated in Figure 4, which indicates the
limitation of the acceptable value of specific measurement, decided by the measurement
purposes and standard requirements. For instance, the verticality tolerance in ACI-ITG-
7M [9] is 6/3000 mm; this requires the resolution of the scanner should be less than 6 mm
at the distance of 3 m, taking 0.6~1.2 mm normally in practice for better results. This is the
first criterion that needs to be considered, which will affect the selection of the scanner and
the factors afterwards.
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Resolution is the second factor, referring to the minimum size of each neighboring
point, which determines the quality of the PCD directly. In simplified terms, the resolution
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of the scan is the largest value of measurement accuracy, scan density, and beam diameter
at the front window. The determination of resolution in each scan should combine the
requirement of tolerance with the scanner product specifications, and then select the
maximum resolution that meets the tolerance requirements, but generally no more than
1/5 of the tolerance.

Range is the distance between the objective and the scanner; the maximum range is
determined by the scanner source and energy. According to [1], the TOF laser scanners
have a longer maximum range (up to 6000 m) compared to phase-shift laser scanners. The
scanning range is estimated depending on the working condition, and then determined by
combining it with the resolution and scanning mode of the scanner. Normally, the quality
of the PCD will decrease with the increase in scanning range.

Scanning time is the parameter that depends on the resolution, scanning range, and
objectives, which is also an important point for balancing efficiency and accuracy in practice.
It should be considered by the experienced expert who performs the measurement process.

To obtain an optimal parameter setting for indoor PCD acquisition, several scanning
tests were performed by scanning a concrete plate in different distances in the lab. The
selected scanner is Leica P50 in this study, which was used in many research works [54–56],
with a high-speed scan rate (1 million points/s), low noise range (maximum 0.4 mm at
10 m), and large measurement range (0.4 m–>1000 m). The corresponding results are shown
in Table 2 and visualized in Figure 5. It can be seen that the scanning efficiency is linear,
decreasing with the increase in scanning range when the resolution is fixed. When the
required resolution is higher, the scanning time dramatically increases for a larger scanning
range. Therefore, in most cases where the scanner is pre-determined in practice, a feasible
parameter determination process should be as the following to balance the accuracy and
efficiency: (1) determine the tolerance according to the project requirements, and thus
find out the resolution limits; (2) the range is then decided according to the measurement
conditions on site; (3) select the optimal mode based on the resulting scanning time–
range curves.

For indoor elements’ SQE in this study, the evaluation tolerance for indoor element
surface quality evaluation ranges from 5–8 mm, which requires that the resolution of the
scanner should ideally be under the order of this magnitude. Furthermore, the measure-
ment distance is around 10 m inside the building; mode 7 and 8 are suitable for indoor
element scanning if a high-quality PCD is required. However, mode 13 and 14 are also
acceptable for the cost, time, and quality effective in practice.

Table 2. The performance of the Leica P50 scanner.

Scanning Mode Maximum Range (m) Resolution (mm) Scanning Time (min)

1 2 0.4 13
2 10 0.4 18
3 20 0.4 25
4 40 0.4 38
5 80 0.4 63
6 120 0.4 88
7 2 0.8 10
8 10 0.8 11
9 20 0.8 18

10 40 0.8 25
11 80 0.8 39
12 120 0.8 54
13 2 1.6 2
14 10 1.6 3
15 20 1.6 4
16 40 1.6 6
17 80 1.6 10
18 120 1.6 13
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When the measurement should be performed for outdoor components, such as façades,
the modes 6, 12, or 18 are good for the data acquisition according to the tolerance level.

Obviously, the indoor components need to be subjected to multiple scans from sev-
eral different locations for a complete data collection. Then, the point clouds from each
different station are registered to a unified coordinate system. The original data of the
indoor elements should then be de-noised to eliminate the points that do not belong to the
elements’ surface.

3.2. Surface Segmentation and Plane Fitting
3.2.1. Surface Segmentation Based on Improved DBSCAN

As a crucial step for the proposed method, the segmentation of surfaces from different
structural components plays an important role in the accuracy of the following SQE. Within
this study, an improved DBSCAN (i-DBSCAN) is proposed to facilitate the multi-plane
PCD segmentation and make the boundary detection more robust. The main pipeline of
the proposed algorithm is shown in Figure 6.

Labeling of the points. Within the proposed method, the first step is to identify all
the core points and label them, which is similar to the conventional DBSCAN. This is to
prepare the input of the next step, for facilitating the sample points selection.

Sample points selection and plane fitting. This step is to select three potential points
from the core points set to fit an initial plane. Apparently, the potential points should
be the core point away from the intersections and boundaries of the PCD. The selection
process is conducted as follows. Firstly, a core point ci within the test core point group
and its k-nearest neighbors pij (j = 1, 2, . . . k) are input to initiate the process, and the
distance matrix disti is calculated within the group. And then the three farthest away
points, (e.g., pik, pik−1, pik−2,), are selected as the potential candidate points based on the
distance matrix. Next, the normal directional compatibility check needs to be conducted
according to the following requirement:

1
3

k

∑
j=k−2

cos(nci , npij) <
1
k

k

∑
j=1

cos(nci , npij
) (2)

where nci , npil , npil+1 , npil+2 represent the normal vector of core point ci and potential
points pil , pil+1, pil+2, respectively, and npij

denotes the normal vector of the j-th k-nearest
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neighbors. By doing the above check, it can ensure that the normal directions of the three
selected points are essentially compatible with the average normal direction of all points in
this k-neighborhood.
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After passing the compatibility test, the fitting plane is generated based on the three
potential candidate points selected above, which can be described as follows:

P : Ax + By + Cz + D = 0 (3)

where A, B, C denote the components in x, y, z directions of the unit normal vector of plane
P, while D represents the normal distance of the plane to the origin of the coordinate system.

