

  buildings-13-01517




buildings-13-01517







Buildings 2023, 13(6), 1517; doi:10.3390/buildings13061517




Article



Optimizing Machine Learning Algorithms for Improving Prediction of Bridge Deck Deterioration: A Case Study of Ohio Bridges



Armin Rashidi Nasab[image: Orcid] and Hazem Elzarka *





Department of Civil, Architectural Engineering, and Construction Management, University of Cincinnati, Cincinnati, OH 45220, USA









*



Correspondence: elzarkhm@ucmail.uc.edu







Academic Editors: Husam Hussein, Yanping Zhu and Rafea F. Hassan



Received: 22 April 2023 / Revised: 29 May 2023 / Accepted: 4 June 2023 / Published: 12 June 2023



Abstract

:

The deterioration of a bridge’s deck endangers its safety and serviceability. Ohio has approximately 45,000 bridges that need to be monitored to ensure their structural integrity. Adequate prediction of the deterioration of bridges at an early stage is critical to preventing failures. The objective of this research was to develop an accurate model for predicting bridge deck conditions in Ohio. A comprehensive literature review has revealed that past researchers have utilized different algorithms and features when developing models for predicting bridge deck deterioration. Since, there is no guarantee that the use of features and algorithms utilized by past researchers would lead to accurate results for Ohio’s bridges, this research proposes a framework for optimizing the use of machine learning (ML) algorithms to more accurately predict bridge deck deterioration. The framework aims to first determine “optimal” features that can be related to deck deterioration conditions, specifically in the case of Ohio’s bridges by using various feature-selection methods. Two feature-selection models used were XGboost and random forest, which have been confirmed by the Boruta algorithm, in order to determine the features most relevant to deck conditions. Different ML algorithms were then used, based on the “optimal” features, to select the most accurate algorithm. Seven machine learning algorithms, including single models such as decision tree (DT), artificial neural networks (ANNs), k-nearest neighbors (k-NNs), logistic regression (LR), and support vector machines (SVRs), as well as ensemble models such as Random Forest (RF) and eXtreme gradient boosting (XGboost), have been implemented to classify deck conditions. To validate the framework, results from the ML algorithms that used the “optimal” features as input were compared to results from the same ML algorithms that used the “most common” features that have been used in previous studies. On a dataset obtained from the Ohio Department of Transportation (ODOT), the results indicated that the ensemble ML algorithms were able to predict deck conditions significantly more accurately than single models when the “optimal” features were utilized. Although the framework was implemented using data obtained from ODOT, it can be successfully utilized by other transportation agencies to more accurately predict the deterioration of bridge components.
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1. Introduction


The deterioration of infrastructure such as bridges has always been a concern for transportation agencies [1]. The maintenance, repair, and replacement (MRR) of bridges contribute to increased expenditure. Bridges are one of the essential components of our roadways [2]. The function of connecting different geographic areas makes bridges critical infrastructure. Frequent use of bridges accelerates their deterioration and complicates the implementation of bridge-management systems (BMSs). BMSs are implemented by transportation agencies to analyze bridge conditions, predict bridge deterioration, find the most efficient strategies of maintenance, and then prioritize and optimize them.



There are approximately 45,000 bridges in the state of Ohio [3], and every year, a significant amount of money is spent to repair and maintain them. The deterioration of bridges’ components significantly affects their integrity and structural safety [4]. It is crucial to model and predict the future deterioration of bridges under different environmental and location-specific conditions, among others, to forecast when a specific structure could be expected to begin to degrade or display signs of failure [2]. Furthermore, the ability to accurately predict the conditions of bridges may help ensure the proper and effective distribution of funds allocated for the maintenance, rehabilitation, and repair of bridges. This ability can also be helpful when determining which type of structure should be considered for a specific location [5].



Previous studies focused on modelling and analyzing bridge deterioration using a historical bridge inspection database [2]. Each state DOT maintains such a database. For example, the Ohio Department of Transportation (ODOT) maintains a comprehensive database of all bridges in Ohio, called AssetWise [3]. AssetWise is a web-based application that includes inventory and appraisal (inspection) data that stretches back several decades. A typical interval inspection is between 24 to 48 months, but an owner may request more frequent inspections [2]. Bridge inventories contain more than 130 different features of the bridges such as age, district, deck area, number of spans, etc. Moreover, they list the condition of various elements of the bridge such as substructure, superstructure, and deck, which make the analyses easier for researchers. Because bridge decks are more vulnerable to damage and because the serviceability of bridges depends heavily upon them [3,6,7], this study will focus on determining the rate of deterioration of bridge decks.



Predicting the condition of bridges has always been a challenging issue among scholars and transportation agencies, given the various options available such as statistical and machine learning techniques [8]. Nowadays, with the growing field of artificial intelligence (AI), scholars and transportation agencies are more interested in using these techniques, which typically yield more accurate predictions compared to statistical methods [9,10]. However, there are various ML models to implement, from simple algorithms such as kNN and SVM to more complex methods such as xGBoost and random forest, which are referred to as ensemble models. Therefore, choosing the most accurate ML model is an important issue that needs to be addressed.



Furthermore, a comprehensive literature review has revealed that past researchers have utilized different features when developing models for predicting bridge deck deterioration. Some of these features were common among researchers such as age, location of the bridge, and average daily traffic, while other features were unique. Since the accuracy of the prediction models depends on the set of features utilized, the characteristics of the data, and the chosen algorithm, there is a need for developing a framework for optimizing the use of ML algorithms to more accurately predict bridge deck deterioration [2]. The needed framework should provide a mechanism for (1) selecting the best set of features that are most related to bridge deterioration to use as input to the ML algorithms, and (2) selecting the most adequate ML algorithm.



The research described in this paper proposes such a framework to more accurately predict bridge deck deterioration using proper feature selection methods. The research methodology consisted of the following: (a) A comprehensive literature review which included three main parts was conducted. First, the statistical techniques used by past researchers for predicting bridge condition were reviewed. Secondly, ML techniques used by past researchers for predicting bridge deterioration were reviewed. Finally, previous studies on feature-selection methods were reviewed. (b) The NBI database was analyzed to see if it contained all the needed information. (c) The most popular ML algorithms were implemented to determine the most related features and the highest prediction accuracy. (d) The most accurate algorithm was identified and the hyperparameters for each model were optimized for evaluating each model’s accuracy, then feature selection models proposed in this research were compared to models that used the most common features. Each task is described in more detail in the following sections.




2. Research Background


According to studies, there are two methods for predicting bridge deterioration [5]. The first method utilizes statistical techniques such as Markov chains to statistically evaluate the effects of bridge characteristics on variations in bridge conditions and predict future bridge conditions. The second method utilizes ML algorithms. Table 1 lists previous research conducted using both methods.



