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Abstract: Electricity generation from renewable energy reduces greenhouse gas emissions and,
in the long term, the cost of electricity in power grids. However, there is currently no strong
positive correlation between greenhouse gas intensity and electricity spot prices in Germany, despite
increasing renewable energy penetration. Therefore, energy flexibility programs that rely on demand
response may not be fully effective in reducing carbon emissions unless the energy market aligns
consistently with carbon emission factors. To address this issue, we propose a model for joint signals
consisting of power grid climate gas intensity and price signals that can achieve both environmental
and economic benefits for building energy flexibility applications. Next, to assess the maximum
possible flexibility hours from the grid side, we explore penalty signal threshold limits with daily and
biweekly aggregation. Using a case study, we analyze energy flexibility with joint signals to explore
their effect on greenhouse gas emissions and building operation cost. Our results suggest that joint
signals can be more effective than a single type of signal in promoting energy flexibility.

Keywords: building energy flexibility; building–grid interaction; dynamic climate gas intensity; joint
penalty signal; demand response

1. Introduction

The European Commission addresses the climate crisis and intends to decrease the
current greenhouse gas (GHG) emissions by at least 55% by 2030 compared to 1990 levels [1].
Looking further ahead, the Commission aims to achieve a further reduction of 55% in 2050
compared to 2030 [2]. Germany, which has high GHG emissions per capita compared to
other EU countries and the global average, aims to reduce GHG emissions by 80–95% by
2050 compared to 1990 levels [3]. The country’s target for 2040 is a minimum reduction of
88%, with the goal of achieving GHG neutrality by 2045 [4]. On this path, Germany defines
limits for the annual climate gas emissions by sectors and an annual control mechanism. To
achieve the climate action goals, dissemination of renewable energy systems and energy
efficiency investments are positive measures, hence heating systems based on renewable
energy sources will be funded. The integration of renewable energy systems (RES) into the
power supply is critical on the path to these targets. RES have intermittent form, coming
from the variations in solar radiation and wind strength, which can result in variable
electricity generation and fluctuating energy supply [5,6]. These changes over time within
the power grid create stability issues [7].

National (Transmission) grids are responsible for transmitting electricity over long
distances from large power plants to various regions of a country [8]. On the other hand,
local (distribution) power grids distribute electricity from the national grid to homes and
businesses in a specific area. The national and local power grids are different in design,
function, and operational requirements due to the differences in the scale of their operation
and the distances they cover [9]. As a result, electricity prices can vary between these
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grids due to factors such as generation costs, transmission costs, distribution costs [10,11],
and stability issues. Moreover, electricity prices are influenced by the generation mix of
electricity sources, which can vary between national and local power grids. Nevertheless,
due to the cost reduction of RES technologies and the increasing cost of electricity generation
by nonrenewable sources, RES is expected to contribute more significantly to the power
grid globally [12].

Increasing electricity production from RES exposes energy providers to challenges
in balancing supply and demand efficiently and economically [5]. To ensure efficient
allocation of renewable and conventional energy, markets that allow for the trading of new
information are crucial [13]. Increasing the flexibility and responsiveness of short-term
wholesale markets to accommodate the growing share of renewable energy is suggested
by the European Commission [14]. This proposes empowering consumers to participate
in electricity markets by providing them with smart meters and dynamic retail tariffs
that reflect changing wholesale prices, enabling them to make informed decisions about
energy consumption [15]. To address this issue, energy flexibility in buildings as part of
demand response management can be used to optimize the load in the power grid [5]
based on various external factors such as power grid demand, energy price signal and
CO2eq. intensity.