The sample point selection process starts from the first core point in the labeled set
of core points until three sample points that meet the requirement are found, which can
be immediately followed by plane fitting and the next step of plane validation. If the
three sample points cannot meet the requirements of Equation (2) or the subsequent planar
validation fails, the process returns to the next core point and starts again.

Plane validation. It is clear that the fitted plane based on the three core points selected
above should have as small a distance as possible from the nearby points within the entire
sample. Therefore, the plane validation is proposed here to verify the validity of the
fitted plane.

Firstly, the distance dm, (m = 0, 1, . . . , k) between plane P and core point group pij(j = 1,
2, . . . k) are calculated, resulting in a distance matrix D = {d0, d1, . . . , dk}. Following that,
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an analysis is conducted based on the mean value, µ, and standard deviation σ of the
distance matrix D: if less than 25% of the core points within this group fall outside the
range [µ− σ, µ + σ], the fitted plane P is valid, i.e., if r1 < r2, the further process can be
conducted based on the plane F, where r1 = card{dm|dm ≥ µ + σ}(m = 0, 1, . . . k), and
r2 = 0.25(k− 2).

Clustering. Once a satisfied fitting plane P and the corresponding core point ci are
determined, the clustering is able to be conducted based on the DBSCAN and a coplanar
parameter, λ. If the point m of the multi-plane PCD is in the same cluster with core point ci,
two requirements should be satisfied: (1) the point m is density-reachable of ci according
to the theory of DBSCAN; and (2) the distance between point m to plane P is less than the
coplanar parameter λ, while λ is defined as follows:

λ = µ + a · σ (4)

where a is defined as below:

a =

{
1.5 + 2(r2 − r1), when : r2 > r1

0, when : r2 ≤ r1
(5)

As indicated above, when r2 > r1, it indicates that less than 25% of the total points are
far away from the plane, which results in a wider range for the coplanar parameter λ. On
the contrary, the coplanar parameter λ is set as the mean value of distance matrix D as the
last step says.

As shown in Figure 7, the traditional DBSCAN may cluster the point from plane B
into the group with plane A due to the intersection of the two planes and the density
difference. With the proposed DBSCAN algorithm in this study, by fitting a valid plane
and introducing the corresponding coplanar parameter, it overcomes the mis-clustering
problem of the traditional DBSCAN at the junction of multiple planes, thus improving the
accuracy of the plane clustering.
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3.2.2. Plane Fitting

This step plays an important role in the final flatness results since the fitted plane is
the reference for the deviation calculation, which determines the accuracy of the flatness
result. The previous work [4,23] used the Least Squares Method (LSM) to fit the plane, which
is efficient and good for PCDs with less noise and fewer points, but could be affected by
the local outliers. Within this study, the outliers are the part that needs to be measured.
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Therefore, an improved algorithm is proposed to better fit the plane using the Least Median
of Squares, (LMedS), and the flowchart is shown in Figure 8.
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Step 1: The testing surface sample PCD P =
{

Pi

∣∣∣Pi = [xi, yi, zi]
T
}

is input and the
initial parameters, w, p, n, q, are determined according to the following formulas based
on LMedS:

k =
lg(1− q)

lg(1− wn)
(6)

where k is the minimum iteration number, q is the possibility to obtain a good subset form
P (generally taken as 0.95–0.99), n is the sample point number for calculating the plane
model (for plane fitting, min n = 3), and w indicates the proportion of inlier points in the
sample, normally more than 50% for LMedS.

Step 2. Extract a subsample N = {Ni|Ni ∈ P, i = 1, 2, . . . n} from P, and fit a plane A,
a’x + b’y + c’z + d’ = 0, by means of the PCA method. Then the median of the residuals of
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the Euclidean distance of each point in subsample N from the fitted plane A is determined,
denoted by MN= med di(Ni, A), i = 1, 2, . . . n.

Step 3. Repeat steps 2–3 until the number of iterations is reached to k, record the
set of the median value M =

{
Mi|Mi = [M1, M2, . . . , Mk]

T
}

, i = 1, 2, . . . k, from which
find out the minimum value, denoted by MM. Afterwards, the robust standard deviation
σ and weight wi are determined to segment the outliers and inliers for the sample as
Equations (7) and (8) say, and the final plane, F: ax + by + cz + d = 0, is fitted based on the
segmented PCD.

σ = 1.4826×
(

1 +
5

n− p

)
×MM (7)

wi =

{
1, |di |

σ 6 2.5
0, |di |

σ > 2.5
(8)

where MM indicates the minimal among the median set, M, and di indicates the Euclidean
distance of point Pi in sample P, and wi means the weight for point Pi in sample P.

The proposed method overcomes the effect of outliers, and also overcomes the depen-
dence of the RANSAC method on the threshold and iteration period.

