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Abstract: Occupancy, which refers to the occupant count in this paper, is one of the main factors
affecting the energy consumption of commercial buildings. It is important for both building managers
and energy simulation engineers to understand how an entire building’s energy consumption varies
with different occupancy levels in the process of building automation systems or in assessments of
building performance with benchmarking lines. Because commercial buildings usually have large
scales, complex layouts and a large number of people, it is a challenge to simulate the relationships
between an entire building’s energy consumption and occupancy. This study proposes a fast method
for calculating the influence of occupancy on the energy consumption of commercial buildings with
different building layouts and existing occupancies. Other occupant behaviors, such as the opening
of windows and adjustment of shading devices, are comprehensively reflected in two basic building
parameters: the balance point temperature and the total heat transmission coefficient of the building.
This new method can be easily used to analyze how building energy varies with occupancy without
a physical building’s energy model. An office building in Shanghai is taken as a case study to
validate the proposed method. The results show that the coefficient of determination R2 between
the calculated value and actual value is 0.86, 0.8 and 0.71 for lighting, cooling and heating energy,
respectively, which is suitable in engineering applications.

Keywords: occupant behavior; building energy consumption; balance point temperature; total heat
transmission coefficient

1. Introduction

Globally, building energy is an important sector of energy consumption. According
to International Energy Outlook 2021 [1], the global energy consumption of buildings is
expected to increase from 2020 to 2050, especially for countries not affiliated with the Orga-
nization for Economic Cooperation and Development (non-OECD). In 2050, the building
sector will account for more than half of non-OECD electricity use. In China, the com-
mercial building sector (excluding the energy for heating in North China) accounted for
33% of the total building energy consumption in 2020. The energy use intensity (EUI) of
commercial buildings increased from 17 kgce/m2 in 2001 to 24.7 kgce/m2 in 2020. New
construction of commercial buildings, particularly large-scale buildings, and the increasing
need for building services has led to a rapid increase in energy consumption [2].

Occupant behaviors, including occupant presence and their interactions with building
systems, influence building energy consumption both directly and indirectly [3]. The
impacts of occupants on the building energy consumption can be divided into three
categories: the utilization of lighting and electrical appliances; elevators and escalators; and
heating, ventilation and air-conditioning (HVAC) systems. Figure 1 shows a flowchart of
how occupants affect building energy consumption in detail. Occupants may use numerous
lighting and electrical appliances in the building, contributing to electricity consumption
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directly and to internal loads that lead to HVAC consumption indirectly. Occupancy also
contributes to internal loads. In addition, in consideration of the occupants’ health, an
adequate volume of fresh air is required to meet the ventilation needs of the occupants.
Some occupant behaviors change the parameters of the HVAC system to enhance personal
comfort. For example, occupants can set the temperature and humidity of rooms. Their
interactions with windows and shading devices such as blinds and curtains change the
infiltration rate and shading coefficients, respectively. Moreover, occupant movement
between different floors in buildings generates elevator and escalator energy consumption.
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Figure 1. Influences of occupant behaviors on building energy consumption.

To gain insight into the relationship between occupant behaviors and building en-
ergy consumption, the International Energy Agency (IEA) established Annex 66 [4] and
Annex 79 [5] to develop occupant behavior models and apply them to building design and
control. Various static models, stochastic models and machine learning models have been
used to simulate the presence of occupants and other behaviors, which are summarized in
Table 1.

Table 1. Summary of occupant behavior models.

Occupant Behavior Modeling Approach Reference

Presence
Markov chain [6,7]

Pattern (clustering) [8,9]

Lighting on/off

Pattern [10]
Markov chain [11]

Probabilistic formula [12]
Poisson process [13]

The use of appliances Monte Carlo [14]
Logistic regression [15]

Thermostat control
Markov chain [16]

Logistic regression [15,16]

Open/close windows Markov chain [17]
Logistic regression [15,17]

Agent-based [18]

Shading control Logistic regression [15,19]
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Among these occupant-related factors, occupancy is the most essential in determining
commercial building energy consumption [20]. One reason for this is that occupancy is
considered the basis of occupant behavior. The other reason is that for most current com-
mercial buildings, building automation (BA) systems are usually centrally controlled by
facility managers, so occupant intervention is quite limited. In building control, building
facility managers need to know how building energy varies with occupancy in order to
change the operation status of the equipment in the BA system. Zou et al. [21] imple-
mented an occupancy-driven lighting control system in an office building in Singapore,
achieving 93.09% lighting energy savings compared to static scheduling lighting control
scheme. Tekler et al. [22] proposed an IoT-based, occupancy-driven smart plug load man-
agement system and the best occupancy-driven control strategy achieved a 7.5% reduction
in building energy consumption. Extant research [23–27] has shown that commercial build-
ings could save 9–42% building energy when using occupancy-based HVAC control. For
building energy assessments, it is necessary to eliminate the impact of both occupancy
and weather in order to evaluate the actual building performance. Therefore, it is worth
studying occupancy’s impact on commercial building energy consumption.