Exploiting the potential of demand response has become an area of growing interest [16].
Demand response involves actions on the demand side by reacting to conditions in the
power grid, providing an opportunity to reduce operating costs and GHG emissions [17].
However, the impact of demand–response programs on CO2 emissions is often inaccurately
assessed using dynamic power grid intensity [18]. The dynamic power grid intensity
(CO2eq. intensity) refers to the amount of CO2 emissions released in the generation of one
unit of electricity per hour. The marginal emissions factor based on specific generators’ CO2
intensity provides a more accurate estimate of actual reductions rather than grid-average
electricity [19]. The merit order dilemma, which refers to the preference for cheaper,
more carbon-intensive technologies in the electricity generation process due to their low
marginal costs, is often ignored [20]. Since accurately calculating marginal emissions at
a given time is complex, identifying marginal generators and isolating their emissions
can be challenging [21]. As a result, load shifting through demand–response programs
cannot fully exploit the potential for carbon reduction unless the merit order of the energy
market is correlated with carbon emission factors [20]. However, due to the mentioned
complications, the CO2eq. intensity signal based on average electricity emission factors are
used conventionally in the present applications. In other words, the electricity spot price
from the energy market and the commonly used CO2eq. intensity value are not always
positively correlated, which raises concerns about the optimizing method for both economic
and environmental benefits in energy flexibility applications. Although energy storage
can facilitate decarbonisation by boosting renewable energy integration in the long run, its
effectiveness in reducing GHG emissions in the short term hinges on factors such as the
storage technology used and its operational management [22].

The purpose of this paper is to develop a joint signal of price and CO2eq. intensity
and use it as a penalty signal for energy flexibility applications in buildings that achieves
both environmental and economic savings. Modelling such a signal is a critical issue in
building–grid studies to avoid one type of prominent saving since these signals are not
always positively correlated. In the literature, there are various studies discussing the
price and CO2eq. intensity as a penalty signal to exploit the energy flexibility but, not much
attention has been given to the joint influence of these signals and existing research with this
focus is limited. One study [23] investigated the joint impact of both price and CO2 signals
in demand–response programmes using Markov–chain load models. Another study [24]
conducted a tradeoff analysis between CO2 emissions and electricity cost achieving both
economic and environmental benefits by utilizing various schedules. [25] examined the
combined impact of price and CO2 emissions in demand response programmes and for-
mulated an optimal control model to reduce energy cost and carbon emissions for five
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households in South Africa by mixed integer nonlinear programming. Similarly, [26] used
mixed integer linear programming for an optimisation model to jointly minimize electricity
costs and CO2 emissions through an optimisation model for home energy management,
achieving lower total cost, CO2 emissions cost, and peak demand shaving. [27] used a
mixed integer linear programming model with the ε-constraint method and Pareto curves
to examine coordinated scheduling, which resulted in reduced cost and CO2 emissions. A
pilot study to evaluate the influence of real-time price visualisation on electricity consump-
tion, electricity costs, and CO2 emissions was performed [28]. Since there was a negative
correlation between electricity price and CO2eq. intensity in the Swedish electricity market
in the period studied, the load shifting results showed a reduction in electricity costs while
CO2 emissions raised.

In this context, this paper introduces two joint penalty signals—concurrence penalty
signal and combined penalty signal—and analyses their effectiveness when applied with
threshold levels that determine the start of energy flexibility. To achieve this goal, the paper
addresses the following research questions:

1. What are the main drivers of the CO2eq. intensity in the German power grid?

The power grid CO2eq. intensity development is discussed in relation to the electricity
spot price and energy flow.

2. How does the observation interval affect the definition of penalty signal thresholds?

The paper analyses the upper and lower thresholds for CO2eq intensity and electricity
spot price and evaluates the flexibility operation under different observation intervals, such
as daily and biweekly, for the heating season. Daily and biweekly observation times refer
to the time intervals at which the penalty signals are monitored and used to determine the
energy flexibility thresholds.

3. What is the impact of joint penalty signals?

The penalty-unaware status of a case building is compared to different penalty-aware
cases using four penalty signals, CO2eq. intensity, electricity spot price (before tax), and
two joint signals (concurrence and combined). Their effect on building performance metrics
is discussed.

After this introduction (Section 1), this paper is structured as follows: Section 2 shows
the calculation methodology of power grid CO2eq. intensity, the threshold calculation of
penalty signals and the methods to form the concurrence and combined penalty signals
based on CO2eq. intensity and price signals. Section 3 presents the factors influencing the
power grid CO2eq. intensity and its relationship with price signal. Additionally, the impact
of the different observation intervals on the definition of the penalty signal thresholds
is presented. In Section 4, the calculated thresholds are applied in a case study with the
described penalty signals, and the result of the simulation results are illustrated. Section 5
discusses the implications of these findings and the analysis. Section 6 concludes the study.