2.1. Statistical Techniques to Predict Bridge Deterioration


Ilbeigi et al. used an ordinal regression model to predict future bridge conditions; they focused on historical data in Ohio from 1992 to 2017 pertaining to 28,000 bridges [2]. Manafipour et al. evaluated deck deterioration rates by using explanatory factors such as average daily traffic, route type, environmental condition, etc. They believed such factors were statistically essential; furthermore, they evaluated remediation of those bridges’ decks [5]. O’Connor et al. divided bridge deterioration into two phases: initiation and propagation which, according to them, makes the evaluation of the efficiency of bridges much easier for owners [17]. Agrawal et al. applied Weibull distribution to analyze bridge deterioration by using typical bridge characteristics in New York, and they concluded that the Weibull-based approach is more accurate than Markov chains in terms of observed conditions [12]. Wellalage et al. implemented a Metropolis–Hastings algorithm (MHA)-based Markov chain Monte Carlo (MCMC) simulation technique which was more precise than Markov deterioration models (SBMDM) in terms of uncertainties and network-level conditions [18]. Ranjith et al. applied the Markov chain model to forecast the future condition of timber bridges in Australia, and they concluded that the Markov chain model has high accuracy for predicting the deterioration prediction of timber bridges [19].



Huang et al. suggested that statistical models such as the Markov chain have limitations in predicting bridge deterioration due to their basic assumption that any future state is independent of the past [10]; the results of their research showed that both age and history influence deck deterioration. However, the Markovian deterioration model considers both factors independently, which is invalid in that context. Hence, a machine learning model has been used to predict the bridge condition, and features were chosen by statistical analysis. They stated that the prediction of bridge conditions had a significant effect on their maintenance; therefore, choosing the most accurate model is essential [10]. Srikanth and Arockiasamy discussed the pros and cons of using statistical and artificial intelligence models, and compared the results of the two models using case studies. They concluded that statistical methods are memoryless, and they require a significant amount of data to predict accurately, while AI models do not have such limitations. However, they also mentioned that ML algorithms are still in the nascent stage of development for use in BMS [11]. However, as shown in Table 1, the use of AI models is becoming more popular.




2.2. ML Applications in Predicting Bridge Deterioration


One of the branches of artificial intelligence is machine learning (ML), which can predict output variables accurately when given the values of input variables [20]. ML has been used in many engineering applications, such as predicting pavement conditions, the failure of water distribution pipes’ and wind turbines, and culvert maintenance prediction [21,22,23]. Additionally, ML models have been utilized for assessing structural performance against hazards including reconstructing buildings’ seismic response and surrogate models for predicting the seismic vulnerability of mid-rise buildings [24,25]. In civil engineering, ML has been applied in different areas such as traffic control, evaluation, extracting feasibility information, and synthesis from design which indicates the ability of ML models in various areas [26].



Many researchers have developed bridge deterioration prediction using ML; Table 2 summarizes the previous AI models used to predict bridge deterioration. ML models can be categorized into single and ensemble approaches. An ensemble model is formed by combining individual algorithms to make the model more powerful and improve its performance. On the other hand, single models refer to individual algorithms which are implemented independently [27]. Each model category has its own advantageous and disadvantages; while an ensemble algorithm often has higher accuracy and robustness, single models are simple to interpret and are more efficient in non-complex interactions. For example, the XGboost model can outperform base learners (decision trees) in different aspects such as robustness to overfitting, and exhibits better performance in nonlinear interactions. They are also more efficient in imbalanced datasets. Therefore, it is crucial to evaluate both single and ensemble models to produce a comprehensive analysis [24].



Assad et al. investigated the deck deterioration of 19,269 bridges using machine learning in three stages: First, feature importance of bridges was identified, then artificial neural networks (ANNs) and k-nearest neighbors (k-NNs) algorithms were implemented, and finally, the highest-accuracy model was identified [8]. Melhem and Cheng demonstrated that the k-nearest-neighbor instant-based learning (IBL) method is more efficient than inductive learning (IL) in terms of predicting the remaining service life of a bridge deck [26]. Nguyen and Dinh investigated the deck deterioration of 2572 bridges in the state of Alabama using an ANN model, and the results indicated that the ANN model is accurate enough to predict the deterioration curve of a bridge deck [13]. Srikanth and Arockiasamy have applied some case studies of timber and concrete bridge decks to predict their deterioration using both statistical and ANN models. In the end, they observed that an ANN is able to predict the bridge decks’ deterioration with higher accuracy [11]. Lu et al. asserted that being well informed about the maintenance, repair, and rehabilitation (MPR) of bridges, and predicting the deterioration of bridge components is essential [14]. They developed a logistic regression (LR) model to predict the condition of a bridge component using five criteria: prediction error, bias, accuracy, out-of-range forecasts, Akaike’s information criteria (AIC), and log likelihood (LL). Abedini et al. proposed a new approach for detecting the location and severity of joint damage in bridges with high accuracy by using a support vector machine (SVR), ordinary least-squares (OLS), and multi-target regression (MTR) [16]. Lim et al. used the XGboost algorithm to predict the condition of bridges at a particular damage level. They asserted that the advantage of the XGboost model is its ability to handle numerous variables that affect bridge deterioration [15]. They selected the features using the Shapley additive explanation (SHAP) value. They found that age, average daily truck traffic, vehicle weight limit, total length, and effective width are major factors that influence bridge deterioration. Martinez et al. utilized five different algorithms including k-nearest neighbors (k-NN), decision trees (DTs), linear regression, artificial neural networks (ANNs), and deep learning neural networks (DLN), to predict the bridge condition index (BCI) in Ontario, Canada using data for 2802 bridges over a 10-year period [1]. Zhang et al. used a case study to compare various soft computing methods (SCMs) such as the use of support vector machines (SVMs), eXtreme gradient boosting (XGBoost), and ANNs. They concluded that every algorithm has limitations and advantages based on the datasets and features selected [28]. They stated that some simple algorithms such as KNNs cannot predict outliers precisely [29]; other algorithms such as ANNs perform well in solving nonlinear problems, whereas LR is unable to solve such problems; the use of SVMs is recommended for complex functions, but usually only predicts accurately in small datasets; XGboost is a fast algorithm, however, it is susceptible to overfitting [28,30,31,32].



It was clear from the literature review that both single and ensemble ML algorithms have their advantages and disadvantages. Hence, in the research described in this paper, we evaluated the most popular algorithms which were used by previous researchers including single models such as decision tree (DT), artificial neural networks (ANNs), k-nearest neighbors (k-NN), logistic regression (LR), and support vector machines (SVRs), as well as ensemble models such as random forest (RF) and eXtreme gradient boosting (XGboost) to obtain the most accurate prediction for deck conditions, and to determine which algorithm works best with the ODOT data.




2.3. Literature Review on Studied Feature Selection Methods


One of the most significant challenges in classification is identifying the most related features as input to obtain the most accurate results. Input variables of ML algorithms are known as features of classification models that predict the output variable. The NBI dataset contains 130 fields for every single bridge [3], and nearly 31 of them, as shown in Table 3, are related to decks. These fields can be potential features used for developing models to predict deck conditions based on previous studies [8].