Experiments were performed to validate the feasibility and robustness. Python tool
was used to generate 1000 points which belong to the plane with the size of 10 × 10
expressed as Equation (9), and 100 Gaussian noise points with a mean value of 0 and
standard deviation of 3.0 were added as outliers:

P : x + 2y− z + 1 = 0, x, y ∈ [−10, 10] (9)

Table 3 presents the average fitting results of the points defined above by three different
fitting algorithms after being repeated 50 times, with the reference parameters of plane P:
a = 0.4082, b = 0.8165, c = −0.4082, and d = 0.4082. From the results, it can be seen that the
parameters fitted by the three compared methods are all close to the predefined parameters
when the data do not have outliers, and the standard deviation (δ) of the distance of each
point to the respective fitting plane is close to 0. When fitting the data with outliers, the
parameters fitted by the proposed method are the closest to the predetermined parameters,
and present the smallest δ value, which also demonstrates its robustness.

Table 3. Comparison of fitting results of three plane fitting algorithms.

LSM RANSAC Proposed Method

Without Gaussian noise

a 0.4082 0.4082 0.4082
b 0.8165 0.8165 0.8165
c −0.4082 −0.4082 −0.4082
d 0.4082 0.4082 0.4082
δ 2.3075 × 10−14 4.0058 × 10−16 1.8998 × 10−16

With Gaussian noise

a 0.4230 0.4121 0.4080
b 0.8105 0.8186 0.8165
c −0.4053 −0.4001 −0.4085
d 0.3683 0.3414 0.4109
δ 0.3112 0.0810 0.0201

The plane size also has an effect on the fitting results, which was analyzed by fitting
the plane with different size values but the same Gaussian noise points (with a mean value
of 0 and standard deviation of 3.0); the results are shown in Figure 9. It can be seen that
the proposed method has the smallest value of δ when the size is small (10 × 10); δ also
converges rapidly when the size increases. This also proves the robustness of the proposed
method, which significantly improves the accuracy of plane fitting regardless of the size.
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Afterwards, the normal vector of the sample surface can be determined based on the
equation of plane F, whose direction coincides with the vector pointing in the direction of
the interior.

3.3. SQE Based on PCD
3.3.1. Flatness Evaluation (FE)

After the plane is obtained, the local flatness of the corresponding sample can be
evaluated based on the deviations between the fitted surface and sample points. The
distance matrix from point P(xp, yp, zp) in the sample PCD to the plane F is calculated
using Equation (10), and a deviation map is generated to visualize the testing results
(Figure 10).
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Within the map, a threshold h is set, consistent with the standard [5] to facilitate the
representation of the amount of deviation at different locations, which is valuable for the
following repairing work.

dp =

∣∣axp + byp + czp + d
∣∣

√
a2 + b2 + c2

(10)

3.3.2. Verticality Evaluation (VE)

According to the summary in Section 1, the verticality evaluation in practice mainly
uses the horizontal deviation method, and thus the full height of the testing elements
should be measured. Within this study, the boundary detection was achieved according to
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the RANSAC algorithm because of the relatively simple geometry of the PCD edge. After
that, the dimensions of the elements are easy to obtain using the detected edge line.

In practice, the verticality assessment is mainly tested for vertical elements, e.g., walls,
columns, etc. Therefore, the method used in this study is also mainly applicable to vertical
walls. As shown in Figure 11a, the normal vector of the tested wall,

→
nw, and floor surface,

→
n f , are obtained as introduced in Section 3.2.2, and the verticality L can be evaluated using
→
nw and

→
n f as follows:

L = H sin

|arccos

 →
nw ·

→
n f∣∣∣→nw

∣∣∣× ∣∣∣→n f

∣∣∣
− π

2
|

 (11)
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3.3.3. Squareness Evaluation (SE)

In practice, the squareness of a room is measured through a series of complicated
manual operations, and the results are influenced by a number of factors as Section 1
stated. The flatness evaluation process has found the best-fitted plane of the wall with the
methodology as indicated in Section 3.2.2. As shown in Figure 11b, the squareness can be
assessed using the angle between two normal vectors of the testing walls:

S = π − β = π − arccos(
→
n1 ·

→
n2∣∣∣→n1

∣∣∣× ∣∣∣→n2

∣∣∣ ) (12)

Apparently, the closer angle β is to 1
2 π, the better the squareness of the room is.

According to the upper limits of R mentioned in Section 1, the tolerance of β is 0.001592π,
i.e., the angle β should be in the range of ( 1

2 ± 0.001592) · π.

4. Experiment Validation

In order to verify the feasibility of the proposed method in this study, experiments
were conducted on a real residence building. The data collection and pre-processing are
discussed in Section 4.1, and the segmentation of the surface PCD is given in Section 4.2.
Then the separated PCD is sampled and fitted to the plane, and the automatic flatness,
verticality, and squareness evaluation are finished in Section 4.3.

4.1. Data Collection and Pre-Processing of PCD

One apartment with seven rooms in total was scanned by Leica P50 (shown in Fig-
ure 12a), with the scanning mode 14 used in this study based on the analysis in Section 3.1.
In order to obtain the comprehensive PCD data, six scans were performed, taking a total of
35 min including the setting of the scanner.
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After the on-site scanning, the row data with 8.36 × 109 points are imported into the
software “Cyclone REGISTER 360”, which automatically registers the data by searching
the target balls in the separated PCDs. It should be noticed that the coordinates of the PCD
should be transferred.