2. Methodology
2.1. Dynamic CO2eq. Intensity Calculation

The dynamic CO2eq. intensity calculation data was collected from ENTSO-e [29],
which provides free access to electricity production data and the energy flow information
between countries with a time step of 15 or 60 min. The CO2 emission factors for electricity
production technologies are accessible from various resources. In Germany, the grid
electricity is generated by 17 different technologies as shown in Table 1.

The production data and the energy flow between countries were obtained for the
years 2017–2021, with the interconnected countries for energy flow varying by year. Table 2
presents the yearly average CO2 emission coefficients of the connected countries. These
data were only used as input for the emission calculation resulting from energy trade.
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Table 1. Climate gas emissions of various electricity generation technologies in Germany. Climate
gases are expressed in CO2 equivalents (Data source: [30].)

Electricity Production Technology CO2 Coefficient (gCO2eq./kWh)

Biomass 70
Fossil brown coal/lignite 1054
Fossil coal-derived gas 433
Fossil gas 433
Fossil hard coal 873
Fossil oil 841
Geothermal 183
Hydro pumped storage-aggregated 14
Hydro run-of-river and poundage 3
Hydro water reservoir 14
Solar 67
Waste 342
Wind offshore 6
Wind onshore 10
Nuclear 68
Other 45
Other renewable 45

Table 2. The CO2eq. intensity of interconnected countries between 2017 and 2021 [31–35].

Country CO2eq. Intensity (gCO2eq./kWh)

2017 2018 2019 2020 2021

Austria 103 100 92 82 82
Belgium - - 174 161 140

Czech Republic 472 465 433 437 403
Denmark 179 193 123 109 155

France 69 58 56 51 58
Germany 413 404 344 311 349

Luxembourg 64 65 73 59 55
Netherlands 460 440 392 328 325

Norway - - - 32 27
Poland 778 784 719 710 736
Sweden 10 11 10 9 10

Switzerland 35 35 35 35 35

The CO2eq. intensity in the power grid was influenced by five main factors, including
the CO2 emission coefficient of production technologies (Table 1), the share of technologies
in use (from ENTSO-e platform with 60 min data resolution), the CO2 emission coefficient of
imported electricity based on countries (Table 2), and the amount of exported and imported
electricity (ENTSO-e). Total CO2 emissions coming from the production technologies were
calculated using the electricity production amount and CO2 emission coefficients from
Table 1 by Equation (1). The average CO2 emission coefficient of the import countries was
used with the amount of imported electricity to calculate the total CO2 emissions coming
from the imported electricity in Equation (2). Total CO2 emissions coming from the pro-
duction technologies were reduced by considering the exported electricity to neighbouring
countries. In Equation (3), the share of exported electricity in the total electricity production
was found and the reduction amount was calculated in Equation (4). The next step focused
on the total load in the power grid, presenting the approximate amount of electricity to
be consumed by the users. The existing load in the power grid included the produced
electricity and the electricity exchange coming from energy transaction Equation (5). Finally,
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the grid CO2eq. intensity (Equation (7)) was found by the ratio of total CO2 emissions in the
power grid (Equation (6)) to total load in the power grid.

PTCO2 emission =
I

∑
i=1

H

∑
h=1

PTi,h × CO2,i (1)

ImportCO2 emission =
J

∑
j=1

H

∑
h=1

IEj,h × CO2eq,j (2)

EERatio =
∑K

k=1 ∑H
h=1 EEk,h

∑I
i=1 ∑H

h=1 PTi,h
(3)

ExportCO2 emission = PTCO2 emission × EERatio (4)

LoadGrid =
I

∑
i=1

H

∑
h=1

PTi,h +
J

∑
j=1

H

∑
h=1

IEj,h −
J

∑
j=1

H

∑
h=1

EEi,h (5)