In the past, scholars have used various methods to select the important features to utilize in their prediction models, as shown in Table 3. Some scholars used the most common features identified by previous studies such as Ilbeigi et al. [2] and Martinez el al. [1]. Some used either statistical or AI models to determine the features most correlated to deck conditions. For example, Huang et al. utilized statistical analysis (ANOVA) to determine features related to deck deterioration and were able to achieve 75.39% accuracy for decks of concrete bridges in Wisconsin [10]. Assad et al. used the Boruta feature selection method and were able to obtain 91.44% accuracy for the NBI dataset of Missouri [8]. Srikanth and Arockiasamy used the Heatmap method and were able to obtain 91% accuracy [11]. Manafpour et al. used the maximum likelihood estimate (MLE) method on the PennDOT dataset in Pennsylvania [5]. Nguyen and Dine used sensitivity analysis in the state of Alabama [13]. Chang et al. used logistic regression [6]. Lim et al., determined the features by the Shapley Additive Explanation (SHAP) value using data from the Korean Bridge Management System [15]. In this research, we aim to first determine “optimal” features that can be related to deck deterioration conditions using various feature selection methods. We will use these features as input to ML algorithms to predict deck conditions. Subsequently, results from the ML algorithms using “optimal” features will be compared to results from the same ML algorithms if the input is only based on the “most common” features that have been used by previous studies, to determine if our proposed methodology improves the prediction accuracy.





3. Methodology


3.1. Model Development


Machine learning algorithms are able to predict the future based on available historical data. There are many ML algorithms that can be used, and every algorithm has its own pros and cons as was discussed previously. In this research, we will use the most popular algorithms based on the literature review to predict the deck condition of bridges and compare the results. The objective is to estimate deck deterioration conditions which can be described by 1 out of 9 categories based on the NBI dataset: condition 0 represents an out-of-service deck and condition 9 represents an excellent (new) deck. It is worth mentioning that the ODOT database did not contain any records for bridges with conditions 0, 1, and 2. The research methodology is divided into five steps as shown in Figure 1.



3.1.1. Data Gathering


AssetWise is a database compiled by the Ohio Department of Transportation (ODOT) that contains data for Ohio bridges. AssetWise is web-based and includes inventory and appraisal (inspection) data [3]. The data gathered over many years equip researchers with a valuable and reliable resource that enables them to predict the future condition of bridges, as well as to make informed decisions. The data used in this study were retrieved from the AssetWise database for the years 1992 to 2021. AssetWise contains more than 100 types of information (fields) about each bridge. ODOT contains 12 districts with 43,000 m of highway, and is one of the largest in the nation, having over $115 billion in infrastructure assets such as culverts, traffic signals, highway signs, etc. From Assetwise, it was determined that concrete bridges comprise the majority of the inventory at 60.7%, followed by steel structures at 35.7%, and the rest of the bridges consist of masonry/stone, and other structures. Furthermore, concrete bridges can be further categorized into 32% multiple-box structures, 25% concrete culverts, and 23% concrete-slap structures. Assetwise also contains information such as average daily traffic (ADT), age of the bridge, area of the deck, deck width, deck geometry, and conditions of core elements of the bridge including superstructure, substructure, and deck condition which all have been explained in Table 4. Every single feature has been described in a guideline entitled the Ohio Bridge Inventory Coding Guide. Each bridge has a structural file number (SFN) which is the identification number for the data file of the structure [3]. This research focuses on concrete bridges which comprise the majority (60.7%) of the inventory.




3.1.2. Data Preparation


Since the focus of the research is concrete bridges, non-concrete bridges were removed from the dataset. Additionally, records having non-applicable deck conditions were removed instead of imputing, due to the few numbers of nulls (fewer than 200 null records). Because it is not possible for most machine learning algorithms to handle categorical variables such as structure type, structure material, type of service, bridge median, etc., such data were transformed before implementation. The research team has evaluated the need for data standardization. Since the features that were used had different magnitudes, units, and ranges (for instance, the bridge age is in years while the structure length is in meters), magnitude issues could arise requiring data standardization to bring all features to the same level of magnitude [8]. Data standardization also ensures that the distribution of all variables is zero-centered and that the input features are standardized for efficient data processing. Equation (1) was used for data standardization: where z = scaled value of the unscaled variable x that has a mean of μ, and a standard deviation of σ.


  z =   x − μ  σ   



(1)







After cleaning the dataset, and removing the null data, 18,673 concrete bridges remained and were used to implement the ML algorithms. 80% of the dataset (14,938) is selected as training data and 20% (3735) as testing data [8].




3.1.3. Feature Selection


According to the proposed framework, the first task that needs to be completed is to find the “optimal” features that are most correlated to deck conditions. As shown in Table 3, features that have been used by previous studies are not identical. Some features have been used more frequently and include age, Average Daily Traffic (ADT), deck area, and length of spans. Other features were uniquely used in previous studies and include wearing surface, rib flange, and skew angle [2,8,13]. The disparity of features used in previous studies can be attributed to the various feature selection models that each researcher has chosen or the specific location of the bridges or even the characteristics of the dataset that they were examining. In this research, we determined the “most common” features as features that have been chosen more than three times in previous studies as input. On the other hand, for the “optimal” features, Boruta, XGboost, and random forest (RF) algorithms have been used to determine them. The reason for using Boruta algorithms is that they have high accuracy in picking the most related features to the response from a large number of variables, even if the relationship between the variables is complex [4,8]. In general, the Boruta algorithm does not measure each feature, but basically confirms or rejects the selected features, and in some cases, gives the number of tentative variables. It is, therefore, necessary to implement some other feature importance algorithms to evaluate the importance of each feature [4]. Therefore, in this study, we used XGboost (Model 1) and RF (Model 2) to measure the relationship between features and response. One of the most powerful methods for improving classification accuracy is feature selection based on XGboost [33]. This method provides a high-level understanding of how variables are related. RF is among the most popular feature-selection algorithms due to its simplicity, low overfitting, and high performance [34]. After implementing all three methods of feature-selection algorithms, the most related features which have been confirmed by Boruta and which are also among the top important features of both XGboost and RF were chosen as input for machine learning algorithms. Python was used to implement the algorithms.




3.1.4. Develop ML Models


Description of ML Models


Based on the literature review, the most popular and powerful algorithms for predicting the deck conditions have been chosen to obtain the most accurate results. These algorithms include artificial neural networks (ANNs), k-nearest neighbors (k-NN), eXtreme gradient boosting (XGBoost), logistic regression (LR), support vector machine (SVR), random forest (RF), and decision tree. The characteristics of the used algorithms are briefly described below.



k-nearest neighbor (k-NN) is known as one of the most popular classification algorithms that group test data into classes based on closeness to the number of k-neighbors-trained data [8]. Distance measures are the criteria for evaluating closeness. High accuracy and simplicity have made the k-NN popular. However, previous studies indicate that the existence of outliers in the dataset results in poor prediction. Furthermore, since k-NN does not learn from the training data during the training, it is known as a lazy algorithm [29]. To make the prediction, k-NN relies on the closest neighbors of each query point; parameter k represents the number of neighbors considered which can be varied for each dataset. The grid search method can be conducted to find the optimal value of k. [8]



