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Abstract: Artificial Intelligence (AI) is a trending topic in many research areas. In recent years, even
building, civil, and structural engineering have also started to face with several new techniques
and technologies belonging to this field, such as smart algorithms, big data analysis, deep learning
practices, etc. This perspective paper collects the last developments on the use of AI in building
engineering, highlighting what the authors consider the most stimulating scientific advancements
of recent years, with a specific interest in the acquisition and processing of photographic surveys.
Specifically, the authors want to focus both on the applications of artificial intelligence in the field of
building engineering, as well as on the evolution of recently widespread technological equipment and
tools, emphasizing their mutual integration. Therefore, seven macro-categories have been identified
where these issues are addressed: photomodeling; thermal imaging; object recognition; inspections
assisted by UAVs; FEM and BIM implementation; structural monitoring; and damage identification.
For each category, the main new innovations and the leading research perspectives are highlighted.
The article closes with a brief discussion of the primary results and a viewpoint for future lines
of research.
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1. Introduction

Building engineering is a world where the digital revolution has struggled to be-
come popular, compared with other fields of engineering; however, in recent years, there
has been a rapid comeback through increasingly cheaper technologies and widespread
computer knowledge. The greatest progress was certainly attributable to the widespread
diffusion of Building Information Modeling (BIM) environments [1], to the monitoring
of the state of structural health [2], and to the use of technologies such as the Internet of
Things (IoT), Virtual Reality (VR), data modeling, and Artificial Intelligence (AI) which
are revolutionizing this industry [3]. This perspective article showcases the latest studies
in terms of image processing, examining technological developments of surveying tools,
new techniques, proposed applications, their integration with artificial intelligence and the
tangible improvements that such approaches can bring to each aspect of building practice.
Indeed, thanks to extraordinarily more accurate and updated computer models and more
effective inspection techniques during construction and service life, it is possible to achieve
a design and structural monitoring quality that were unattainable in the past.

In this perspective paper, the authors, on the basis of their experience, are going to
investigate the most recent state of the art, identifying and deepening seven different
categories and research areas viewed as having great significance and broad prospects,
related to the topics of image processing and artificial intelligence: photomodeling; thermal
imaging; object recognition; inspections assisted by Unmanned Aerial Vehicles (UAVs);
Finite Element Method (FEM) and BIM implementation; structural monitoring; and damage
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identification. These seven categories were designed with the aim of covering every aspect
of the topic, taking into account, on the one hand, the current and future possibilities
of physical tools useful for image processing, and on the other hand, the progress in
implementation, new methodologies, and possible deficiencies in the use of the most
popular software of engineering practice, with a special eye on the impact of artificial
intelligence. AI is treated as a cross-category topic, precisely because of its adaptability and
broad application possibilities. In order to clearly outline the future perspectives and to
respect the typical characteristics and structure of a perspective paper, the authors have
intentionally tried not to exceed the number of citations, but to select the articles which,
in their opinion, were more interesting in the given category. The readers interested in a
broader review on these topics can refer to the review papers that are already available in
the technical literature, such as [4] or [5].

The article is organized as follows. First, there is an overview of the most common
strengths, weaknesses, and mistakes of the necessary physical tools, namely photocameras
and thermal cameras (Sections 2 and 3, respectively). Subsequently, in Section 4, the
subject of object recognition is addressed, and new, very promising algorithms are reported
that are capable of implementing the important transfer of the data acquired during
scanning into the BIM environment. Section 5 is dedicated to the recent developments
in UAV technologies and their wide range of uses, since these devices can integrate the
possibilities given by photographic surveys with the prospects of flight. Because the
main purpose of image acquisition activities is the creation of an updated and detailed
model in BIM environments, Section 6 examines the possibility of extracting structural
information from these models and their interoperability with FEM-based algorithms. Then,
Section 7 analyzes the new findings in the field of monitoring structural health, whereas
Section 8 is more specifically dedicated to damage identification. The article closes with a
brief discussion on the main results and with an outline of the future research directions
identified by the authors in Section 9.