Before conducting the segmentation, the PCD has to be de-noised due to the useless
points contained in the scanning, e.g., the outdoor objects scanned through the windows or
doors. Manual work is done within this process to remove the outliers and minimize the
effects of them. Then, the PCD is subsampled using the Octree method due to the regularity
of the PCD of building structures, in order to improve the calculation efficiency afterward,
leading to a PCD with 5.4 × 107 points in total as shown in Figure 12b.

4.2. Surface Segmentation

Once the as-built PCD is prepared, the K-means cluster algorithm is utilized to cluster
the PCD as separate rooms. As shown in Figure 12c, the testing PCD of the apartment was
clustered and seven rooms were separated from the integrated PCD, which were rendered
in with different colors.

After that, the segmentation procedure of the surfaces was conducted according to
the method discussed in Section 3.2.1. In order to evaluate the segmentation quality,
several common metrics, Precision (P), Reall (R), and F1-score, are used in the study as
defined below:

P = TP
TP+FP

R = TP
TP+FN

F1 = 2·P·R
P+R

(13)

where TP is the (True Positives) number of points found in both the ground-truth cluster
and segmented cluster; FP (False Positive) indicates the number of points found in the
segmented cluster, but not found in the ground-truth cluster; while FN (False Negative)
is the number of points not found in the segmented cluster but found in the ground-
truth cluster.

Taking Room 1 and Room 2 as examples, three different algorithms, including tradi-
tional DBSCAN, RANSAC, and Region Growing (RG), are compared with the proposed
i-DBSCAN algorithm; the clustered surfaces results are displayed in different colors as
shown in Figure 13. In Figure 13a, the first column displays the surface clustering results of
Room 1, while the second column zooms in on the clustering results of windows because
of the complex geometrical structures. The results indicate that all the algorithms could
correctly segment the main planes (walls, ceilings, floors, etc.) of the room. However,
the PCD of the window part is more challenging for the clustering due to the presence
of railings and window frames. The results of the DBSCAN and RANSAC algorithms
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show that the PCDs at the intersections of multiple planes are recognized as outliers, re-
sulting in the segmentation of PCDs that should belong to the same plane into different
clusters (as indicated in the third column). This results in the DBSCAN and RANSAC
algorithms segmenting more clusters than actually exist. Comparatively, the RG algorithm
not only detects the planes correctly, but also properly clusters the window frames and
railings in the right clusters. A similar pattern is observed in Figure 13b; RANSAC tends
to recognize boundary points as a separate cluster and results in a low recall rate. On
the contrary, the proposed i-DBSCAN algorithm in this paper accurately recognizes the
boundary points and clusters them into the right segment because of the introduced seed
plane and coplanar check.
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Figure 14 indicates the evaluation metrics of the different segmentation approaches on
the tested PCDs. It is clear that all the compared methods have obtained a high score of
P, which demonstrates that the compared methods have good precision in the detection
of inlier points of the plane, with RG and i-DBSCAN being the highest. Compared with
the others, the proposed approach in this study has obtained the highest R and F1 scores,
indicating the proposed approach is able to detect the true points belonging to the plane.
Although the time cost of the proposed method is longer than the compared ones, it
improves the accuracy level in planar point detection (especially the judgment of boundary
points), which helps greatly for the following SQE process.
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4.3. Automatic SQE Results

In the experiment, the PCD of Room 2 was chosen as the testing data to validate the
flatness evaluation. The segmented data of Room 2 have five walls, one floor, one ceiling,
and one door as shown in Figure 15. Then all the surfaces of this room were subjected to
the SQE using the proposing methodology.

Buildings 2023, 13, 2893 20 of 27 
 

Figure 14 indicates the evaluation metrics of the different segmentation approaches 
on the tested PCDs. It is clear that all the compared methods have obtained a high score 
of P, which demonstrates that the compared methods have good precision in the detection 
of inlier points of the plane, with RG and i-DBSCAN being the highest. Compared with 
the others, the proposed approach in this study has obtained the highest R and F1 scores, 
indicating the proposed approach is able to detect the true points belonging to the plane. 
Although the time cost of the proposed method is longer than the compared ones, it 
improves the accuracy level in planar point detection (especially the judgment of 
boundary points), which helps greatly for the following SQE process. 

 
Figure 14. Evaluation metrics of surface segmentation on Room 1 and Room 2; (a) P, (b) R, and (c) F1. 

4.3. Automatic SQE Results 
In the experiment, the PCD of Room 2 was chosen as the testing data to validate the 

flatness evaluation. The segmented data of Room 2 have five walls, one floor, one ceiling, 
and one door as shown in Figure 15. Then all the surfaces of this room were subjected to 
the SQE using the proposing methodology.  

 
Figure 15. Testing surface of Room 2. 

4.3.1. Flatness Evaluation Results 
After the surfaces are sampled, the planes are fitted and the flatness is evaluated 

according to the methodology of Section 3.2, where the procedures of Room 2 are 
discussed in detail here as an example. 

According to the methodology in Section 3.2, the point cloud of each surface is taken 
as input and its best plane is fitted to obtain the plane parameters as shown in Table 4. The 

Figure 15. Testing surface of Room 2.

4.3.1. Flatness Evaluation Results

After the surfaces are sampled, the planes are fitted and the flatness is evaluated
according to the methodology of Section 3.2, where the procedures of Room 2 are discussed
in detail here as an example.