The eXtreme gradient boost (XGBoost) is a decision tree boosting algorithm. It is a grouping model which learns from subsequent trees, minimizing the errors of earlier trees as a result [35,36]. The main idea behind this model is to fit the current regression tree by learning the errors of earlier trees [36]. Since learning from previous trees minimizes the errors, XGboost is considered a fast algorithm that can find the optimal solution. However, in the case of small datasets, XGboost is susceptible to overfitting [28,32]. The most common hyperparameters of XGboost include “learning-rate” to control the step size and shrinkage during the boosting process. “Max-depth” determines the maximum depth of each decision tree, “sub-sample” controls the fraction of samples in each individual tree, and “gamma” minimizes the loss reduction required to make a split; a higher value of gamma can reduce overfitting and also make the algorithm more conservative. “colsample by tree” indicates the ratio of each column for sampling to build a tree, and “minimum child weight” indicates the minimum sum of weight which is required in a leaf (child) which help control overfitting. [15,25]



Support vector machines (SVMs) are used for both classification and regression models [37]. The use of SVMs aims to predict the output variable based on trained data. In this method, a decision plane is used to separate the objects where each object belongs to various classes [37]. SVM’s ability to solve complex functions using kernel function makes it one of the most powerful algorithms. However, when the dataset size increases, the accuracy of SVM typically decreases [30]. The most common hyperparameters of SVM include “C” which controls the regularization strength between training errors and complexity of the model, the “kernel” function, and the kernel coefficient called “gamma”. The hyperparameter called “class-weight”, used to assign weight to every class, will also be evaluated to improve the performance of the model [14,30,38,39,40].



The use of an ANN is a growing research field in supervised learning techniques [41]. ANNs are “generally nonlinear mathematical learning algorithms that attempt to imitate some of the workings of the human brain”, [8,31], to identify the pattern between input and output. When the relation between input and output data is nonlinear, the accuracy of ANNs is high. For this reason, when there are no rules among datasets, ANN would be the best option [42]. An ANN consists of three types of layers: (1) input layer, (2) hidden layer, and (3) output layer. Each layer has neurons that implement the operation. The number of neurons in the input layer is equal to the number of features. The number of neurons in the output layers depends on the number of classification classes. The number of neurons in the hidden layer is identified through trial and error. Other hyperparameters which have been considered to affect the performance of the ANN model include “learning rate”, which indicates the step size of the model to converge to an optimal model and varies from 0.1 to 0.0001. The hyperparameter known as “batch-size” indicates the number of training examples in each iteration; a high value of batch size accelerates the training but reduces the model’s ability to generalize, whereas a low value increases the training time but gives updates to the model more frequently. Different sizes from 16, 32, 64, 128, and 256 are investigated in this paper. The hyperparameter known as “optimization algorithm”, which updates the weights and biases in the model including limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS), the stochastic gradient descent (SGD), and the adaptive moment estimation (ADAM). All these hyperparameters will be optimized using the grid search method to improve the performance of the ANN model [8].



Logistic regression (LR) is a supervised machine learning classification algorithm [43]. It provides the binomial outcome as it gives the probability that an event will occur or not (in terms of 0 and 1), based on the values of input variables. It widely deals with the prediction of the target variable. This algorithm is predominantly used to solve problems on an industrial scale. The simplicity of implementation and computational efficiency are some advantages of LR algorithms, while the disadvantages of LR include the inability to solve non-linear problems, as its decision surface is linear, prone to overfitting, and will not work out well unless all independent variables are identified. The use of grid search hyperparameters—such as “c”, which represents the inverse of regularization strength; “max-iter”, which indicates the maximum number of iterations; and “class-weight”, which assigns weight to each class during the training—will be evaluated [43].



Random forest (RF) is created by multiple random decision tree predictors. Each decision tree is trained on a random subset, and an aggregation of all the predicted trees will be the final prediction. It is typically used for classification models and is able to evaluate numerical and categorical features. Having high accuracy, being robust to outliers, and handling high-dimensional data are considered advantages of this model; however, being biased in imbalanced datasets and the complexity of the model are disadvantages of RF models. Parameters such as “n-estimator” which represents the number of trees, “max-depth”, “class-weight”, and also “random-state”, which are used to set the random seed for reproducibility, are among the most commonly used hyperparameters that will be optimized using the grid search method [24,38,42].



A decision tree (DT) is a supervised machine learning algorithm that can be used for both regression and classification models [27,43]. The structure of a DT resembles a tree where each internal node represents a feature, each branch represents a decision based on that feature, and each leaf node represents the predicted outcome. DT models are easy to interpret but suffer from overfitting. In this research, hyperparameters such as “max-depth”, the minimum number of samples required to split an internal node “min_sample_split”, and the minimum number of samples required to be at a leaf/terminal node “min_sample_leaf” will be implemented to optimize the model [38].




Hyperparameters Optimization


Hyperparameters play a pivotal role in the performance of each ML algorithm due to their direct impact on the model [8]. Depending on the type of ML algorithms, hyperparameters can vary but generally, they help in various aspects including improving computational efficiency, control overfitting, and handling imbalanced classes. Grid search is a commonly used tuning technique that is built on the hyperparameter of each model and iterates through all the hyperparameters of the given model to determine the most optimal ones. Overfitting problems have been prevented using k-fold cross-validation. As data split to 80% training and 20% testing, training dataset groups in k groups/folds, they will be fit with the first fold and validated using the remaining folds, this process is repeated k times for the remaining folds, so that k number of performance achieved. Once the cross-validation has been repeated k times, the average accuracy of k folds will be the result [8,38,44,45].





3.1.5. Model Evaluation


Obtaining high accuracy is a primary concern in every machine learning implementation. There are several ways to evaluate the precision of our model, and one of the most popular is the confusion matrix, which gives us the accuracy, precision, recall, and F1-score using Equations (2)–(6) [43]. The reason that the confusion matrix has been chosen to evaluate the model is that this metric is robust and generalized [46], and avoids overfitting [47]. Two other means of evaluating the performance of models that have been implemented in this research are Cohen’s Kappa and average area under the precision–recall curve (AUC-PR), as shown in Equation (6) where “Po” represents observed agreement and “Pe” represents expected agreement [38]. After implementing all the ML models, they were compared based on these metrics, depending on the true or false prediction of the deck conditions.


  P r e c i s i o n =   T r u e   P o s i t i v e   T r u e   P o s i t i v e + F a l s e   P o s i t i v e    



(2)






  R e c a l l =   T r u e   P o s i t i v e   T r u e   P o s i t i v e + F a l s e   N e g e t i v e    



(3)






  A c c u r a c y =   T r u e   P o s i t i v e + T r u e   N e g e t i v e   T r u e   P o s i t i v e + T r u e   N e g e t i v e + F a l s e   P o s i t i v e + F a l s e   N e g e t i v e    



(4)






  F 1 − S c o r e = 2 ×  (    P r e c i s i o n × R e c a l l   P r e c i s i o n + R e c a l l    )   



(5)






  κ =   P o − P e   1 − P e    



(6)










4. Results


4.1. Selected Features


Three feature selection models proposed by this research include XGboost (Model 1) and random forest (Model 2), as well as the “most common” features (Model 3) which have been used by previous studies. Features that have been used more than three times in previous research are considered as the most common features, and include age, ADT, district, deck area, structure materials, deck structure type, number of spans, length of maximum spans, design load (inventory rating, operating rating, bridge posting), as shown in Table 5.