2. Photomodeling

In the field of surveying and modelling techniques, photography was certainly a
revolution. In monitoring activities, especially in the field of architectural restoration,
photography has also allowed to solve many problems of logistics and of detail recognition.
The integration of deep learning technologies with photography can surely perform the
photomodeling for building engineering applications. For example, ref. [6] described the
automated method of modeling the facade of existing and historic skyscrapers, called
Scan4Façade, where an AI called U-net is used to generate high-resolution facade orthoim-
ages and to segment pixels; this method can provide clear and accurate information to
assist the creation of BIM functionality. This method can also contribute to the mainte-
nance of existing buildings; for instance, ref. [7] proposed an advanced system for crack
identification in large structures.

Other applications have been found in the world of virtual tours and Computer-
Generated Holography (CGH) [8], where models based on photographic surveys are often
accurate for the intended purposes. Today’s research aims at the integration of laser
and photographic surveys into product versatility, seeking theoretical lines that make
technologies as compatible as possible [9]. A crucial issue is that these models must always
have an appropriate computational burden. For instance, many areas (such as underground
cavities or similar) do not need a level of detail comparable to that of a laser scanner.

Although it was developed to detect objects in all directions, another research branch in
photomodeling is the one moving towards the integration of open spaces and closed spaces.
This new field, based on the different light conditions during the acquisition operations,
has already been successfully applied in the framework of 3D content creation [10].

In the field of monitoring, especially of the conservative type, where construction
materials are very important, the conditions would be particularly hard to reproduce only
by means of traditional surveying and the combination of two-dimensional (2D) photos
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and three-dimensional (3D) scans has proven to be a very efficient procedure, especially
when the 2D representation is predominant compared to the 3D one, or when dealing with
parts that are difficult to inspect by large machines [11]. Figure 1 is a 2D/3D enhanced
combination, showing the integration of different information for the same portion of a
given case study, the Castle of Torrelobatón in Spain.
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Figure 1. Integration of different information: (a) north-east wall of the Castle of Torrelobatón, Spain;
(b) reflectance info; (c) color info; (d) thermal info; (e) multispectral info (from [11]).

Another particularly interesting aspect is the working procedures (for instance, pipelines
and workflows) proposed by individual researchers and technicians. A noteworthy project
is that of semantic segmentation which aims to enhance the photogrammetric pipeline
by integrating semantic information within the processing phases. In [12], an approach
to introduce AI-based semantic segmentation in the photogrammetric workflow was
presented. The proposed workflow uses 2D image label data and robust AI-based methods
to create separate point clouds for each class, demonstrating that the assumption of using
the far more available labeled 2D training data is beneficial.

In this rapidly developing environment, another current problem is linked to the
reconstruction of missing, unreachable, or undetectable parts (an important problem in
photomodeling) or the automatic decomposition of what has been detected into layers.
In these cases, the AI seems to be able to provide valuable answers through generative
processes [13].

3. Thermal Camera

The use of thermal cameras as a detection device is now more than twenty years
old. Developed for military purposes in order to allow for night combat and to identify
solid elements, its diffusion was very rapid. Despite this, its use still has much room for
improvement, especially related to the enormous use of drones in surveying large structures
and thanks to the growing sensitivity towards the thermal dispersion of existing buildings
which have a huge impact on global energy demand and consequently on the energy
transition. Some authors studied a new framework that uses an instance segmentation
technique (Mask R-CNN) from thermal camera observations to compute transmittance
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values, U, for various building objects, including doors, walls, windows, and facades [14].
With the same purpose of limiting the heat losses in buildings, ref. [15] exploited the
potential offered by AI applied to thermal images to detect thermal anomalies on wall
surfaces with a novel segmentation approach to isolate areas of thermal anomalies in walls
using infrared thermography images. The problem of overlapping data, once unsolvable,
is now at the center of numerous studies, especially in regard to the identification of the
damaged parts of artifacts, as continuous monitoring inserted within a BIM scheme or in a
broader Data Fusion project.