According to the methodology in Section 3.2, the point cloud of each surface is taken
as input and its best plane is fitted to obtain the plane parameters as shown in Table 4.
The height deviation of each point cloud from the corresponding fitted plane was then
calculated and visualized, and the results are shown in Figure 16.
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Table 4. Parameters and deviation results of Room 2.

Plane Name A B C D δ Max. Dist/m Satisfaction Rate/%

Ceiling 0.0009 −0.0008 1.0000 −1.5069 2.54 × 10−3 0.0216 95.36
Floor 0.0003 −0.0011 1.0000 1.3322 2.87 × 10−3 0.0552 89.21
Wall 1 0.0013 1.0000 0.0006 −4.8684 5.58 × 10−4 0.0059 99.96
Wall 2 −1.0000 0.0010 0.0000 −6.1567 6.84 × 10−4 0.0013 99.95
Wall 3 −0.0010 −1.0000 0.0005 1.6980 4.75 × 10−4 0.0066 99.94
Wall 4 −1.0000 −0.0003 −0.0007 −0.7066 2.94 × 10−4 0.0087 99.95
Wall 5 −1.0000 0.0004 −0.0007 1.1170 5.01 × 10−4 0.0098 99.98
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As can be seen from Figure 16a,b, the flatness of the walls in Room 2 meets the
requirements overall, although there are some boundary areas that exceed the threshold
when it is set to 8 mm. However, the calculation results for the ceiling show that the flatness
does not satisfy the specification at its middle zones and boundary with the wall (see
Figure 16c), with a maximum value of 21.6 mm. The situation for the floor (see Figure 16d)
is also similar to that of the ceiling. This is due to the fact that the formwork of the horizontal
elements needs to bear a large self-weight when the concrete is poured and is also prone to
deformation at the connection with the wall formwork. The data in Table 4 confirm this
conclusion: approximately 95.36% and 89.21% of all points on the floor and ceiling meet
the allowable tolerances, indicating that they did not meet the requirements for as-built
acceptance in the flatness evaluation and that subsequent repair work is required. Note
that the noise points did not affect the flatness evaluation results since the plane fitting
procedure takes them as outliers and removes them when fitting the plane. However, it
will affect the absolute value of the maximum distances (known as Max. dist in the table).

4.3.2. Verticality and Squareness Evaluation Results

The results of the walls’ verticality and squareness for the entire residential building
are shown in Figure 17. It is clear that the vertical walls in Rooms 1, 2, 5, and 6 are satisfied.
Taking 8 mm as the tolerance of verticality, Rooms 3, 4, and 7 have two walls, two walls,
and two walls, respectively, that do not meet the verticality requirements. The locations
of them are displayed in the color-coded map in Figure 17, which reveals that most of
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the walls that do not meet the requirements are found in small spaces such as the kitchen,
bathroom, and terraces. The detailed verticality results of the other rooms are shown in
Table 5.
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Table 5. Verticality results of the tested walls.

Room Number Wall Number Theta/Degree L/mm

Room 1

wall 1 90.0201 0.9946
wall 2 90.0116 0.5764
wall 3 90.0499 2.4743
wall 4 89.9983 0.0859
wall 5 89.9653 1.7236

Room 2

wall 1 90.0248 1.2280
wall 2 90.0173 0.8593
wall 3 89.9131 4.3092
wall 4 90.0591 2.9291
wall 5 90.0588 2.9174

Room 3

wall 1 90.1174 5.8240
wall 2 90.3253 16.1374
wall 3 90.1381 6.8517
wall 4 90.1232 6.1122
wall 5 90.3229 16.0185
wall 6 89.6756 16.0912
wall 7 89.6281 18.4488

Room 4

wall 1 90.6448 31.9839
wall 2 90.0113 0.5623
wall 3 89.2573 36.8408
wall 4 89.9903 0.4800

Room 5
wall 1 90.0458 2.2723
wall 2 89.9416 2.8953
wall 3 90.0435 2.1591

Room 6

wall 1 90.0999 4.9559
wall 2 90.0420 2.0833
wall 3 90.0262 1.2977
wall 4 90.0227 1.1254

Room 7

wall 1 89.8022 9.8097
wall 2 89.9969 0.1530
wall 3 89.7262 13.5829
wall 4 89.9337 3.2863

Similarly, the squareness of the room is calculated based on the method in Section 3.3,
and the results are displayed in Figure 18 and Table 6. It can be seen that the squareness
between wall 5 and wall 6 in Room 3, and between wall 2 and wall 3 in Room 4, as well as
between wall 3 and wall 4 in Room 4, does not fulfill the requirements. Obviously, wall 5
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and wall 6 in Room 3 are two small walls that cover the flue in the kitchen, which is the
secondary structure after the main frame structure was formed. Therefore, the verticality
problem can easily occur during construction. Similarly, Room 4 is a bathroom, which
is only 1.35 m2 in size, making it more difficult for the formwork and therefore prone to
this problem.
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Table 6. Squareness results of the tested rooms.