GridCO2 emission = PTCO2 emission + ImportCO2 emission − ExportCO2 emission (6)

GridCO2 intesity=
GridCO2 emission

LoadGrid
(7)

2.2. Threshold Calculation

Thresholds, which represent the boundary points for applying energy flexibility, were
dynamically determined based on the observation time and the penalty signal, which in
this study are CO2eq. intensity and electricity spot price. In some studies, the observation
time is chosen to be “daily” [36,37] or “biweekly” [38]. These observation periods are time
intervals at which the penalty signals are monitored and used to determine the energy
flexibility thresholds. This implies that 8760 data points per year are taken and aggregated
into daily and biweekly intervals.

In the meantime, to approximate the optimal solution, different studies have dis-
cussed penalty signal thresholds, which represent the level at when energy flexibility is
requested from a building energy system based on this aggregated data. Ref. [39] intro-
duced two adjustable parameters to define the top and bottom threshold for grid interaction
signals. In [40], various upper and lower thresholds were used to calculate the number of
hours for the set-point adjustment. The thresholds were determined with 25th and 75th
percentiles in [36].

In this study, the thresholds as responding to penalty signals were defined by the
upper 25% quartile (downward flexibility) and the lower 25% quartile (upward flexibility)
using hourly values. Whisker plots were used to assign the penalty signals into quartile
groups by percentile analysis. Subsequently, this research compared the results of both
aggregation intervals based on the grid status for heating season.

2.3. Development of Penalty Signals and the Simulation Cases

For every aggregation interval, five cases were simulated by a building energy simula-
tion tool to quantify the total CO2 emissions of the building energy supply, cost, and load
profile according to the specified penalty signals. (Table 3).

In the first case (Case Emission), the CO2eq. intensity was exploited as a penalty
signal. In the second case (Case Price), price signal was applied. In the third case (Case
Concurrence), if the CO2eq. intensity and price signal reflected the same behaviour at the
same moment, such as either upward or downward interaction, this synchronised status
was used as a signal (Figure 1).
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Table 3. The simulation cases based on the penalty signals.

Cases Penalty Signal

Emission CO2eq. intensity
Price Electricity spot price

Concurrence Simultaneous
Combined Combined
Reference Penalty unaware case—Thermostatic valve control
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In the fourth case (Case Combined), the combination of CO2eq. intensity and price
signals were driven for power grid interaction, such that if one of these signals offered
interaction, it was taken into account to develop the combined status. The strategy to
form this status was as follows: (1) If both signals offered the same type of power grid
interaction state (upwards (+1), downwards (−1), or no interaction (0)), this state was set
as the combined signal. (2) If these signals were not harmonised (one is upwards and other
is downwards), the previous signal was checked and (2a) the same state as the previous
combined signal was chosen; conversely, (2b) if the previous signal was 0 (no interaction),
no interaction was continued. (3) If a shift from upwards to downwards or vice versa based
on the signals was estimated, it was ignored, and the combined signal was considered as
no interaction (Figure 2). Additionally, for (1), the previous signal was checked with the
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same purpose. This ensured a smooth transition between the statuses and avoided the
sharp changes in the indoor thermal comfort and HVAC operation. Finally, the fifth case
(Case Reference) presented the penalty signal-unaware status of the case building.
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3. Results
3.1. Dynamic CO2eq. Intensity

Figure 3 presents the share of electricity production technologies between 2017 and
2021. In 2017, the largest contribution was from RES. Although the share of RES decreased in
the following years, a growing trend can be observed from 2018 to 2020. Wind energy is the
leading technology among RES in Germany, and its overall percentage has been increasing
every year. The decreasing trend in production ratio from fossil technologies has reversed,
resulting in an increase in 2021. Consequently, electricity generation from RES decreased to
nearly 50% in 2021, which was attributed to unfavourable weather conditions [41]. In other
words, the current generation in 2021 is approximately 50% dependent on fossil fuel-based
power plants.
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Figure 4 presents the grid CO2eq. intensity and electricity spot price for the given years.
The yearly average CO2eq. intensity between 2017 and 2021 is calculated as 413, 404, 344,
311, and 439 gCO2eq./kWh, respectively.