Similarly, in the integration process of the photography with laser scanning, a merging
procedure is being carried out for the integration of thermal camera surveys [16]. This
equipment, compared to the others, is decidedly more delicate and more influenced by
environmental conditions [17], and more experiments are needed in the field of tempera-
ture corrections.

Rapid monitoring techniques occupy a large part of the scientific research sector [18].
Thermal imaging is a non-invasive technology, and therefore it is useful in restoration works;
moreover, it allows the rapid detection of alterations in structures (such plant-induced
damage and rust) that are normally hidden from view [19].

At a larger scale, in [20], 3D city models were generated, encompassing both photo-
graphic surveys and thermal images. Each model could visualize construction elements
like beams and columns, with the relevant surface temperature at a selected point. This is
even possible if the structural elements were hidden by other (non-structural) elements,
as long as the machinery has the calibration settings to be able to detect the different
thermal behaviors among elements. An example is shown in Figure 2. The main findings
of this paper concerned the evaluation and improvement of the thermal environment in
pedestrian spaces.
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Figure 2. Spatial distribution of Mean Radiant Temperature (MRT) values in pedestrian spaces:
(a) MRT values at a height of 0.5 m; (b) MRT values at 1 m; (c) MRT values at 1.5 m; (d) MRT
differences between points at heights of 0.5 and 1.5 m (from [20]).

At the same scale, in [21], a code was developed to combine the attributes captured
by both thermal images and visual ones, providing a quantitative detection of the number
of surface cracks, and estimating their relevant severity. Field test results were gathered
and statistically analyzed to correlate temperature gradients to the surface crack profiles
of asphalt pavements. The extension to the case of buildings seems very promising,
especially in the case of masonry structures. As in the case of photomodeling, the use of AI
technologies can lead to greater precision of analysis in non-ideal conditions such as those
of variable lighting conditions [22]. Furthermore, if one thinks of the very large scale, a
whole series of very interesting studies in the field of biology already exist [23] and whose
principles can easily be applied to the surveillance and creation of databases at an urban
and structural level [24].

4. Object Recognition

Object recognition is a central topic in the reasoning of scan-to-BIM. In fact, simplifica-
tion and replacement of elements is meaningful, since it can solve many problems in the
information conflict between mesh-based and NURBS-based software (such as Nastran,
Inventor, Midas). Basically, hybrid elements between the two sides are desirable, like
McNee T-Spline or Autodesk T-Spline, which create surfaces with fewer control points than
NURBS and are therefore closer to the computational entities of mesh-based algorithms.
The sector that certainly boasts the best results is that linked to Mechanical, Electrical, and
Plumbing (MEP), which works with very simple elements, consisting of primitive solids
(such as pipes) [25]. Advanced procedures, such as the Trimmed Iterative Closest Point
(TrICP) scheme, are also available for irregular components (see the example in Figure 3).

Surely it is now universally known that object recognition is a purely Information
Technology (IT) issue, rather than a logical one; therefore, a part of the research is concen-
trated in the development of plug-ins or in the search for methodological pipelines and
software stacks that can be used for a wide range of applications [26]. A comprehensive
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comparison was provided by [27]. The elevation recognition is sometimes a difficult task,
but specific algorithms can help on this point [28].

The recognition process does not exclude that elements could already be catalogued a
priori when they are put in place or relying on visual inspections [29]. For instance, the
shape, the material, and other information can be first assigned, which can then facilitate
the correspondence with the given database. An open topic regards the connections among
elements: it could be almost automated once the recognition of the converging elements
is completed.
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Figure 3. Detection and verification of irregularly shaped components: (a) clustering results for
potential positions of valves; (b) retrieved point cloud of a valve; (c) as-designed point cloud of the
valve; (d) registration of as-built and as-designed point clouds with TrICP (adapted from [25]).

5. Inspections Assisted by UAVs

The technological developments of the last decades have led to the use of new devices
in the field of construction engineering, and one of the most innovative is certainly the
case of UAVs (Unmanned Aerial Vehicles), that is, an aerial vehicle without pilot. Thanks
to the advantages related to the prospects obtainable from flight and to the increasingly
affordable prices, these technologies are spreading more and more in image acquisition,
even in the building engineering field.