Room Number Wall Number
Squareness

Radian Degree

Room 1 wall 1, wall 2 1.5712 90.0215
wall 2, wall 3 1.5704 89.9758
wall 3, wall 4 1.5717 90.0530
wall 5, wall 1 1.5680 89.8395

Room 2 wall 1, wall 2 1.5705 89.9825
wall 2, wall 3 1.5708 90.0019
wall 3, wall 4 1.5721 90.0720
wall 5, wall 1 1.5699 89.9481

Room 3 wall 1, wall 2 1.5697 89.9347
wall 2, wall 3 1.5725 90.0982
wall 4, wall 5 1.5708 89.9991
wall 5, wall 6 1.5603 89.3998
wall 6, wall 7 1.5668 89.7729
wall 7, wall 1 1.5852 90.8271

Room 4 wall 1, wall 2 1.5702 89.9665
wall 2, wall 3 1.5773 90.3717
wall 3, wall 4 1.5763 90.3148
wall 4, wall 1 1.5712 90.0235

Room 5 wall 1, wall 2 1.5704 89.9795
wal2, wall 3 1.5704 89.9789

Room 6 wall 1, wall 2 1.5724 90.0904
wall 2, wall 3 1.5709 90.0085
wall 3, wall 4 1.5704 89.9784
wall 4, wall 1 1.5718 90.0603

Room 7 wall 1, wall 2 1.5687 89.8787
wall 2, wall 3 1.5703 89.9695
wall 3, wall 4 1.5707 89.9938
wall 4, wall 1 1.5723 90.0845
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5. Conclusions

Concrete surface quality is the key procedure for as-built acceptance testing, which
requires an automated system that can facilitate the measuring processes, as well as provide
recognizable visualizations. This study proposed a framework for indoor SQE based on
point cloud.

Within this research, an improved DBSCAN algorithm is proposed to better segment
the building surface from the PCD, by fitting a valid plane and introducing the correspond-
ing coplanar parameter to overcome the mis-clustering on boundary points. Furthermore,
a LMedS-based plane fitting algorithm is developed to find out the best fitting plane of
the surface PCD and minimize the effect of outliers on the plane fitting. Subsequently, the
flatness, verticality, and squareness evaluation of the building are calculated based on fitted
planes. The results are indicated with a color-coded deviation map, which allows easy
visualization and the finding of areas that do not satisfy the acceptance standards.

The validation tests on the virtual surfaces and real building data of an apartment
demonstrate that the proposed algorithms can improve the accuracy of surface segmen-
tation and plane fitting compared with traditional model fitting algorithms, which is
conducive to enhancing the reliability of SQE results. The proposed system is able to
provide overall information of the surface quality, including flatness, verticality, and square-
ness of a residential building, thus improving the informatization and comprehensiveness
of it.

In the future, a deep study of other SQE indexes should be conducted to enrich the
acceptance system. And the BIM model can be introduced as a reference for SQE and as
a storage carrier for results in order to realize the integration of the whole life cycle of
the building.

Author Contributions: Conceptualization, D.C.; Methodology, S.C; Investigation, S.C., M.W., H.W.;
Formal analysis, S.C., M.W., H.W.; Validation, N.S., Y.Z., and Y.D.; Data curation: K.H.; Writing—
original draft, D.C.; Writing—review & editing, D.C., K.H. and X.H.; Project administration, Y.Z.;
Funding acquisition, X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Dongbo Cai, Shaoqiang Chai, Mingzhuan Wei, Hui Wu, Nan Shen was
employed by the company Seventh Engineering Bureau, CCCC Frist Highway Engineering Group
Co., Ltd. and Author Yanchao Ding was employed by the company Huasheng Testing Technology
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Kim, M.-K.; Cheng, J.C.P.; Sohn, H.; Chang, C.-C. A framework for dimensional and surface quality assessment of precast concrete

elements using BIM and 3D laser scanning. Autom. Constr. 2015, 49, 225–238. [CrossRef]
2. Construction Industry Institute (CII). RS203-1—Making Zero Rework A Reality; Construction Industry Institute (CII): Austin, TX,

USA, 2005.
3. Mills, A.; Love, P.E.; Williams, P. Defect costs in residential construction. J. Constr. Eng. Manag. 2009, 135, 12–16. [CrossRef]
4. Li, D.; Liu, J.; Hu, S.; Cheng, G.; Li, Y.; Cao, Y.; Dong, B.; Chen, Y.F. A deep learning-based indoor acceptance system for assessment

on flatness and verticality quality of concrete surfaces. J. Build. Eng. 2022, 51, 104284. [CrossRef]
5. Sameer, G.; James, G.; Burcu, A.; Scott, T.; Chris, P. Running Surface Assessment Technology Review; Carnegie Mellon University:

Pittsburgh, PA, USA, 2002.
6. GB50204-2015; Standard, Code for Acceptance of Construction Quality of Concrete Structures. China Building Industry Press:

Beijing, China, 2015.
7. Tan, Y.; Li, S.; Wang, Q. Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR. Remote

Sens. 2020, 12, 2492. [CrossRef]
8. MNL-135; Tolerance Manual for Precast Concrete Construction. American Standard: Piscataway, NJ, USA, 2000.
9. ACI ITG-7-09; Specification for Tolerances for Precast Concrete. American Standard: Piscataway, NJ, USA, 2009.
10. EN 13670:2009; Execution of Concrete Structures. European Standard: Brussels, Belgium, 2009.

https://doi.org/10.1016/j.autcon.2014.07.010
https://doi.org/10.1061/(ASCE)0733-9364(2009)135:1(12)
https://doi.org/10.1016/j.jobe.2022.104284
https://doi.org/10.3390/rs12152492