By developing the ML models, the Boruta algorithm has been used to determine whether or not the examined feature is correlated to deck conditions. As shown in Table 5, 27 out of the 38 input features were confirmed by Boruta, while 12 of the input features were rejected. Some features might have been rejected because of either poor relation or lack of relation with the output, or even because of the nature of the dataset. Due to the fact that Boruta does not provide evaluation measurements for each feature, XGboost and RF methods were used to determine the importance of each feature. By examining Figure 2 and Figure 3, it can be observed that the most highly related features between the two methods of XGboost and RF are the same, and all of them have been confirmed by the Boruta algorithms. This shows that the feature importance methods used in this research work properly. The XGboost algorithm gives a score between 0 to 900, where 0 represents the least correlated feature and 900 represents the highest correlated feature. In this research, features having a score of more than 100 are selected. Similarly, the RF algorithm gives a score between 0 to 0.4, where 0 represents the least correlated feature and 0.4 represent the highest correlated feature. In this research, features having a score of more than 0.2 are considered important features. Based on the results, it was determined that the top important features using the two methods of XGboost and RF include superstructure, substructure, deck wearing, age, district, ADT, channel protection, operating rating, structure evaluation, deck area, deck width, length of maximum span, and approach roadway width. On the other hand, features that received low scores include navigation, horizontal/vertical clearance, service on/under the bridge, structure flared, and the number of approaches spans. In addition, there are three differences between the feature importance as determined from XGboost and RF; for example, deck wearing, structure type and maintenance responsibility are considered among the top features based on XGboost, while bypass detour length, inventory rating, and skew have high importance based on RF.



The results of the completed feature selection process indicate that some of the selected features are consistent with previous research, such as age, ADT, deck area, operating rating, and length of the maximum span. However, features, such as approach roadway width, channel protection, and district, which are among the most relevant variables to deck condition based on the XGboost and RF feature selection, were not considered by previous research.




4.2. Machine Learning Outputs


Using the “optimal” features that were identified based on the three feature selection models, seven ML algorithms have been implemented to determine which ML algorithm has the highest accuracy for predicting deck conditions.



Before implementing the ML algorithms, their hyperparameters have been optimized using a grid search with 5-fold cross-validation. Due to the high number of possible combinations of hyperparameter ranges, the most common ranges have been analyzed. As shown in Table 6, the optimal k value of the kNN algorithm for both XGboost (Model 1) and RF (Model 2) features selection models is 9, while the optimal k value is 32 when the most-common-feature model (Model 3) is used. All the optimal hyperparameters of XGboost and RF algorithms are the same for all three feature selection models. For the LR algorithm, while the optimal C value for Model 1 and Model 2 is 10, the optimal C is 0.1 in the case of Model 3. For the SVM algorithm, all the optimal hyperparameters are similar in all three feature selection models. For the ANN, only the optimal number of hidden layers and the optimal number of neurons in case of Model 3 is different, with 5 layers and 11 neurons for each layer compared to Model 1 and Model 2 with 6 hidden layers and 12 neurons for each layer. For the DT algorithms, the optimal max_depth for Model 1 is 5, and 7 for Model 2 and model 3. Two samples were required to split an internal node and be at a leaf node for both Model 1 and Model 2, but Model 3 required 10 numbers for splitting in an internal node and one number to be at a leaf node.



The performance of each model was evaluated using the confusion matrix by six different validation metrics: (1) accuracy, (2) precision, (3) recall, (4) F1-score, (5) Cohen’s Kappa, and (6) average area under the precision-recall curve (AUC-PR) on both training and test datasets to avoid overfitting. These are the most common metrics for evaluating classifiers [43]. After cleaning the dataset, 18,969 records for concrete bridges in Ohio were used. A total of 80% of the dataset was used for training, and 20% for testing. All the classification models, including k-NN, ANN, SVM, LR, DT, RF, and XGboost, were implemented to identify the most accurate results. Table 7, Table 8 and Table 9 summarize the ML algorithms’ deck condition prediction results when the different sets of features were utilized.



Table 7 shows the results when XGboost feature selection (Model 1) was used. As shown in Table 7, it was determined that, in general, the ensemble models exhibited better performance compared to the single models. While the RF algorithm could achieve the highest performance in terms of training sets (accuracy = 95.521%, kappa = 94.494%, AUC-PR = 98.195%), the XGboost algorithm, on an unseen dataset, could achieve the best performance (accuracy = 86.639%, kappa = 88.494%, AUC-PR = 93.505%). In terms of the training dataset, the RF model exhibited the highest accuracy (accuracy = 95.802%), and the level of agreement between predicted and actual samples was significant (kappa = 94.494%) with perfect precision and recall (AUC-PR = 92.467%). Having high performance in the training dataset demonstrates that the model has learned the pattern adequately and is able to make accurate predictions on an unseen dataset. On the test dataset, the XGboost model could classify the majority of the samples adequately (accuracy = 86.827%), and it performed well in terms of precision, recall, and F1-score (precision = 86.872%, recall = 86.827%, F1-Score = 86.819%). It also demonstrated excellent performance in terms of the trade-off between precision and recall (AUC-PR = 93.505%). A high kappa value (k = 82.818) indicates an acceptable agreement between predicted and actual classes. Generally, the XGboost model exhibited reasonable performance. It is worth mentioning that both XGboost and RF models could achieve significant performance in both training and test sets. Among the single algorithms, the ANN and DT models achieved the best performance in terms of test and training sets. It should be noted that while XGboost and RF algorithms as ensemble models showed the highest accuracy, ANN, DT, SVM, and LR models could predict deck condition with acceptable performance. The kNN exhibited the poorest performance among all the algorithms that were used (accuracy = 74.564%, precision = 75.006%, recall = 74.564%, F1-Score = 74.589%, kappa = 66.486%, AUC-PR = 80.543%).



Table 8 shows the results when RF feature selection (Model 2) was used. Similar to Model 1, ensemble models including RF and XGboost, respectively, could achieve the highest prediction performance on the training and test datasets. All the evaluation metrics for the RF algorithm on the training dataset were larger than 94%. On the test dataset, the XGboost model achieved more than 86% accuracy, recall, precision, and F1-score, and more than 93% of AUC-PR could produce a significant prediction. Among single models, similar to Model 1, the ANN, DT, SVM, and LR models exhibited an acceptable performance, and kNN achieved the lowest accuracy. For further visualization of the results, the confusion matrices of the RF algorithms corresponding to the three feature selection models are shown in Figure 4a–c as an example. In these confusion matrices, the rows represent the true deck condition, and the columns indicate the predicted deck conditions.