In order to study the relationship between occupancy and building energy consumption,
much research has focused on how to obtain occupancy data in building. These measurement
methods could be grouped into questionnaire survey method and monitoring method [28].
The questionnaire survey method saves the cost of installing sensors and protects occupant
privacy, but it needs a large amount of work in terms of data analysis. Thus, questionnaires
are usually used to collect occupancy data in residential buildings [28]. Occupancy data can
be directly or indirectly detected using different monitoring tools, such as passive infrared
(PIR) sensor, camera, CO2 sensor, Bluetooth, Wi-Fi and so on. Floyd et al. [29] detected
occupancy data using PIR sensors and applied occupancy data to lighting control. Benezeth
et al. [30] obtained occupant information, including location, count, activity, identity and
track, using video cameras. Wang et al. [31] demonstrated an occupancy-based ventilation
control system by estimating occupancy with CO2 concentration data. Vafeiadis et al. [32]
estimated occupancy by data gathered from electricity and water consumption smart meters.
Tekler and Chong [33] estimated occupancy with different sensor data, including indoor
environmental and outdoor weather condition data, number of Wi-Fi-connected devices,
energy consumption data, HVAC operations, and time-related information. In recent years,
with the development of Internet and communication technology, it is convenient to use
mobile devices such as smartphones to track occupant movement and detect occupancy in
buildings. Depatla et al. [34] estimated occupancy with Wi-Fi power measurements. Tekler
et al. [35] estimated occupancy at zone level with Bluetooth-low-energy (BLE) technology in
smartphone devices. Lu et al. [36] extracted occupancy patterns from social media, including
Twitter, Facebook and Google Map. Compared with other monitoring methods, the mobile
device detection method is cheap and convenient. It is suitable for all kinds of buildings,
especially for large-scale buildings.

Previous research about occupancy’s impact on building energy can be classified into
three groups. (1) The first uses building performance simulation (BPS) tools. Hong et al. [37]
developed an occupant behavior functional mock-up unit (obFMU) to co-simulate building
energy with BPS tools, such as EnergyPlus or DeST. Jia [38] used an agent-based model
and EnergyPlus to simulate occupant-related energy consumption. This method takes
the stochastic nature of occupant behavior into consideration and can be applied to both
residential and commercial buildings. However, this method needs a physical building
model in BPS tools, and the simulation speed is related to the scale of the building model.
Thus, for buildings with large scales, complex layouts and a large number of occupants,
this method costs much more labor and time. (2) The second research group uses data-
driven building energy simulation models to analyze the impact of occupant behavior. The
models are developed based on large amounts of data, including building information,
weather data and occupant-related data, collected using simulation or from the real world.
Sha et al. [39] developed a key-variable-based parallel model to predict HVAC energy.
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In this study, occupant-related variables comprised occupancy density, lighting power
density, heating and cooling setpoint temperatures, infiltration rate and interior shading
rate. Amasyali and El-Gohary [40] used EnergyPlus to generate training dataset and
developed a set of machine learning-based cooling energy prediction models. The results
showed that cooling setpoint and window operation were the most influential occupant-
related variables. They also proposed a real data-driven method to assess the energy
saving potential of occupant behavior improvements considering occupant comfort [41].
Compared to BPS tools, data-driven methods usually need fewer input variables and
are more convenient to train. However, this kind of method has two limitations. Firstly,
data-driven models usually have poor performance when the training data and test data
are drawn from different feature spaces or different distributions. Secondly, for buildings
without historical data, BPS tools are still needed to generate training data. (3) The third
research group is uses constant influence intensity, i.e., energy per occupant. The Pacific
Northwest National Laboratory (PNNL) proposed a full-time equivalent occupancy (FTEO)-
adjusted energy use intensity metric to estimate the EUI at the FTEO level, which is the
ratio of total occupancy hours to full-time equivalent hours [42]. Kim and Srebric [43] used
a linear regression model to calculate the electric energy rate per occupant based on areas
with different functions. This method calculates occupancy’s influence using the products
of influence intensity and occupancy. This method is very easy and convenient to use.
However, the influence intensity is constant and building energy consumption is assumed
to increase with occupancy or equivalent occupancy, but the influence intensity actually
varies with the occupancy and usually exhibits a decreasing trend, as shown in Figure 2.
This is because the occupancy’s influence on building energy is related to the existing
occupancy. When there are only a few people in the building, new people arriving turn
on lights and generate extra lighting energy consumption. When the existing occupancy
increases to a certain level and all the BA systems’ equipment is at full operational load,
the new arriving people do not generate extra energy consumption, and the energy per
occupant decreases.
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different building automation levels [4].

In addition to the existing occupancy, the occupancy’s impact on energy consumption
is also associated with building automation level. The impact of occupancy and occupant
behaviors on building energy is limited for fully automated controlled buildings, as shown
in Figure 2. In commercial buildings, the lighting and HVAC equipment in public spaces is
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usually controlled by building facility managers, while single- or multi-person rooms are
manually controlled by the occupants. The higher the proportion of public spaces in the
building, the higher the building automation level. Thus, for commercial buildings, the
building layout could represent the building automation level indirectly.