Ref. [30] showed how UAVs were able to speed up the construction process of the
Wuhan Leishenshan Hospital (China), an emergency hospital necessary for treating pa-
tients affected by COVID-19 (the recent contagious disease caused by the coronavirus
SARS-CoV-2), reproducing the whole construction process at a high altitude, gathering a
wider perspective, and thus providing efficient and accurate earthwork measurements and
offering a full-cycle safety management model (Figure 4).
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Even the planning of safety on construction sites can be improved using drones: a real-
life study has been performed for a high-rise residential construction in Chile. The outcomes
of the study indicated that UAVs might have a considerable impact on safety planning and
monitoring practices [31]. Another important research field concerns dynamic applications:
a video-based methodology for tracking the displacement response of buildings undergoing
dynamic loadings using camera-equipped UAV platforms has been proposed in [32].

However, image processing based on UAVs is not without problems. Indeed, the
small movements of the object and the visual obstacles that this could encounter hinder the
production of solid data. Ref. [33] investigated the problem of occlusions, presenting an
optimization method for the collection of BFTIs (Building Façade Texture Images) from the
image flows acquired by five oblique cameras onboard the UAV.

In this field, AI becomes crucial, both for the correction phases of the UAVs maneuvers
mentioned above and for the automatic detection of structural elements. Ref. [34] proposed
a new framework, based on neural networks, with the aim of addressing camera movement
problems and facilitating the extraction of structural displacements from videos. The use of
AI to automatically detect structural features, such as damage or cracks, was demonstrated
in [35,36]. More details on these topics will be given in Sections 7 and 8.

6. Mesh, FEM, and BIM Implementation

In the world of building engineering, the role of BIM (Building Information Modeling)
will become a fundamental key to structural design. Therefore, artificial intelligence
becomes essential in the recognition of structural elements downstream of image acquisition
processes and in improving the design and maintenance planning of buildings. The authors
in [37] focused on the creation of an AI platform for the building and construction industry,
capable of improving the efficiency, safety, and sustainability of construction operations.

The diffusion of new data capturing technologies and the advancements of modeling
systems have allowed for the greater usability of digital twinning; Ref. [38] examined
the implementation of this technology with an empirical approach, identifying the next
challenge to overcome in the organization and integration of large and heterogeneous
amounts of data. Indeed, for existing buildings the modeling process of geometric digital
twins still lacks a streamlined systematic and completed framework.

The artificial intelligence based on image recognition is making an important contribu-
tion in overcoming these gaps: ref. [39] proposed a semi-automatic procedure to generate a
systematic, accurate, and convenient digital twinning system pivoting on image surveys
and CAD drawings. In [40], the authors presented a framework and a proof-of-concept
prototype for on-demand automated replication of construction projects, combining some
cutting-edge IT solutions (see Figure 5), specifically, image processing, machine learning,
BIM, and virtual reality. Furthermore, a drone-based AI and 3D reconstruction for augment-
ing the digital twin was presented in [41], demonstrating an Information Fusion framework
that goes beyond the capabilities of BIM to enable the integration of heterogeneous data
sources. Additionally, ref. [42] analyzed the impact of the image-based digital twin in
post-earthquake building inspections, highlighting the potential and applications of deep
convolutional neural networks (CNNs).

These cited technologies even hold great promise for instilling vigor in safety training
and assessment programs. Studies conducted on students and professionals about what
kind of platform is preferable in monitoring and safety planning on construction sites
concluded that both methods can improve this practical aspect of building engineering [43].
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In the engineering world, making digital copies of geometries through 3D recon-
struction models is of great interest, to compare and analyze structural evolutionary data.
Through advanced numerical analysis and non-invasive data acquisition, it is possible to
improve static and dynamic models, and to collect the structural modifications caused by
aging and/or other factors [44].

Today, the bottleneck of the interaction between BIM models and the ones used by
FEM analysis software (Nastran, Inventor, and Midas for example) is in the difficulty
of transforming mesh entities, deriving from point clouds, into NURBS or other border
curves, that is, the entities used by all the commercial FEM software. This transformation is
done through “commutators” software. However, only models with a high quality mesh
(i.e., suitable polygon density, skewness, etc.) and an adequate topology can be exchanged
between the various BIM sectors in a more coherent way.