The share of electricity production from RES is higher in 2020 compared to other years,
leading to lower CO2eq. intensity. Conversely, the highest intensity is observed in 2021 due
to a higher share of fossil-based production. The intensity value varies significantly over the
year, with the average intensity being approximately 500 gCO2eq./kWh during wintertime
and around 300 gCO2eq./kWh in the summer of 2021. The annual average values from
Table 2 are reflected in Figure 4 dynamically based on hourly resolution for Germany.

The correlation between the CO2eq. intensity and the electricity spot price is explored
for the period between 2017 and 2021, and is illustrated in Figure 5. The results show an
upward trend in the correlation factor over this period. As the share of RES in electricity
generation increases, a stronger relationship is observed between cheaper generation and
CO2 emission-free generation, particularly between 2017 and 2020. Therefore, the behaviour
of CO2eq. intensity as a penalty signal on the energy flexibility reflects the behaviour of the
price signal, especially in 2020, when the highest correlation is observed. However, a drastic
change occurs in 2021, attributed to the rise of fossil-based production and the increase in
electricity spot price by approximately three times compared to 2020 [41]. Further analysis
of the relation between CO2eq. intensity and the load in the power grid reveals no significant
correlation, thus it is not presented in this study.
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As described in Section 2.1, the CO2eq. intensity calculation considers the CO2 emission
from the imported energy, hence, in Figure 6, the CO2eq. intensity profile during import
period is examined. One of the highest energy flows to Germany is from the Czech Republic.
Along with the import, the CO2eq. intensity in the German power grid rises.
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3.2. Penalty Signals Threshold

Figure 7 presents the penalty signal thresholds for CO2eq. intensity and electricity spot
price for daily aggregation in 2021. The price thresholds vary for each daily aggregation and
fluctuate over the course of the year. This raises concerns about the choice of a threshold
for a particular day, e.g., selecting the threshold for dayn may result in no positive grid
interaction on dayn+1 or a loss of potential flexibility application hours. Similarly, CO2eq.
intensity thresholds vary significantly between days, requiring a threshold to be set for
each day. Additionally, the daily CO2eq. intensity thresholds exhibit larger differences
throughout the year than the electricity spot price thresholds.
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represent the upper 25th percentile (downward action) and green lines show the lower 25th percentile
(upward action)).

Figure 8 shows the results for biweekly aggregation, with a total of 26 intervals over
the course of a year. The electricity spot price threshold values are close to each other
among observations than those at daily aggregation, although differences are observed
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among the seasons. Conversely, CO2eq. intensity threshold exhibits distinct variations
during the year.
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The benchmark for threshold limits for CO2eq. intensity signal and price signal be-
tween daily and biweekly aggregation was assessed using the upper quartile and lower
quartile for the heating season, and the results with the maximum possible flexibility
operation hours are presented in Tables 4 and 5. The penalty-aware times are grouped
into upward and downward periods. Upward time represents the hours during a day
when the penalty signal is less than the lower limit and downward time stands for the
periods when the dynamic signal is higher than the upper limit. In Table 4, the differences
between aggregations are found as following: In daily aggregation, flexibility application is
possible while dynamic CO2eq. intensity signal is higher than 481 gCO2eq./kwh or lower
than 447 gCO2eq./kwh for Day 1. The maximum possible flexibility operation hours from
the grid side are 6 and 5 h for upward and downward action, respectively. In the case of
biweekly aggregation, there can be flexibility when the CO2eq. intensity signal is higher
than 531 gCO2eq./kwh and lower than 435 gCO2eq./kwh on the same day, and these are
the limits for the next 13 days. On Day 1, the entire day is offered for the upward energy
flexibility. By the last day, Day 14, almost no interaction presents based on the calculation
results of biweekly aggregation. For this day, 6 h of upward and downward actions are
found by the daily aggregation. Comparing the daily and biweekly aggregation cases, a
50% difference is observed for threshold limits, which is the main factor for the variability
seen for possible flexibility hours. Besides, rather than having a switch between upward
and downward actions, as in the daily aggregation case, the building is intended to have
one type of operation in biweekly aggregation.