This study proposes a fast method for calculating the occupancy’s impact on com-
mercial building energy consumption at the whole building level. The main innovations
of the proposed method include (1) the building layout and existing occupancy being
taken into consideration, which have generally been ignored in previous studies; (2) other
occupant behaviors are simplified into two basic building parameters, the balance point
temperature and the total heat transmission coefficient of the building; and (3) this method
does not require a physical building energy model, so it is fast and convenient to calculate
the occupancy’s influence on commercial energy consumption in different scenarios.

In this paper, the proposed method is used to analyze the influence of occupancy on
building energy consumption at different existing occupancy levels for different building
layouts. A sensitivity analysis is conducted to discuss the key factors affecting occupancy’s
influence. Finally, the proposed method is applied in an office building in Shanghai as a case
study. The rest of this paper is organized as follows. The occupancy’s influence calculation
method, the sensitivity analysis method and case study information are introduced in
Section 2. The calculation results of proposed model in different scenarios, the sensitivity
results and case study results are shown in Section 3. The performance of the proposed
method is discussed in Section 4. The advantages and limitations of the proposed method
and recommendations for future work are concluded in Section 5.

2. Methodology
2.1. Method for Calculating the Occupancy’s Influence

As shown in Figure 1, the impact of occupancy on building energy consumption can
be classified into three major parts: lighting and electrical appliances, the HVAC system
and elevators and escalators. Because the elevators and escalators sector only accounts
for 3–5% of total building energy [44], the method in this study mainly focuses on the
occupancy’s impact on the energy consumption from lighting, electrical appliances and
HVAC, as shown in Equation (1):

∆Etotal = ∆Elight + ∆Eequip + ∆Ehvac, (1)

where ∆Etotal is the total energy consumption change when occupancy changes, and
∆Elight, ∆Eequip and ∆Ehvac represent the change in the energy consumption of the lighting,
electrical appliances and HVAC, respectively.

The key parameters and equations used in proposed method are shown in Figure 3.
Parameters in yellow boxes and orange boxes reflect the building layout information and
parameters related to occupant behaviors, respectively. The balance point temperature
represents occupants’ interactions with thermostats. Other occupant behaviors, such as
opening windows and adjusting shading devices, are comprehensively reflected in the total
heat transmission coefficient of the building.
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2.1.1. Lighting Energy Consumption

The lighting energy consumption in commercial buildings can be divided into public
lighting, plug lighting and switch lighting. Public lighting, such as the lighting in entrance
halls and corridors, emergency lighting and flood lighting, is usually controlled by the
facility managers and does not change with the building occupancy. Plug lighting, which
is produced by personal auxiliary lighting equipment, such as table lamps, is generated
only when the switch lighting in the space cannot provide sufficient illumination for
occupants. Thus, it accounts for a small proportion of the lighting energy in current
commercial buildings. Switch lighting is the lighting energy consumption produced when
occupants enter a room or a space and turn on the light switch. This contributes the most
to commercial buildings’ lighting energy consumption when occupancy varies. It is also
related to the existing occupancy and the building layout.

The building layout has a direct impact on the marginal energy consumption caused
by extra occupants. Figure 4 illustrates two different building layouts. There are 10 single-
person rooms in layout (a) and 2 five-person rooms in layout (b). The total area and
the lighting density are the same in both cases. Occupants turn on the lights when they
enter a room. If there is one occupant in the building and one new person enters, the
lighting energy consumption increases by one unit in (a). However, in case (b), there is a
50% chance that the lighting energy consumption will increase and a 50% chance that the
lighting energy consumption will remain the same with the entry of one new occupant;
the average effect is thus 2.5 units. However, if there are six occupants in the building and
one additional person enters, the lighting energy consumption again increases by one unit
in (a) but does not change in (b). Therefore, the effect of occupancy on switch lighting can
be written as Equation (2):

∆Eswitch = ∑ Penter|totalN·baseN·roomN·∆NAswitchρswitchMonoff, (2)

where totalN is the total maximum occupancy of nonpublic rooms and spaces in the
building; baseN is the existing occupancy in the building; ∆N is the number of added
occupants; roomN is the nominal occupancy of each room in the building (1 for single
rooms, 2 for two-person rooms, etc.); Aswitch is the total area of each type of room (m2);
ρswitch is the switch lighting power density (W/m2); and Monoff is the lighting control
strategy, which can be set as one if the light is turned on when occupant enters the room.
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If the occupants control the lighting equipment according to the illumination level, this
value can be set by referring to the probability curve in [10–12]; Penter|totalN·baseN·roomN·∆N
represents the probability that ∆N occupants enter a roomN-type room with baseN existing
occupants in the building, which can be calculated using Equation (3):

Penter|totalN·baseN·roomN·∆N =


P1·(1 − P2), 0 < ∆N < b
P1 , ∆N ≥ b > 0
0 , b ≤ 0

, (3)

where P1 represents the probability that none of the existing baseN occupants are in a
roomN-type room, which can be calculated by Equation (4); P2 represents the probability
that no ∆N new occupants entering a roomN-type room, which can be calculated by
Equation (5). Thus, 1 − P2 represents the probability of ∆N new occupants entering a
roomN-type room: b = totalN − baseN − roomN. When ∆N > b, the new arriving
occupants would no longer generate more switch lighting energy for a roomN-type room.
When b ≤ 0, the roomN-type rooms are occupied by the existing occupancy, and new
occupants do not need to turn on the light. Thus, Penter|totalN·baseN·roomN·∆N is 0.