Indeed, despite the advanced developments, BIM still does not enjoy an optimal
pipeline for the transition to FEM models, which are much more useful for structural
purposes. Refs. [45,46] proposed and simulated two different scan-to-BIM-to-FEM pipelines,
highlighting in both of cases how the BIM to FEM transition is still cumbersome and
susceptible to macroscopic errors. The need for an automated procedure for the transition
from BIM to FEM, possibly fully governed by artificial intelligence, becomes increasingly
widespread as its usefulness is more and more requested in the monitoring and maintenance
phases of existing structures, especially the ones belonging to the historical architectural
heritage (as the cases showed in [47,48]).

7. Structural Monitoring

In this Section, non-contact vision-based displacement monitoring is considered. It
is a new trending topic for civil structures, based (differently from Section 4, where only
object recognition was considered) on the use of image processing to measure the struc-
tural responses. Among the methods, a novel field structural displacement measurement
method using deep learning was proposed in [49], which tried to address some signif-
icant drawbacks, such as the non-uniform sampling problems and the accumulation of
errors in calculating the variations among successive images. Relying on the sampling
Moiré method, ref. [50] proposed a technique for measuring the deflection and vibration
frequency from captured video data, showing how to gather compressed images with an
appropriate compression ratio, in order to reduce the image sizes without deteriorating the
required accuracy.

The studies in [51] described the design and the implementation of a monitoring
system, where images were used to both control the evolution of structural phenomena
(such as the opening of cracks) and to implement a 3D model of a real-life ancient structure
in a virtual reality framework (see Figure 6).
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Generally speaking, any vision-based technique requires a Foreground–Background
Segmentation (FBS), that is, a pixel-level separation where each pixel of the given image
(or input video frame) is assigned to the foreground or to the background. A novel FBS
approach, which proved superior to the available methods for FBS, was proposed in [52].

3D Digital Image Correlation (3D-DIC), 3D Point Tracking (3D-PT), and similar meth-
ods have been effectively used for structural monitoring, but quantitative measurements
on large-scale structures are not well suited due to the demanding calibration processes of
the cameras. In [53], a new sensor board was proposed to measure the degrees of freedom
necessary for evaluating the extrinsic parameters of a set of stationary paired cameras to be
employed for 3D-DIC applications.

The work in [54] investigated a structural monitoring method based on a pure organic
Mechano-Responsive Luminogen (MRL), namely 1,1,2,2-tetrakis(4-nitrophenyl)ethane
(TPE-4N), for the evaluation of strain distributions (transformed into visible fluores-
cence). The results obtained for the structural monitoring of the strain concentration
in weld joints opened new opportunities in the field of structural monitoring of nodes and
other D-regions.

Vision-based structural health monitoring is becoming increasing popularity because
the images can be directly used to collect data and detect the onset of structural damage.
The case study analyzed in [55] used image analysis and convolutional neural networks to
automatically inspect bolt loosening. This topic is more comprehensively discussed in the
next section.

8. Damage Identification

Unlike the previous Section, limited to monitoring activities of the structural responses,
here, the next step, the detection of potential damages, is considered. Damage identification
is indeed a crucial task, and there is a wide range of literature available on this topic.
Ref. [56] and many other similar works are dedicated to the classification and quantification
of cracks in concrete structures. In detail, the cited work was based on a convolutional



Buildings 2023, 13, 1198 10 of 15

neural network able to classify, locate, and quantify crack-like damage, with an accuracy
higher than 96%.