Table 5 presents the thresholds for the price signal and the maximum possible inter-
action hours for the heating season. Similar to the CO2eq. intensity signal case, the daily
aggregation case shows 5 and 6 h of upward and downward action on Day 1, respectively.
However, some days exhibit significant differences by biweekly aggregation by enabling
19 h of upwards flexibility. On Day 14, the flexibility by biweekly aggregation is found as
16 h of downward flexibility. Yet, nearly equal number of flexibility hours (5 and 6 h) for
both upwards and downwards are possible with daily aggregation.
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Table 4. The thresholds of CO2eq. intensity based on daily and biweekly aggregation—heating season.

Daily—CO2eq. Intensity Signal Biweekly—CO2eq. Intensity Signal

Upper Lower Upward Downward Upper Lower Upward Downward

(gCO2eq./kwh) (Hour) (gCO2eq./kwh) (Hour)

Day 1 481 447 6 5

531 435

24 0
Day 2 499 465 6 6 7 2
Day 3 527 467 6 5 3 2
Day 4 494 440 6 7 0 9
Day 5 473 333 5 6 7 2
Day 6 553 513 7 5 14 2
Day 7 515 492 6 7 0 23
Day 8 539 497 6 5 0 10
Day 9 481 408 5 7 0 15

Day 10 508 456 7 5 13 2
Day 11 499 473 6 6 4 6
Day 12 464 426 6 6 0 4
Day 13 488 453 5 5 13 0
Day 14 513 481 6 6 0 2

Table 5. The thresholds of price signal based on daily and biweekly observation intervals in the
heating season. (Data source for electricity spot price: [29]).

Daily—Price Signal Biweekly—Price Signal

Upper Lower Upward Downward Upper Lower Upward Downward

(cent/kwh) (Hour) (cent/kwh) (Hour)

Day 1 23 17 5 6

32 12

19 0
Day 2 21 9 6 6 6 0
Day 3 33 19 7 6 12 0
Day 4 29 13 5 6 3 11
Day 5 24 10 6 6 8 1
Day 6 34 20 7 6 9 0
Day 7 28 20 5 6 2 13
Day 8 28 21 7 6 3 2
Day 9 24 11 5 6 1 0

Day 10 32 19 7 6 12 0
Day 11 37 20 6 6 5 13
Day 12 34 24 6 6 4 14
Day 13 41 26 6 6 0 14
Day 14 39 27 5 6 0 16

4. A Case Study

The threshold limits are applied to the office zones of a university building assumed
to be equipped with an air source heat pump with a constant COP of 4. The university
building is located in Wuppertal, Germany and has a total net floor area of 860 m2 (only for
the case zone as presented in Figure 9).

The simulation employs measured climate data from the university weather station
and power grid CO2eq. intensity and electricity spot price data from 2021 as penalty sig-
nals. The U-values of the external walls (0.22 W/m2.K), window (1.3 W/m2.K), roof
(0.20 W/m2.K) and floor (0.28 W/m2.K) were defined as well as the occupancy and venti-
lation profile (Mon.–Fri. 8:00 a.m. to 6:00 p.m.) in the simulation model. The indoor air
temperature set points are designated as the flexibility option.
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The simulation was conducted in hourly time step resolution using the IDA-ICE
simulation tool [42], and all five cases are simulated, as outlined in Section 2.3. Daily and
biweekly aggregation intervals are used for the simulation for a year, and a rule-based
control (RBC) algorithm is employed. The calculated thresholds from Section 3.2 are
inserted as input into the control macro, and the indoor temperature levels are adjusted
according to the input flexibility status. The indoor temperature set points are 20 ◦C, 21 ◦C,
and 22 ◦C for downward flexibility status, no flexibility status and upward flexibility status,
respectively, during the heating season. Figure 10 presents the emissions, cost based on the
electricity spot market prices (not end user costs), load demand profile, indoor temperature,
and the possible flexibility status for Day 1 (from Table 4) as a representative day during
the heating season based on daily aggregation, while Figure 11 presents the same metrics
for biweekly aggregation intervals (Day 1 from Table 5). The analysis and comparison of
the results of the entire 14 days are given in Table 6 with the reference case results. In this
research, a simple thermostatic case is simulated for the reference case, and the given costs
represent electricity usage coming from the heat pump operation, excluding other zone
usage-related costs. It is assumed that end user costs follow the spot market cost profile.