P1 =
CbaseN

totalN−roomN

CbaseN
totalN

=

(
a·d

b·totalN

)totalN+0.5(b
a

)baseN(b
d

)roomN
(4)

P2 =
C∆N

totalN−baseN−roomN

C∆N
totalN−baseN

=
c(a − ∆N)a+0.5−∆N

(b − ∆N)b+0.5−∆N (5)

n! =
√

2πn
(n

e

)n
(6)

where a = totalN − baseN; c = bb+0.5

aa+0.5 ; d = totalN − roomN; e is the natural logarithm;
and Cm

n = n!
m!(n−m)! is the expression for the total number of all cases when m items are

chosen from n items without return. When m and n are large, the factorial operation
overflows in computers. Thus, the factorial operation is simplified using Stirling’s formula,
as shown in Equation (6).
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The energy consumption of plug lighting can also be calculated with Equation (2).
However, there is no visible boundary in this case, and thus roomN represents the number
of working stations where the public lighting and switch lighting cannot provide sufficient
illumination.
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2.1.2. Electrical Appliances Energy Consumption

The electrical appliances in commercial buildings include both public equipment and
personal equipment. The energy consumption of public equipment does not change with
occupancy, and the consumption of personal equipment is usually considered as plug
energy consumption, which exhibits a linear relationship with occupancy in [45]. Thus,

∆Eequip = ∆Eplugequip= ρequip∆N, (7)

where ρequip represents the equipment power density (W/person).

2.1.3. HVAC Energy Consumption

In ASHARE standard [46], degree-day methods are simple and effective methods for
energy analysis based on the balance point temperature Tbal, at which neither heating nor
cooling is required in the building. If the outdoor air temperature is higher than Tbal, cooling
is required; otherwise, heating is required. Tbal can be calculated using Equation (8):

Tbal= Tin −
qgain

Ktot
, (8)

where Tin is indoor air temperature (◦C); qgain is the total heat gain from sun and internal
loads (W). The heat gain from sunlight is independent of occupancy, while the occupancy
would influence internal loads directly; Ktot is the total heat transfer coefficient of the
building (W/K). In ASHARE standard, Ktot represents the heat transmission coefficient of
the building with windows closed. However, in this paper, Ktot is the total heat transmission
coefficient of the building considering the effect of shading, infiltration and ventilation,
which can be calculated using Equation (9) [47]:

Ktot= UtotAtot+cpVNair, (9)

where Utot is the total average U-value of the building envelope (W/(Km2)); Atot is the total
envelope area (m2); cp is the heat capacity of air, about 0.33(Wh)/(m3K); V is the enclosed
volume (m3); and Nair is the number of air changes, including ventilation and infiltration (h−1).

For most current commercial buildings, the fresh air volume is constant during opera-
tion. Thus, Ktot would not change with occupancy. If the fresh air volume is changed with
occupancy by 30 m3/h per occupant, Ktot would change to

K′tot= UtotAtot+cpV
(

Nair +
30∆N

V

)
= Ktot+9.9∆N. (10)

Therefore, occupancy mainly influences the HVAC energy consumption by changing Tbal
and Ktot. Thermostat control changes Tin. Opening/closing windows changes the Nair. Shading
control would change Utot, and then change Ktot. Because the energy consumption change of
fresh air fans is too small compared to that of source equipment, such as chillers and boilers, the
energy consumption change of fresh air fans is ignored in this paper. Occupancy impact on the
HVAC energy consumption can be calculated using Equations (11) and (12):

∆Qhvac= K′tot,h
[
T′bal,h − Tout

]+ − Ktot,h[Tbal,h − Tout]
++K′tot,c

[
Tout − T′bal,c

]+ − Ktot,c[Tout − Tbal,c]
+, (11)

∆Ehvac =
∆Qhvac

COP
, (12)

where the plus sign above the bracket in Equation (11) indicates that only positive values
are counted; the subscript c and h represent cooling and heating conditions, respectively;
∆Qhvac is the change in HVAC loads (W); ∆Ehvac is the change in HVAC energy consump-
tion (W); Tout is the outdoor air temperature (◦C); COP is the coefficient of performance of
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HVAC system; and T′bal represents the balance point temperature after occupancy change
(◦C). As qgain changes when the occupancy is much larger than Ktot, T′bal is simplified as:

T′bal= Tin −
qgain+∆Qinter,sensible

K′tot
≈ Tin −

qgain

Ktot
−

∆Qinter,sensible

K′tot
= Tbal −

∆Qinter,sensible

K′tot
, (13)

∆Qinter,sensible= CLlight∆Elight+CLequip∆Eequip+CLocc∆Qocc, (14)

∆Qocc= qn′∆N , (15)

where ∆Qinter,sensible is the change in the sensible internal heat load (W); CLlight, CLequip and
CLocc represent the cooling load coefficients of lighting equipment and occupants, respec-
tively; ∆Qocc is the change in the occupant load (W); q is the sensible heat of each occupant,
W/person; n, is the clustering coefficient of occupants; ∆Elight and ∆Eequip represent the energy
consumption change in the light and electrical appliances sectors, respectively.