When one deals with microstructural cracks (for instance, to analyze the onset of corro-
sion phenomena), the image processing process becomes more expensive, since voids and
cracks grow in the same greyscales. Deep convolutional neural networks were used in [57]
to approach this issue, adopting X-ray computed tomography and then reconstructing the
three-dimensional distribution of mortar, aggregates, voids, and cracks (see Figure 7). This
detailed approach is an important tool to better understand how a damage mechanism
evolves at a small scale in concrete elements.
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Some works are also available on the integration of different technologies with image
processing: in [58], the combined use of three technologies, namely Acoustic Emission (AE),
Digital Image Correlation (DIC), and Dynamic Identification (DI), was adopted to analyze
crack forming and propagation in beam specimens. The latter were affected by pre-notches
and subjected to three-point bending loadings. From this point of view, a technology that
could be interesting for new buildings is the one reported in [59], based on distributed
optical fiber sensors. The experiments also consisted of concrete beams undergoing three-
point bending tests, where a polyamide-coated optical fiber sensor (protected by a thin
silicone film) was directly bonded onto the surface of the (unaltered) reinforcement bars.
This approach is interesting because, if the image processing gives information on the
surface, such technologies can provide information on the inner state, without resorting to
the cited expensive solutions [57] (which however, are still useful at the small scale).

Previous works have focused on concrete elements. A deep neural network, called
Material-and-Damage-network (MaDnet), was introduced in [60] to simultaneously identify
materials (concrete, steel, or asphalt) and structural damage (both fine, such as cracks
and exposed rebar, and coarse, such as spalling and corrosion). However, since regular
supervised learning methods usually rely on (relatively) few training examples, some
damage types can remain unclassified; ref. [61] proposed a method to combine a few image
data points to describe a large class of structural damage.

Moving from the element scale to the scale of the structure, structural damage detection
and localization from the combined use of high-speed DIC and local modal filtration is
another promising research branch. The efficacy of this procedure has been recently
demonstrated in [62] for a small-scale frame structure.

Moving to an even larger scale, the territorial one, techniques based on large-scale
image processing have been proposed to analyze the effects of events of great importance,
such as earthquakes and hurricanes. A rapid damage assessment of buildings in post-
disaster conditions can ensure a fast emergency response, and increasing the chances of
saving lives. In [63], using an UAV and a convolutional neural network, an automated
method was proposed for assessing seismic-induced damage. Ref. [64] used the same
techniques for the damage assessment after hurricanes or similar.
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9. Conclusions and Future Directions

In this perspective article, the authors have collected the latest developments on the
use of AI for image acquisition and processing. A collection of the most promising articles
published in the last three years has been gathered. In detail, focusing on building engi-
neering and photographic surveys, seven categories have been recognized: photomodeling;
thermal imaging; object recognition; inspections assisted by UAVs; mesh, FEM, and BIM
implementation; structural monitoring; and damage identification.

Generally speaking, it is certain that in the immediate future there will be a rapid
increase in the use of images (due to the wide availability of UAVs and photo/video surveil-
lance/maintenance stations); consequently, for obvious reasons related to the management
of big data, there will also be a rapid development of systems based on AI. However, many
of today’s procedures are still in an experimental stage, and some of them are based on
heuristic schemes; accordingly, the theoretical bases on which to support the obtained
results are often missing. Therefore, future research lines will largely focus on this aspect.

To provide a clear picture of the recent state of the art, the following paragraphs
illustrate the main findings and the leading research perspectives for each of the identi-
fied categories.

Photomodeling: The present scientific community universally recognizes how ac-
quiring as much data as possible could be potentially detrimental, from both a logical
and an IT point of view. In fact, more information to manage means many more errors
and simplifications in the calculation models. It is thus possible that the photomodeling
will finds application in fields of that were once exclusive to laser scanners, especially
for certain Levels Of Detail (LOD) or for the so-called manipulable objects (which can
be photographed ‘in the round’). A research effort on software architecture is needed,
since application tools are too distant from each other to ensure a scientifically correct
interoperability (which is only possible by creating software stacks inspired by the same
principles for modeling and calculations).