Table 6. The results of the simulated cases for two weeks—heating season.

Case
Emission

Case
Price

Case
Concurrence

Case
Combined

Case
Reference

1 Day 2 W 1 Day 2 W 1 Day 2 W 1 Day 2 W -

Load demand (kWh) 690 710 715 740 740 730 710 740 875
CO2 emission (kgCO2eq.) 620 615 690 650 685 690 665 640 840

Cost
(Euro) 310 280 245 240 300 305 290 250 380

The minimisation objective is achieved for both daily and biweekly aggregation as
illustrated in Figures 10 and 11. The results comparison of observation intervals indicates
that savings are higher on biweekly aggregation intervals except for Case Concurrence.
In Case Emission, CO2 emissions are reduced by 26% and 27% with daily and biweekly
aggregation, respectively. In Case Price, around a 35% decrement of costs is observed. In
Case Concurrence, emission is reduced by 18%, while the cost change is reduced by around
27%. In Case Combined, a 21% and 24% downward change on emissions, besides, a 24%
and 34% less cost is calculated for daily and biweekly aggregation, respectively.
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Table 7 provides a comprehensive overview of the yearly savings achieved by the
different cases during the heating season. Based on the optimisation parameter (such as
emissions for Case Emission and cost for Case Price, etc.), higher savings are calculated in
the daily aggregation interval case by a small margin. Case Price results in the highest cost
savings, followed by Case Combined. Likewise, the difference in emission savings between
Case Emission and Case Combined is negligible. Although the results of Case Concurrence
exhibit improvement compared to the reference case, they do not yield any substantial
advantage in terms of final metrics. Single penalty signals, such as CO2eq. intensity and
price signals, maximise savings for their respective optimisation parameters. However, a
holistic optimisation approach can be achieved as demonstrated by Case Combined.
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Table 7. The results of the simulated cases for entire heating season in a year.

Case
Emission

Case
Price

Case
Concurrence

Case
Combined

Case
Reference

1 Day 2 W 1 Day 2 W 1 Day 2 W 1 Day 2 W -

Load demand (kWh) 20,800 22,200 20,400 21,350 21,000 22,000 20,800 21,700 23,300
CO2 emission (kgCO2eq.) 5660 5900 6170 6120 6240 6260 5900 5960 8290

Cost
(Euro) 1500 1450 1270 1300 1530 1515 1360 1330 2070
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5. Discussion

The relation between CO2eq. intensity and share of electricity production type are
assessed between 2017 and 2021. Following this, the correlation of CO2eq. intensity and
electricity spot price is analysed. The decrement of the positive correlation in the last year
is highlighted. Moreover, it is seen that the CO2eq. intensity does not depend on local
generation technologies but also on the CO2eq. intensity of the interconnected countries.
The expansion of the power grid through neighbouring countries limits the value of
environmental returns of the existing local RES. Despite the ongoing action plan and the
increasing penetration of RES, the share of fossil-fuel based electricity generation does not
demonstrate a steady decrease. For a nonemission power grid, the operated generation
technology types of the interconnected countries are critical as the local technologies.

Two joint penalty signals and their modelling approach with the motivation of ac-
quiring both environmental and economic savings are introduced. In addition to a single
type of penalty signal implementation, their joint impact was able to address improved
performance in terms of environment, cost, and load demand. The results from Case
Combined presents an option for building operations which ensure remarkable savings
on metrics compared to the other cases. Even though each of these parameters can be
enhanced more by individual signals (either CO2eq. or price), the overall average outcome
is found to be favourable.