In this paper, the proposed method is used to analyze the influence of occupancy on
building energy consumption at different existing occupancy levels for different building
layouts. The basic input parameters used in analysis are listed in Table 2. It assumed that
the building contains twenty single rooms, twenty 2-person rooms, ten 4-person rooms,
ten 6-person rooms and ten 100-person rooms. Thus, totalN is 1160. And the total area of
each type rooms are 720 m2, 800 m2, 800 m2, 1000 m2 and 3000 m2, respectively. Monoff
is assumed to be 1 and ∆Epluglight to be 0. CLlight, CLequip and CLocc are chosen from the
Appendix in [48]. Other input parameters are settled based on empirical data in Shanghai.

Table 2. Basic input parameters used in analysis.

Energy/Load Input Parameters

Lighting roomN = [1, 2, 4, 6, 100], Aswitch = [720, 800, 800, 1000, 3000] m2,
totalN = 1160, ρswitch = 10 W/m2, Monoff = 1, ∆Epluglight = 0

Electrical appliances ρequip =160 W/person

Occupancy q = 100 W/person, n’ = 0.9

HVAC CLlight = 0.41, CLequip = 0.56, CLocc = 0.51, COP = 3.5,
Ktot,h = Ktot,c = 35,000 W/K, Tbal,h = 18 ◦C, Tbal,c = 24 ◦C

2.2. Sensitivity Analysis Method of Model Inputs

A sensitivity analysis was used to determine the impact of occupant-related parame-
ters. Because the number of inputs in this method was fairly small, the Sobol method was
applied to analyze the influence of the main inputs on the energy consumption change.
The Sobol method is a model-free global sensitivity analysis method that can be used for
both linear and nonlinear models [49]. It can provide sensitivity indices for the first-order
effects, which comprise the main effects on the output variations due to the corresponding
input. This method can also provide the total effect factor, which accounts for the total
contribution to the output variance due to the corresponding input; this includes both
first-order and higher-order effects owing to the interactions among inputs. Because this
method estimates the sensitivity indices using the Monte Carlo approach, quasi-random
number generators, such as the Sobol sequence, outperform Monte Carlo sampling for
the estimation of multidimensional integrals. In this study, the SALib package [50] in
Python was used for Sobol analysis. The sampling method is Saltelli’s extension of the
Sobol sequence. The inputs and their bounds are listed in Table 3.
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Table 3. Bounds of inputs in sensitivity analysis.

Input Note Unit Nomenclature in Figure Bounds

∆N Number of added occupants person ∆N [0, 1000]
baseN Existing occupancy in the building person baseN [0, 1000]
ρlight Power density of lighting W/m2 Power_light [11, 60]
ρequip Power density of equipment W/person Power_equip [40, 100]

Ktot,h
Total heat transmission coefficient of the

building in heating season W/K Ktoth [4000, 40,000]

Ktot,c
Total heat transmission coefficient of the

building in cooling season W/K Ktotc [4000, 40,000]

Tbal,h
B

Balance point temperature in heating season
◦C Tbh [14, 18]

Tbal,c Balance point temperature in cooling season ◦C Tbc [20, 24]
Tout Outdoor air temperature ◦C Tout [−10, 37]
COP Coefficient of performance W/W COP [2, 5]

2.3. Case Study Information

A 35-storey office building with CAV and VAV systems in Shanghai was chosen as
a case study. The building is 132 m high, covering an area of 92,688.4 m2 on the ground.
The four underground floors are parking garages and a civil air defense area. The first and
second floors are office halls, and the above areas are office areas. Approximately 40% of
the area, including office spaces and public area, such as elevators, corridors and toilets,
have been tenanted. Figure 5 shows the building photo and the layout of one floor. The
white area in Figure 5b is public space. The proposed method was applied to calculate
the ∆Elight and ∆Ehvac when occupancy changed based on different values of baseN. The
results were compared with the actual energy submetering data.
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Figure 5. (a) Study building and (b) building layout of one floor.

The basic information of the building was collected from the field investigation and
drawing information. The HVAC system is centrally controlled with a regular pattern
(on at 7 a.m., off at 6 p.m. on weekdays). The fresh air volume does not change with
occupancy. Because the energy consumption of light and electrical appliances is mixed in
the submetering system, it is calculated together with the proposed method. The ρlight&equip
is calibrated using submetering data. The basic input parameters used in this case study
are listed in Table 4.
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Table 4. Basic input parameters used in the case study.