Table 9 shows the results of the ML algorithms when only the “most common” features were used as input for the prediction algorithm (Model 3). As shown in Table 9, none of the ML algorithms were able to achieve more than 50% accuracy in the test group set, which indicates that the models are not able to classify the data properly. Furthermore, less than 65% AUC-PR for all the evaluation metrics indicates that poor performance between precision and recall occurred. The RF model was able to achieve the highest performance with (accuracy = 49.933%, precision = 48.702%, recall = 49.933%, F1-score = 48.110%, kappa = 31.764%, AUC-PR = 60.502%), XGboost had the second best performance (Accuracy = 49.521%, Precision = 48.533%, Recall = 49.531%, F1-Sscore = 47.595%, kappa = 31.072%, AUC-PR = 60.904%), and the ANN, DT, kNN, SVM and LR models’ performances were lower. This confirms the research hypothesis that the use of features that may have worked well in previous research studies on different locations does not necessarily guarantee the adequacy of their use in other locations. Thus, DOTs in different geographic locations need to conduct a feature-selection analysis to best select the related features which are specific to their own dataset. This validates the usefulness of the proposed framework.



In comparison to other studies, obtaining more than 93% AUC-PR, and 86% accuracy for XGboost and RF models, as well as more than 92% AUC-PR and 85% accuracy for ANN, SVM, and LR is acceptable for predicting deck condition. Previous studies such as Assad et, al. [8], Nguyen and Dinh [13], and Liu et al. [48], were able to achieve similar accuracies. However, they used different datasets corresponding to other states. The model which has been developed by this study can assist ODOT in predicting the future deck condition of bridges accurately, and transportation agencies will be able to save time and money when making informed decisions about their maintenance priorities.





5. Discussion


As discussed previously, every dataset will have some common and some unique features depending on the location of the dataset, weather, service type, nature of the data, etc. We can identify, from the features importance models implemented by this research, which features have the most significant effects on the deterioration of bridges in Ohio. Features such as deck area, deck width, length of maximum span, and approach roadway width relate to the geometry of the bridge, while features such as superstructure, substructure, channel protection, operating rating, and structure evaluation reflect the importance of core elements of bridges. Deck wearing and ADT can be related to the volume of traffic on Ohio bridges. The district is another factor to consider for predicting deck conditions, and it can also be interpreted that the location of the bridge has a significant effect on the condition of the bridge and can be related to the weather or the volume of traffic. Additionally, the age of the bridge is another important feature that has been considered in many previous research studies. It is worth mentioning that features such as approach roadway width, channel protection, and district are not collected by other states. Similarly, other scholars have found unique features based on their datasets, as illustrated in Table 3, such as wearing surface, rib flange, and skew angle [2,8,13]. Therefore, we can conclude that the set of important features for predicting bridge conditions may vary between locations because geographic variations, such as temperature, average daily traffic, and environmental conditions, can significantly affect the optimal features that should be used in ML models for predicting the deck condition.



This research conducted a comprehensive comparison of machine learning algorithms for predicting deck conditions. Since this study looked for the most accurate results, the most common ML models have been implemented, including artificial neural networks (ANN), k-nearest neighbors (k-NN), decision tree (DT), eXtreme gradient boosting (XGboost), logistic regression (LR), random forest (RF), and support vector machine (SVR). Different evaluation metrics including accuracy, precision, recall, F1-score, Cohen’s kappa, and AUC-PR have been utilized to evaluate and compare the ML model. As illustrated in Table 7 and Table 8, and after optimizing the hyperparameters, results indicate that ensemble algorithms such as XGboost and RF achieved more than 92% AUC-PR, 86% accuracy and 82% kappa, and were the most accurate algorithms to predict the deck conditions. In terms of the training sets, RF achieved more than 92% accuracy in all the evaluation metrics, which was significant. However, the kNN model achieved the lowest performance when both the RF and XGboost feature-selection models were used, with less than 80% accuracy and less than 80% kappa. It should be noted that single models such as ANN, DT, LR, and SVM achieved more than 92% AUC-PR and more than 85% accuracy, which is an acceptable performance. Table 7 and Table 8 demonstrate that XGboost feature selection (Model 1) and RF feature selection (Model 2) performed well and they produced very similar results in both training and test datasets using seven different ML algorithms; however, XGboost feature selection generally demonstrated slightly better performance compared to the RF feature selection model. As shown in Table 9, ML algorithms were not able to predict deck conditions properly when the “most common” features (Model 3) was used. The accuracies of all seven ML algorithms using Model 3 were less than 50%, which indicates that the algorithms were not able to classify unseen datasets properly, and the fact that all of the evaluation metrics were less than 30% kappa indicates a poor level of agreement between predicted and actual classes. Additionally, having less than 61% AUC-PR for all the ML algorithms demonstrates a poor trade-off between precision and recall.



It is important to compare the performance of ML models for different reasons. Firstly, it allows us to compare all ML models and achieve the best performance for predicting the deck conditions. Additionally, it is helpful for future research. Moreover, using both ensemble and single algorithms enhances researchers’ understanding of the strengths and limitations of different models, and also enables them to analyze these models individually to discern their specific characteristics and hyperparameters. The proposed approach provides valuable insight for future research to improve the understanding of various ML models. It should be noted that the fact that XGboost and RF algorithms achieved the best results in this research does not necessarily mean that they are the best algorithms to use in other locations. Since all the algorithms achieved a fair accuracy and were implemented in a very short time, selecting the best algorithm based on the characteristics of the data and strengths of the algorithms, as discussed in Section 2.2, is recommended for every project, to achieve the most accurate results.



Findings from this research will enhance researchers’ understanding of the most significant parameters that can affect the deterioration of a bridge’s deck, specifically in the state of Ohio. This research represents an application of ML models on the ODOT dataset to predict bridges’ deck conditions and provides valuable insight for future research. It helps scholars to choose the best ML algorithms for their future works, with the most optimized hyperparameters. Additionally, it indicates that different locations may have different important features in the prediction of the deterioration of a bridge’s deck. This research also enhances agencies’ perspectives on the overall performance and general life expectancy of bridges using machine learning. Such knowledge may help bridge owners be proactive in terms of planning maintenance and replacement activities. The information obtained from this research may be useful for planning purposes during the development of Capital Improvement Program plans, to ensure the proper and effective distribution of funds allocated for the maintenance, rehabilitation, and repair of bridges.




6. Conclusions


Decks are the most vulnerable part of bridges, and their exposure to damage will incur a significant maintenance expense. For this reason, it is important to be able to predict deck conditions accurately and to effectively allocate resources for repair and maintenance activities when needed. The research described in this paper proposed a framework for optimizing the use of machine learning (ML) algorithms to predict bridge deck deterioration more accurately. The framework first determines “optimal” features that can be related to deck deterioration conditions using XGboost and random forest feature-selection methods. The framework then proposes the use of different ML algorithms based on the “optimal” features to select the most accurate algorithm. Based on the research findings, the following conclusions can be made:




	
XGboost and RF feature selection models could adequately select optimal features with very similar results; however, XGboost feature selection (Model 1) generally demonstrates slightly better performance compared to RF (Model 2).