Buildings 2023, 13, 2893 23 of 24

11. Zhao, W.; Jiang, Y.; Liu, Y.; Shu, J. Automated recognition and measurement based on three-dimensional point clouds to connect
precast concrete components. Autom. Constr. 2022, 133, 104000. [CrossRef]

12. Wang, Q.; Kim, M.-K.; Cheng, J.C.; Sohn, H. Automated quality assessment of precast concrete elements with geometry
irregularities using terrestrial laser scanning. Autom. Constr. 2016, 68, 170–182. [CrossRef]

13. Ordóñez, C.; Martínez, J.; Arias, P.; Armesto, J. Measuring building façades with a low-cost close-range photogrammetry system.
Autom. Constr. 2010, 19, 742–749. [CrossRef]

14. Kashani, A.G.; Crawford, P.S.; Biswas, S.K.; Graettinger, A.J.; Grau, D. Automated tornado damage assessment and wind speed
estimation based on terrestrial laser scanning. J. Comput. Civ. Eng. 2014, 29, 04014051. [CrossRef]

15. Zhou, Z.; Gong, J.; Guo, M. Image-based 3D reconstruction for posthurricane residential building damage assessment. J. Comput.
Civ. Eng. 2015, 30, 04015015. [CrossRef]

16. Wang, Q.; Kim, M.-K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018.
Adv. Eng. Inform. 2019, 39, 306–319. [CrossRef]

17. Tang, P.; Huber, D.; Akinci, B. Characterization of Laser Scanners and Algorithms for Detecting Flatness Defects on Concrete
Surfaces. J. Comput. Civ. Eng. 2011, 25, 31–42. [CrossRef]

18. Bosch, F.; Guenet, E. Automating surface flatness control using terrestrial laser scanning and building information models. Autom.
ConStruct. 2014, 44, 212–226. [CrossRef]

19. BS 8204; Bases and In-Situ Flooring. British Standards Institution (BSI): London, UK, 2009.
20. ACI 302.1R-96; Guide for Concrete Floor and Slab Construction. A.C.I. (ACI): Miami, FL, USA, 2004.
21. ACI 117-06; Specifications for Tolerances for Concrete Construction and Materials and Commentary. A.C.I. (ACI): Miami, FL,

USA, 2006.
22. Bosché, F. Plane-based registration of construction laser scans with 3D/4D building models. Adv. Eng. Inform. 2012, 26, 90–102.

[CrossRef]
23. Li, D.; Liu, J.; Feng, L.; Zhou, Y.; Liu, P.; Chen, Y.F. Terrestrial laser scanning assisted flatness quality assessment for two different

types of concrete surfaces. Measurement 2020, 154, 107436. [CrossRef]
24. Cao, Y.; Liu, J.; Feng, S.; Li, D.; Zhang, S.; Qi, H.; Cheng, G.; Chen, Y.F. Towards automatic flatness quality assessment for building

indoor acceptance via terrestrial laser scanning. Measurement 2022, 203, 111862. [CrossRef]
25. Shih, N.-J.; Wang, P.-H. Using Point Cloud to Inspect the Construction Quality of Wall Finish. In Proceedings of the Architecture

in the Network Society, Copenhagen, Denmark, 15–18 September 2004; pp. 573–578. [CrossRef]
26. Nuttens, T.; Stal, C.; De Backer, H.; Schotte, K.; Van Bogaert, P.; De Wulf, A. Methodology for the ovalization monitoring of newly

built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium). Autom. Constr. 2014, 43, 1–9. [CrossRef]
27. Bosch, F.; Biotteau, B. Terrestrial laser scanning and continuous wavelet transform for controlling surface flatness in construction–a

first investigation. Adv. Eng. Inf. 2015, 29, 591–601. [CrossRef]
28. Puri, N.; Valero, E.; Turkan, Y.; Bosché, F. Assessment of compliance of dimensional tolerances in concrete slabs using TLS data

and the 2D continuous wavelet transform. Autom. Constr. 2018, 94, 62–72. [CrossRef]
29. Neza, I.; Mohamed, M.I.; Syafuan, W.M. Surface Waviness Evaluation of Two Different Types of Material of a Multi-Purpose Hall

Using Terrestrial Laser Scanner (TLS). IOP Conf. Ser. Mater. Sci. Eng. 2022, 1229, 012002. [CrossRef]
30. Han, D.; Rolfsen, C.N.; Hosamo, H.; Bui, N.; Dong, Y.; Zhou, Y.; Guo, T.; Ying, C. Automatic detection method for verticality

of bridge pier based on BIM and point cloud. In ECPPM 2021-eWork and eBusiness in Architecture, Engineering and Construction,
Proceedings of the 13th European Conference on Product & Process Modelling (ECPPM 2021), Moscow, Russia, 15–17 September 2021, 1st
ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 6.

31. Riveiro, B.; González-Jorge, H.; Varela, M.; Jáuregui, D.V. Validation of terrestrial laser scanning and photogrammetry techniques
for the measurement of vertical underclearance and beam geometry in structural inspection of bridges. Measurement 2013, 46,
784–794. [CrossRef]

32. Er’min, W.; Jiming, W.; Fei, Y.; Shengdeng, S.; Xuyang, Y. Detection of flatness and verticality of buildings based on 3D laser
scanning technology. Bull. Surv. Mapp. 2019, 6, 85–88.