Energy/Load Input Parameters

Lighting and electrical appliances
roomN = [1, 2, 4, 5, 6, 8, 15, 25], Aswitch = [5720, 1240,

960, 60, 300, 256, 1000, 960] m2,
totalN = 940, ρlight&equip =40 W/m2, Monoff = 1

Occupancy q = 100 W/person, n’ = 0.9

HVAC CLlight&equip = 0.41, CLocc = 0.51, COP = 2.1,
Ktot,h = Ktot,c = 40,000 W/K, Tbal,h = 18 ◦C, Tbal,c = 20 ◦C

The hourly submetering data of the building from 1 January 2019 to 31 December 2020
were used in this case study, including energy consumption of light and electrical appliances
and HVAC systems. The data were cleaned to eliminate abnormal records from the metering
devices. In this paper, the outliers were removed directly. For the HVAC system, energy
increased temporarily when turned on due to the system’s thermal inertia. Thus, data at
7 a.m. were also removed. The hourly occupancy data of the whole building were collected
using mobile positioning data, which is a very convenient method for recording occupancy
data for large-scale buildings. People who used APPs developed by our cooperative
Internet company were counted when turning on their internet and location services. Thus,
the original occupancy data also needed to be revised. The preprocessing method used was
studied in our previous work [9]. The hourly outdoor air temperature data from a personal
weather station in downtown Shanghai were used in this paper.

Figure 6 shows the average daily occupancy, lighting energy consumption and HVAC
energy consumption on weekday and weekend. On weekdays, occupants arrive between 7
and 10 a.m. and leave between 5 p.m. and 9 p.m. The lunchbreak usually takes place at
1 p.m. Lighting systems in public area were turned on at 7 a.m. Lighting energy consump-
tion reached its peak at 11 a.m. with occupancy increasing and finally decreasing at 5 p.m.
The average daily HVAC energy remained stable during operation. The building-level
occupancy data on weekdays followed a similar pattern in the ASHRAE Standard [51] but
could not represent the diversity of occupancy at room level [52].
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daily HVAC energy consumption.

3. Results

In this section, we compare the calculation results of the occupancy’s impact on lighting
energy consumption with different existing occupancy levels and different building layouts.
We also compare the results of occupancy’s impact on HVAC and total energy consumption
with two fresh air control strategies: (a) constant fresh air volume, which is common in
current commercial buildings, and (b) fresh air volume depending on occupancy. The
sensitivity analysis results are discussed in two different scenarios: (a) the occupants can
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change Ktot and (b) the occupants cannot change Ktot. The calculation results of occupancy’s
impact on lighting and HVAC energy consumption are compared with real data in case
study.

3.1. Calculation Results in Different Scenarios
3.1.1. Lighting Energy Consumption

Figure 7 shows how lighting energy consumption change with occupancy at different
existing occupancy levels. It can be seen that the more existing occupants in the building,
the smaller the change in lighting energy consumption with occupancy. When baseN is 0,
∆Elight increases fast with ∆N at first and then slows down. When baseN is 500 (accounting
for 43% of totalN), the maximum ∆Elight caused by occupancy is 7.85 kW (only accounting
for 12.4% of total lighting energy consumption).
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Figure 7. Influence of ∆N on ∆Elight at different existing occupancy levels.

To simulate the influence of occupancy on the lighting energy consumption with
different building layouts, it is assumed that building area, ρequip, totalN and baseN are
the same for different layouts. Scenarios are considered in which the building contains
single rooms, 2-person rooms, 6-person rooms, 10-person rooms and 40-person rooms
(roomN = 1, 2, 6, 10 and 40) with different combinations of the number of each type of
room (n1, n2, n5, n10 and n40). The results are shown in Figure 8.
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Figure 8. Influence of ∆N on ∆Elight at different building layouts (baseN = 0).

For a building with only single rooms, represented by the curve of [1000, 0, 0, 0, 0],
∆Elight increases linearly with ∆N and then stabilizes when all the rooms are occupied.
For a building with a large amount of open working space, represented by the curve of
[0, 0, 0, 0, 25], ∆Elight approaches the upper limit rapidly and stays steady as the occupancy
increases. If there are more private rooms, such as single rooms and two-person rooms, in
the building, ∆Elight increases smoothly with ∆N.
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3.1.2. HVAC Energy Consumption

Figure 9 shows the influence of occupancy on ∆Ehvac at different Tout with different
fresh air control strategies: (a) constant fresh air volume and (b) fresh air volume changed
with occupancy. It is assumed that the existing occupancy is 0. Sections A, B and C in
Figure 7 represent the situations in cooling, transition and heating conditions, respectively.
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(a) constant fresh air volume and (b) fresh air volume changed with occupancy.

• When the building is in the cooling condition (Tout > Tbal,c), ∆Ehvac increases with ∆N,
as shown by the blue line corresponding to Tout = 30 ◦C. In scenario (a), Ktot does not
change with occupancy, so values of ∆Ehvac at different Tout are the same as long as
Tout > Tbal,c. In scenario (b), Ktot would change with occupancy and ∆Ehvac would
increase with Tout.

• When the building is in the transition condition (Tbal,h < Tout < Tbal,c), ∆Ehvac remains
unchanged until Tout > T′bal,c. Then, it increases as the occupancy increases, because
extra internal load needs to be eliminated, as shown in the orange line corresponding
to Tout = 22 ◦C.