	
Seven machine learning algorithms, including artificial neural networks (ANN), k-nearest neighbors (k-NN), decision tree (DT), eXtreme gradient boosting (XGboost), logistic regression (LR), random forest and support vector machine (SVR), have been implemented to classify deck conditions. Findings from this research showed that ensemble ML models are more accurate than single models. XGboost and RF algorithms with 93% and 92% AUC-PR, respectively, could have an excellent trade-off between precision and recall, as well as more than 86% accuracy for both algorithms, indicating a satisfactory classification strength. However, single models such as kNNs, that could achieve less than 80% accuracy and less than 88% AUC-PR in both XGboost and RF feature selection models, were not as accurate as ensemble models.



	
This research demonstrates that ML algorithms using the most common features (Model 3) were not able to classify datasets properly, with less than 50% accuracy and less than 30% kappa when all seven ML algorithms were used.



	
It has been concluded that every dataset in each geographic location needs a separate analysis to select the features that most impact deck conditions. It is suggested that each DOT needs to conduct a separate feature-selection analysis for their own datasets to determine the most important features.








It has been concluded that the framework that has been proposed in the paper could predict deck condition deterioration with acceptable accuracy using ML algorithms, provided that the optimal features are used as input to the algorithms. Therefore, this research can serve as a valuable resource to help various agencies allocate their budgets efficiently and obtain the most accurate measurements for future bridges. Future work can further investigate the reasons why different features have been selected by different scholars, and can also implement the proposed prediction framework to predict the future condition of other bridge components such as the superstructure and substructure.
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Figure 1. Research methodology. 
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Figure 2. Feature Importance Using XGBoost (Model 1). 
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Figure 3. Feature Importance Using RF (Model 2). 
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Figure 4. (a) Confusion matrix of RF algorithms Model 1; (b) Confusion matrix of RF algorithms Model 2; (c) Confusion matrix of RF algorithms Model 3. 
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Table 1. Reviewed studies that developed bridge deterioration prediction techniques.
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	Author
	Year
	AI
	Statistic





	Manafpour et al. [5]
	2018
	
	X



	Chang et al. [6]
	2018
	
	X



	Srikanth and Arockiasamy [11]
	2019
	X
	



	Alsharqawi et al. [12]
	2019
	X
	



	Nguyen and Dinh [13]
	2019
	X
	



	Lu et al. [14]
	2019
	X
	



	Lim et al. [15]
	2019
	X
	



	Ilbeigi et al. [2]
	2020
	
	X



	Martinez et al. [1]
	2020
	X
	



	Abedin et al. [16]
	2021
	X
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Table 2. Reviewed studies that developed bridge deterioration prediction using machine learning.
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	Author
	Year
	Model
	Focus





	Assaad et al. [8]
	2020
	k-NN, ANN
	Prediction of bridges’ decks



	Srikanth and Arockiasamy. [11]
	2019
	ANN
	Prediction of remaining useful life of timber and concrete bridges



	Nguyen and Dinh [13].
	2019
	ANN
	Predict bridges’ decks



	Lu et al. [14]
	2019
	LR
	Prediction of bridge components



	Abedin et al. [16]
	2021
	SVR, Ordinary least-squares (OLS), Multi-target regression (MTR)
	Bridge damage detection



	Lim and Chi. [15]
	2019
	XGboost
	Bridge damage estimation



	Martinez et al. [1]
	2020
	k-NN, decision trees (DTs), linear regression (LR), ANN, and deep learning neural networks (DLN)
	Prediction of bridges’ future conditions










[image: Table] 





Table 3. Feature selection in reviewed studies.
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	Author
	Age
	ADT
	Deck Area
	Deck Material
	Structural System
	Length of Span
	Superstructure and Substructure
	Number of Spans
	Truck ADT
	Design Load
	Wearing Surface
	Skew
	Rib Flange
	Location





	Huang et al. [10]
	X
	X
	X
	
	
	X
	
	X
	
	X
	
	X
	
	X



	Manafpour et al. [5]
	
	X
	
	X
	X
	X
	
	
	
	X
	
	
	
	X



	Chang et al. [6]
	X
	X
	
	X
	
	
	
	
	
	
	X
	
	
	



	Assad et al. [8]
	X
	X
	X
	X
	X
	X
	X
	
	
	
	
	
	
	



	Srikanth and Arockiasamy [11]
	X
	X
	
	
	
	X
	
	X
	
	X
	X
	
	
	



	Nguyen and Dinh [13]
	X
	X
	
	
	
	X
	
	X
	
	X
	
	
	
	



	Lu et al. [14]
	X
	X
	
	X
	
	
	
	
	
	
	
	
	
	X



	Lim et al. [15]
	X
	X
	
	
	
	X
	X
	
	X
	
	
	X
	X
	



	Ilbeigi et al. [2]
	X
	X
	X
	X
	X
	X
	
	
	X
	
	
	
	
	



	Martinez et al. [1]
	X
	
	
	X
	X
	X
	
	X
	
	
	
	
	
	X
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Table 4. Features’ description.






Table 4. Features’ description.





	Number
	Features
	Description





	1
	Superstructure
	Indicates the condition of all the superstructure element of the bridge



	2
	Deck wearing
	Indicates protective system of the bridge deck and its wear information



	3
	District
	The territory in which the bridge is located



	4
	Substructure
	Indicates the condition of the substructural elements of the bridge



	5
	Age
	The year the bridge was built



	6
	Deck area
	The deck area is a product of the bridge deck width and structure length



	7
	Length of maximum span
	Indicates the centerline of the bridge



	8
	Channel protection
	Indicates the channel protection type used, such as concrete, stone, rip rap, etc.



	9
	Structure evaluation
	Evaluation of a bridge in relation to the level of service



	10
	Deck width
	Record and code to show the out-to-out width



	11
	Structure type
	Indicates the predominant type of design and/or type of construction such as slab, tee beam, girder, etc.



	12
	Average daily traffic (ADT)
	Shows the average daily traffic volume for the inventory route



	13
	Operating rating
	This capacity rating, referred to as the operating rating, results in the absolute maximum permissible load level to which the structure may be subjected for the vehicle type used in the rating.



	14
	Approach roadway width
	Represents the normal width of the roadway approaching the structure.



	15
	Maintenance responsibility
	Represent the type of agency that has primary responsibility for maintaining the structure.



	16
	Deck geometry
	Indicate the geometry of bridge’s deck



	17
	Scour
	Represents the erosion of soil surrounding a bridge foundation (piers and abutments).



	18
	Bypass detour length
	Indicates the actual detour length



	19
	Type of wearing surface
	Indicate the type of wearing surface such as super plasticized, microsilica, polyester, etc.



	20
	Skew
	The skew angle is the angle between the centerline of a pier, abutment, or pipe, and a line normal to the roadway centerline.



	21
	Approach roadway alignment
	Identifies bridges which do not function properly or adequately due to the alignment of the approaches. In fact, it indicates how the alignment of the roadway approaches to the bridge relate to the general highway alignment for the section of highway the bridge is on.



	22
	Bridge posting
	This item evaluates the load capacity of a bridge in comparison to the state legal load.



	23
	Inventory rating
	Indicates load level which can safely utilize an existing structure for an indefinite period.



	24
	Structure material
	Indicates the predominant type of design and/or type of construction such as concrete, steel, timber, etc.



	25
	Bridge median
	Indicate whether the median is non-existent, open, or closed. The median is closed when the area between the two (2) roadways at the structure are bridged over and can support traffic.