Thermal camera: Whereas a few years ago, thermal cameras were imaging devices
used in a small number of structural applications, today, it is a technology that is attracting
great interest in both laboratory and in situ surveys. With the centralization of BIM
environments and monitoring applications, the thermal analysis and the possibility of
creating models from these tools are proving to be very useful. Three-dimensional thermal
models will likely become more and more common, replacing the concept of a ‘simple’
image with the birth of a series of integrated information. Software will also move in this
direction to better harmonize all data, according to the dictates of BIM interoperability. In
the same way, a standard integration of the thermal cameras on board drones is foreseeable;
this will allow us to capture a single data point with common coordinates in all surveys,
even in detail. It should be noted, however, that most of the experimentation until now has
been carried out on large plants, where the thermal difference between the components is
considerable. Nevertheless, some early available studies show that thermal imaging is also
useful for detecting structural alterations.

Object recognition: Object recognition is certainly a new and fascinating issue in this
research field. However, the replacement of the objects detected through a photographic
survey with their digital twins is not straightforward in its current state. First of all, there
is the need to further investigate scientifically correct replacement approaches, able to
calibrate both the purely visual architectural and the structural model. At the level of
structures, the question is even more interesting, since many simplified models obtained
through manual operations have the same performance (for some given purposes) as that
of the original one. Therefore, the automatic recognition and transformation into simplified
elements, as already happens in the field of the MEP applications, is certainly one of the
areas that will be developed further.

Inspections assisted by UAVs: Thanks to their extraordinary ease of use and multiple
application methods, UAVs are rapidly becoming an increasingly widespread technology
in all areas of building, seismic, and civil engineering. More and more articles show
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how their adaptive capacity allows them to be widely used in all construction phases,
from the design to the maintenance of existing structures. At the design stage, a more
intelligent management of the construction site and of the relevant safety conditions is
guaranteed, whereas the facilitation of photogrammetry (for the reconstruction of point
clouds or for monitoring purposes) is ensured for existing structures. The case of UAVs is
certainly a rapidly developing technology with an exponential diffusion and a very wide
field of application. The authors believe that this data acquisition technology, coupled
with the computing capabilities of recent AI-based algorithms, will become a tool that all
professional engineers and all engineering companies will be using within a few years.

Mesh, FEM and BIM implementation: With the advancement of image processing
techniques, the BIM environment becomes a central technology in building engineering,
as evidenced by the large number of articles in this field. Artificial intelligence is an
essential branch in this research line, for both the recognition of objects and the exclusion
of obstacles and occlusions. Despite this, the authors have noted that the research is still
rather lacking in proposing automated communication procedures between BIM and FEM
programs. Even today, this step must be performed semi-manually, with a large loss of
time and information. This gap in the field of building engineering can represent a great
study opportunity.

Structural monitoring: Non-contact vision-based displacement monitoring for civil
structures is a new trending topic. Recent studies have been focused on some significant
drawbacks: non-uniform sampling problems, error accumulation in calculating the dif-
ferences among successive images, reduction of the image size (without deteriorating the
required accuracy), Foreground–Background Segmentation (FBS), and the pairing process
of cameras in 3D Digital Image Correlation and 3D Point Tracking. Other studies have
shown how images can be used both to control the evolution of structural phenomena
(such as the opening of cracks or loosening of bolts) and to implement a 3D model of
the structures in a virtual reality framework. These promising results pave the way for
large-scale applications of AI-based image monitoring.

Damage identification: Many articles are devoted to the detection of cracks; the
largest part focused on damaged concrete elements, but new interesting developments
have come from X-ray computed tomography applied to small-scale samples (where
microstructural cracks need to be monitored to better understand the initiation of damage
mechanisms). Many other efforts concern AI-based procedures able to distinguish the
type of material and to classify damages starting from an archive of a few images. One
of the keys to success could be the implementation of polyamide-coated optical fiber
sensors or similar technologies inside the elements, in order to combine the analysis of
surface images with the information coming from the interior. With the “high-speed
digital image correlation”, structural dynamic monitoring is also possible (even if there
are still few studies on this topic). Lastly, some recent techniques, allowing the processing
of images on a territorial scale, have proven extremely fruitful to analyze the effects of
events of great importance, such as earthquakes and hurricanes. Approaches like these, in
conjunction with the diffusion of UAVs, can significantly increase the chances of saving
lives in post-disaster conditions; thus, their improvement must become a crucial task for
the scientific community.
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