• When the building is in the heating condition (Tout < Tbal,h), the results in scenario
(a) and (b) are different. In scenario (a), ∆Ehvac decreases with increasing occupancy,
then remains stable. This is because the increase in the internal load offsets a part
of the heating load. However, in scenario (b), increasing occupancy would bring in
both internal cooling load and fresh air heating load. When Tout is close to Tbal,h, the
extra internal cooling load is larger than the fresh air heating load. ∆Ehvac decreases
with increasing occupancy and then remains stable, as shown by the green line with
Tout = 15 ◦C. When Tout is much lower than Tbal,h, ∆Ehvac increases with occupancy
rapidly after a small and short decline, as shown by the red line with Tout = −10 ◦C. A
small and short decline happens when the ∆Elight is large, which contributes to a lot of
internal cooling load. As occupancy increases, the extra fresh air heating load would
exceed the internal cooling load.

3.1.3. The Total Energy Consumption

Figures 10 and 11 show the influence of occupancy on the change in total energy
consumption with the constant fresh air volume control strategy and the variable fresh
air volume control strategy, respectively. The results with different baseN (0 and 600) and
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Tout (30 ◦C, 22 ◦C, 15 ◦C and −10 ◦C) are calculated in each scenario. The left y-axis of
the figures shows the change in total energy consumption, and the right y-axis shows the
change in total energy consumption per person, which corresponds to the red dashed line
in the figures.
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baseN and Tout (variable fresh air volume).

When baseN is 0, the change in the lighting energy consumption is dominant. ∆Etotal/
occupant drops rapidly when ∆N is small and then and declines steadily to less than
500 W/person. When baseN is 600, accounting for more than half of the total number
of 1160 occupants, the occupancy’s influence on ∆Elight is limited, and ∆Etotal/occupant
changes slightly with ∆N. ∆Etotal/occupant is also related to Tout. In the constant fresh air
volume scenario, ∆Etotal/occupant in cooling condition > ∆Etotal/occupant in transition
condition > ∆Etotal/occupant in heating condition.

When the fresh air volume is controlled with occupancy, ∆Etotal/occupant in transition
condition is smaller than that in cooling and heating conditions, which is different from
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the constant fresh air volume scenario. This is because in heating conditions, the fresh air
heating load brought by new occupants would exceed the internal cooling load, which
causes more heating energy consumption. So the ∆Etotal/occupant in heating condition is
larger than that in transition condition.

It is worth noting that the ∆Etotal/occupant changes little with ∆N when existing occu-
pancy exceeds half of total occupancy in the building. For most commercial buildings using
the constant fresh air volume control strategy, ∆Etotal/occupant would not change with Tout
as long as the HVAC condition does not change. Thus, it is feasible to used two constant
influence intensities to calculate occupancy impact on building energy consumption in
cooling and heating conditions separately. In the transition condition, ∆Etotal/occupant
changes with Tout, and it causes a large calculation error when using the constant influence
intensity method. For buildings using the variable fresh air volume control strategy, the
constant influence intensity method is not suitable because ∆Etotal/occupant would change
with Tout throughout the year.

3.2. Sensitivity Analysis Results

Figure 12 shows the total effect indices for the main inputs in the proposed method on
∆Etotal and ∆Ehvac in two different scenarios: (a) occupants can change Ktot and (b) occu-
pants cannot change Ktot. The closer the bars of the histogram are to the border, the closer
the index values are to 1 and thus the more important the inputs are.
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occupants can change Ktot and (b) occupants cannot change Ktot.

In scenario (a), ∆N, baseN and Tout are the three most important factors for ∆Etotal,
while Tout, ∆N and COP are the most important for ∆Ehvac. Tout plays a significant role in
the change in HVAC energy, but it has a lesser impact when the utilization of lighting and
electric devices is taken into consideration. The baseN parameter mainly affects the lighting
energy consumption, and thus it has little influence on the HVAC energy. The balance point
temperature has little effect on ∆Ehvac because the balance point temperatures only have an
influence when the heating or cooling conditions are changed. For example, if there is initially
no need for cooling but with the increasing occupancy, Tbal,c decreases to less than Tout, then
the extra cooling load should be eliminated. However, if the building is already in the cooling
condition, Tbal,c would not influence ∆Ehvac. Ktot,h and Ktot,c also have little effect on ∆Ehvac
because, in this scenario, ∆E_hvac is only related to ∆Qinter,sensible when the heating or cooling
conditions are not changed. If the heating or cooling conditions are changed, particularly in
the transition season, Ktot influences Tbal and further influences ∆Ehvac.

However, in scenario (b), the facility manager could change the ventilation according
to the change of the number of people, and the occupants could also change Ktot by opening
windows, opening shading devices and other actions. Tout, Ktot and ∆N are the main factors
affecting ∆Ehvac and ∆Etotal.
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3.3. Case Study Results

Figure 13 shows the comparison of ∆Elight calculated by the proposed method with
actual data based on different baseN. The coefficient of determination R2 between the
calculated results and the actual data is 0.86.
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Figure 13. Comparison of ∆Elight calculated by the proposed method and actual data.