The building energy flexibility analysis by applying different penalty signals consider-
ing the upper and lower quartiles was performed with the calculated power grid CO2eq.
intensity data and historical electricity spot price (before tax) data from the ENTSO-E
platform. Two aggregation intervals, namely daily and biweekly, were used for threshold
analysis. These thresholds were incorporated into two joint penalty signals as concurrence
and combined signals. The approach to develop these signals was described. An office
zone group’s energy performance, presenting CO2 emission, cost, load demand, and indoor
temperature, was simulated by a building energy simulation tool using the mentioned
penalty signals for five given cases. The main findings are listed below:

• The approach for aggregation intervals of penalty signals plays a critical role for the
determination of thresholds and the maximum possible interaction hours from the
grid side. In the heating season, marked differences were observed for upper and
lower thresholds between aggregation intervals.

• Biweekly aggregation intervals might provide an improved building performance
based on the time of the year during heating season. However, no significant difference
is found between aggregation intervals in the yearly metrics.

• With Case Combined, the environmental and economic performance closely approx-
imates that of Case Emission and Case Price, respectively, thereby achieving the
research’s objective of minimizing both metrics to nearly the same level.

• Biweekly aggregation reduces peak demand compared to daily aggregation and results
in less indoor temperature fluctuation.

The modelling approach of the combined signal ensures more flexibility hours than a
single penalty signal, thereby improving both environmental and economic metrics with
the use of a joint signal.

6. Conclusions

A simple-structured methodology is presented to calculate the dynamic climate gas
emission intensity in the power grid. The calculation method can be used to generate the
CO2 penalty signal in the energy flexibility studies. The main drivers of the emission signals
were investigated, following the impact of production technology types, and their share and
electricity import in the local power grid are discussed. The relation of CO2eq. intensity was
compared to electricity spot price and energy use as a penalty signal in energy flexibility.
The biggest challenge was to collect reliable climate gas emission factors of the production
technologies and the average emission intensity of the countries, because available data
from various sources are not consistent. However, data of electricity production from
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technologies was easily accessible through transparency platform. For precise emission
intensity calculation, the dynamic CO2eq. intensity of the interconnected countries should be
considered rather than the average value for energy trade. However, this would complicate
the calculation process, especially if there is more than one bidding zone in the connected
country. As the penetration of RES is increasing in Germany, a bidding zone configuration
might be needed to ensure congestion management. In such a situation, the grid emission
intensity in Germany should be calculated on a bidding zone basis and the relation with
the price signal should be assessed separately. Additionally, the self-consumption of the
production plants should be considered for a more accurate outcome.

A joint signal is necessary for the current mixed power grid but may not be required
for future grids based solely on renewable energy sources. In such a scenario, the order
of merit for electricity generation could change, potentially simplifying the calculation
challenges of marginal emission factors. Then, the dynamic power grid intensity and
electricity spot prices would be positively correlated and employed in building energy
flexibility applications.
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Nomenclature

Abbreviations
CO2eq. Carbon dioxide equivalent emissions
COP Coefficient of performance
GHG Greenhouse gas
HVAC Heating, ventilation, and air conditioning
RES Renewable energy system
Indices
h ∈ H Index and set of hours (hour)
i ∈ I Index and set of electricity production technologies (-)
j ∈ J Index and set of import countries (-)
k ∈ K Index and set of export countries (-)
Parameter
CO2,i CO2 equivalent emission coefficient of electricity production technology i
CO2eq,j CO2eq. intensity of country j
Variables
EEk,h Exported electrical energy to interconnected country k at hour h (kWh)
EERatio Ratio of exported electrical energy (-)
ExportCO2 emission Total CO2 emission of exported electricity to interconnected country from Germany (gCO2eq.)
GridCO2 emission Total CO2 emission in the power grid (gCO2eq.)
GridCO2 intesity Dynamic CO2eq. intensity in the power grid (gCO2eq./kWh)
LoadGrid Total load in the power grid (kwh)
ImportCO2 emission Total CO2 emission of imported electricity from interconnected country to Germany (gCO2eq.)
IEj,h Imported electrical energy from country j at hour (kWh)
PTi,h Generated electricity from production technology i at hour h (kWh)
PTCO2 emission Total CO2 emission from electricity production technology at hour h (gCO2eq.)
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