33. Kim, M.-K.; Sohn, H.; Chang, C.-C. Automated dimensional quality assessment of precast concrete panels using terrestrial laser
scanning. Autom. Constr. 2014, 45, 163–177. [CrossRef]

34. Tang, X.; Wang, M.; Wang, Q.; Guo, J.; Zhang, J. Benefits of Terrestrial Laser Scanning for Construction QA/QC: A Time and Cost
Analysis. J. Manag. Eng. 2022, 38, 05022001. [CrossRef]

35. Ma, Z.; Liu, Y.; Li, J. Review on automated quality inspection of precast concrete components. Autom. Constr. 2023, 150, 104828.
[CrossRef]

36. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1534–1543. [CrossRef]

37. Hu, X.; Zhou, Y.; Vanhullebusch, S.; Mestdagh, R.; Cui, Z.; Li, J. Smart building demolition and waste management frame with
image-to-BIM. J. Build. Eng. 2022, 49, 104058. [CrossRef]

38. Macher, H.; Landes, T. Grussenmeyer, From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of
Indoors of Existing Buildings. Appl. Sci. 2017, 7, 1030. [CrossRef]

https://doi.org/10.1016/j.autcon.2021.104000
https://doi.org/10.1016/j.autcon.2016.03.014
https://doi.org/10.1016/j.autcon.2010.03.002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000389
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000480
https://doi.org/10.1016/j.aei.2019.02.007
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000073
https://doi.org/10.1016/j.autcon.2014.03.028
https://doi.org/10.1016/j.aei.2011.08.009
https://doi.org/10.1016/j.measurement.2019.107436
https://doi.org/10.1016/j.measurement.2022.111862
https://doi.org/10.52842/conf.ecaade.2004.573
https://doi.org/10.1016/j.autcon.2014.02.017
https://doi.org/10.1016/j.aei.2015.05.002
https://doi.org/10.1016/j.autcon.2018.06.004
https://doi.org/10.1088/1757-899X/1229/1/012002
https://doi.org/10.1016/j.measurement.2012.09.018
https://doi.org/10.1016/j.autcon.2014.05.015
https://doi.org/10.1061/(ASCE)ME.1943-5479.0001012
https://doi.org/10.1016/j.autcon.2023.104828
https://doi.org/10.1109/CVPR.2016.170
https://doi.org/10.1016/j.jobe.2022.104058
https://doi.org/10.3390/app7101030


Buildings 2023, 13, 2893 24 of 24

39. Pu, S.; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J.
Photogramm. Remote Sens. 2009, 64, 575–584. [CrossRef]

40. Khoshelham, K.; Díaz-Vilariño, L. 3D Modelling of Interior Spaces: Learning the Language of Indoor Architecture. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sciences 2014, XL-5, 321–326. [CrossRef]

41. Xie, Y.; Tian, J.; Zhu, X.X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote
Sens. Mag. 2020, 8, 38–59. [CrossRef]

42. Hulik, R.; Spanel, M.; Smrz, P.; Materna, Z. Continuous plane detection in point-cloud data based on 3D Hough Transform. J. Vis.
Commun. Image Represent. 2014, 25, 86–97. [CrossRef]

43. Limberger, F.A.; Oliveira, M.M. Real-time detection of planar regions in unorganized point clouds. Pattern Recognit. 2015, 48,
2043–2053. [CrossRef]

44. Rabbani, T. Efficient Hough Transform for Automatic Detection of Cylinders in Point Clouds. In Proceedings of the ISPRS
Working Groups, Enschede, The Netherlands, 12–14 September 2005; pp. 60–65. Available online: https://www.isprs.org/
PROCEEDINGS/XXXVI/3-W19/papers/060.pdf (accessed on 29 September 2023).

45. Camurri, M.; Vezzani, R.; Cucchiara, R. 3D Hough transform for sphere recognition on point clouds: A systematic study and a
new method proposal. Mach. Vis. Appl. 2014, 25, 1877–1891. [CrossRef]

46. Adam, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. H-RANSAC: A hybrid point cloud segmentation combining 2D and
3D data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2018, IV-2, 1–8. [CrossRef]

47. Oh, S.; Lee, D.; Kim, M.; Kim, T.; Cho, H. Building Component Detection on Unstructured 3D Indoor Point Clouds Using
RANSAC-Based Region Growing. Remote Sens. 2021, 13, 161. [CrossRef]

48. Ebrahimi, A.; Czarnuch, S. Automatic Super-Surface Removal in Complex 3D Indoor Environments Using Iterative Region-Based
RANSAC. Sensors 2021, 21, 3724. [CrossRef] [PubMed]

49. Shi, W.; Ahmed, W.; Li, N.; Fan, W.; Xiang, H.; Wang, M. Semantic Geometric Modelling of Unstructured Indoor Point Cloud.
ISPRS Int. J. Geo-Inf. 2018, 8, 9. [CrossRef]

50. Wang, C.; Ji, M.; Wang, J.; Wen, W.; Li, T.; Sun, Y. An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic
Eps Estimation. Sensors 2019, 19, 172. [CrossRef]

51. Zhong, Y.; Zhao, D.; Cheng, D.; Zhang, J.; Tian, D. A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds.
Remote Sens. 2022, 14, 3519. [CrossRef]

52. Zhao, B.; Hua, X.; Yu, K.; Xuan, W.; Chen, X.; Tao, W. Indoor Point Cloud Segmentation Using Iterative Gaussian Mapping and
Improved Model Fitting. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7890–7907. [CrossRef]
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