Figure 14 shows the comparison of ∆Ehvac in cooling and heating conditions calculated
by proposed method using actual data based on different values of baseN. In the cooling
condition, Tout is set as 32 ◦C because the actual data at 32 ◦C are more than those at other Tout
and can thus be used to validate the proposed method. The R2 between the calculated results
and the actual data is 0.8. In the heating condition, Tout is set as 11 ◦C and the R2 is 0.71.
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The total calculation time of the proposed method in this study is only 7.4 s. It is
therefore very fast and convenient to calculate the change in building energy consumption
with occupancy. Although this method cannot reflect the stochastic variation caused by
occupants, it is very useful in commercial building energy control and assessments.

4. Discussion

Building layout and existing occupancy level are two main factors affecting occu-
pancy’s influence on building energy consumption. However, these two factors have
usually been ignored in previous research. The reason is that most researches used BPS
tools to simulate the impact of occupancy, so it is rather labor-intensive to generate numer-
ous BPS models with different layouts. In our proposed method, these two factors were
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used to calculate the probability that new occupants enter certain rooms in a building. It is
very convenient for calculating occupancy’s influence in different layouts under existing
occupancy levels. And it is very useful in energy comparison between different buildings.

In our proposed method, the influence of occupancy and other occupant behaviors on
HVAC energy consumption are simplified into the balance temperature and the total heat
transmission coefficient of the building. So, it can be used to calculate occupancy’ influence
with different occupant-related control strategies, such as fresh air control, thermostat
control shading control and so on. However, in this paper, we only compare the occupancy’
influence in different fresh air control strategies. The calculation results in Section 3.1.3
further prove that a constant influence intensity cannot reflect occupancy influence’ on
building energy consumption exactly because occupancy influence intensity is also related
to outdoor air temperature. However, for commercial buildings with constant fresh air
control, it is feasible to use two constant influence intensities to calculate occupancy impact
on building energy consumption in cooling and heating conditions separately.

The case study results show that the proposed method performs well in calculating
∆Elight caused by changing occupancy for different existing occupancies. The errors might
come from three problems: (1) the proposed method calculated the expected value of
∆Elight, which does not reflect stochastic situations; (2) the proposed method only considers
the change in occupancy at the whole building level and cannot be used to calculate energy
change caused by occupant movement in the building; and (3) in the actual situation, some
occupants might leave without turning off the light or turn on the light according to the
illumination level. However, in this case study, the light control strategy is assumed as
turning the light on when an occupant arrives and turning it off when they leave.

The calculation results in heating and cooling energy consumption are worse than
lighting. The errors might come from four issues: (1) the error propagated from the lighting
sector; (2) the solar heat gain is assumed to be unchanged with occupancy in the proposed
method; (3) Ktot is assumed as a constant value in this case study when, in the actual
situation, occupants might open windows or adjust shading devices; (4) and the HVAC
system’s energy consumption is also related to the control strategy of HVAC equipment.
In an ideal case, the HVAC equipment control strategy, such as the number of chillers
in operation, should change with the cooling and heating load. However, the HVAC
equipment controls in practice are usually rough. The proposed method only considers the
ideal control case, while the practical control strategy is ignored.

5. Conclusions

Occupancy is one of the most important factors for commercial building energy
consumption. It is important for both building managers and energy simulation engineers
to know how the entire building’s energy consumption varies with occupancy in BA
system control, different building performance comparison and building energy efficiency
assessment. This study proposes a fast method for calculating occupancy impact on
commercial building energy consumption at the whole building level. The case study
results show that the proposed method performs well in practice.

The main advantages of the proposed method include:

• The building layout and existing occupancy are taken into consideration, which have
generally been ignored in previous studies;

• A physical building energy model is not needed for the proposed method. Thus,
it is very fast and convenient to calculate the occupancy’s influence on the energy
consumption of different commercial buildings in different scenarios;

• There are not too many input parameters, and they are easy to obtain from building
CAD drawings and existing building energy management systems.

The limitations of the proposed method are:

• It is not a stochastic method, and the occupant diversity is not considered. The
expected value of building energy change is calculated, which does not reflect stochas-
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tic situations. Thus, this method is only suitable for commercial buildings, not for
residential buildings;

• The proposed method only considers the change in occupancy at the whole building
level. It cannot be used to calculate energy changes caused by occupant movement in
the building;

• Because this study focuses on the energy consumption at the whole building level, a
simplified method is used for the calculation of heating and cooling loads. Therefore,
the proposed method is not suitable for cases with short time intervals or small spatial
scales.

In this study, the HVAC equipment is assumed to operate with an ideal control
strategy. How to apply the proposed method with different HVAC control strategies should
be further researched. Moreover, the influence of occupant behaviors on building energy
consumption is comprehensively reflected in the Tbal and Ktot parameters. The relationship
between these two parameters and occupant behaviors, such as window/shading control,
should be further investigated to supplement the proposed method.
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