	26
	Number of spans
	Records the number of spans in the main or major unit



	27
	Direction of traffic
	The direction for traffic on a route that is indicated by arrows on a reference chart



	28
	Deck structure type
	Record the type of deck system on the bridge such as concrete cas-in-place, open grating, timber, etc.



	29
	Service on bridge
	This item is intended to show the type of service on the bridge such as highway, railroad, pedestrian–bicycle, etc.



	30
	Structure material span
	Indicate materials which are used for structure of spans such as aluminum, prestressed concrete, etc.



	31
	Service under bridge
	This item is intended to show the type of service under the bridge such as highway, railroad, pedestrian–bicycle, etc.
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Table 5. Feature-selection models.






Table 5. Feature-selection models.













	Features
	Number
	Boruta
	Model 1
	Model 2
	Model 3





	District
	0
	X
	X
	X
	X



	Structure Material
	1
	X
	
	
	X



	Structure Type
	2
	X
	X
	
	



	Maintenance Responsibility
	3
	X
	X
	
	



	Deck Area
	4
	X
	X
	X
	X



	Deck Wearing
	5
	X
	X
	
	



	Deck Structure Type
	6
	
	
	
	X



	Average Daily Traffic (ADT)
	7
	X
	X
	X
	X



	Designated National Network
	8
	
	
	
	



	Structure Material Span
	9
	
	
	
	



	Structure Type Span
	10
	
	
	
	



	Number of Spans
	11
	X
	
	
	X



	Number of Approach Spans
	12
	
	
	
	



	Length of Maximum Span
	13
	X
	X
	X
	X



	Wearing Surface
	14
	X
	
	
	



	Superstructure
	15
	X
	X
	X
	



	Substructure
	16
	X
	X
	X
	



	Channel Protection
	17
	X
	X
	X
	



	Scour
	18
	X
	
	
	



	Structural Evaluation
	19
	X
	X
	X
	



	Inventory Rating
	20
	X
	
	X
	X



	Operating Rating
	21
	X
	X
	X
	X



	Deck Width
	22
	X
	X
	X
	



	Deck Geometry
	23
	X
	
	
	



	Type of Wearing Surface
	24
	X
	
	
	



	Structure Flared
	25
	
	
	
	



	Approach Roadway Width
	26
	X
	X
	X
	



	Bridge Median
	27
	X
	
	
	



	Skew
	28
	
	
	X
	



	Bypass Detour Length
	29
	X
	
	X
	



	Navigation Vertical Clearance
	30
	
	
	
	



	Navigation Horizontal Clearance
	31
	
	
	
	



	Approach Roadway Alignment
	32
	X
	
	
	



	Bridge Posting
	33
	X
	
	
	X



	Direction of Traffic
	34
	X
	
	
	



	Service on Bridge
	35
	
	
	
	



	Service under Bridge
	36
	
	
	
	



	Age
	37
	X
	X
	X
	X
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Table 6. Hyperparameter Optimization.






Table 6. Hyperparameter Optimization.













	Model
	Hyperparameter
	Analyzed Values
	Model 1
	Model 2
	Model 3





	kNN
	K value
	[1–40]
	9
	9
	38



	DT
	max_depth
	[non, 3–10]
	5
	7
	7



	
	min_sample_split
	[2, 5, 10]
	2
	2
	10



	
	min_sample_leaf
	[1, 2, 4]
	2
	2
	1



	XGboost
	max_depth
	[3–10]
	6
	6
	6



	
	Learning_rate
	[0.01–0.3]
	0.1
	0.1
	0.1



	
	Gamma
	[0–0.5]
	0.2
	0.2
	0.2



	
	subsample
	[0.5–1]
	0.7
	0.7
	0.7



	
	Colsample_bytree
	[0.5–0.9]
	0.7
	0.7
	0.7



	
	Min_child_wieght
	[1–5]
	5
	5
	5



	RF
	max_depth
	[5–15]
	15
	15
	15



	
	N_estimators
	[100, 200, 300]
	300
	300
	300



	
	Class_wieght
	[None, balanced]
	None
	None
	None



	
	Random_state
	42
	42
	42
	42



	LR
	C
	[0.1, 1, 10]
	10
	10
	0.1



	
	Class_wieght
	[None, balanced]
	balanced
	balanced
	balanced



	
	Random-state
	42
	42
	42
	42



	SVM
	C
	[0.1, 1, 10]
	10
	10
	10



	
	Gamma
	[0.1, 0.01, 0.001 ]
	0.01
	0.01
	0.01



	
	Class_weight
	[None, balanced]
	None
	None
	None



	
	Kernel
	[linear, rbf, sigmoid]
	rbf
	rbf
	rbf



	ANN
	Number of hidden layers
	[1, 2, 3, 4, 5]
	6
	6
	5



	
	Number of neoruns
	[1–10]
	12
	12
	11



	
	Learning rate
	[0.1, 0.01, 0.001, 0.001]
	0.1
	0.1
	0.1



	
	Batch_size
	[16, 32, 64, 128, 256]
	32
	32
	32



	
	optimizer
	[LBFGS, SGD, ADAM]
	ADAM
	ADAM
	ADAM
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Table 7. Model evaluation of deck condition prediction using XGboost feature selection (Model 1).






Table 7. Model evaluation of deck condition prediction using XGboost feature selection (Model 1).





	
Model

	
Accuracy

	
Precision

	
Recall

	
F1-Score

	
Cohen’s Kappa

	
AverageAUCPR




	

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test






	
Single Models




	
k-NN

	
81.650

	
74.564

	
81.847

	
75.006

	
81.650

	
74.564

	
81.669

	
74.589

	
75.848

	
66.486

	
85.974

	
80.543




	
ANN

	
87.930

	
85.943

	
87.989

	
86.009

	
87.930

	
85.943

	
87.906

	
85.928

	
84.246

	
81.697

	
94.419

	
92,529




	
LR

	
85.834

	
84.899

	
85.959

	
85.058

	
85.834

	
84.899

	
85.828

	
85.058

	
81.516

	
80.368

	
93.391

	
92.998




	
SVM

	
86.651

	
85.568

	
86.793

	
85.761

	
86.651

	
85.568

	
86.645

	
85.572

	
82.579

	
81.227

	
93.727

	
93.231




	
DT

	
86.946

	
85.836

	
87.064

	
86.030

	
86.946

	
85.836

	
86.933

	
85.829

	
82.985

	
81.608

	
93.878

	
93.447




	
Ensemble Models




	
XGboost

	
91.210

	
86.827

	
91.217

	
86.872

	
91.210

	
86.827

	
91.198

	
86.819

	
88.494

	
82.818

	
96.084

	
93.505




	
RF

	
95.802

	
86.586

	
95.824

	
86.692

	
95.802

	
86.586

	
95.805

	
86.589

	
94.494

	
82.524

	
98.195

	
92.467
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Table 8. Model evaluation of deck conditions prediction using RF feature selection (Model 2).






Table 8. Model evaluation of deck conditions prediction using RF feature selection (Model 2).





	
Model

	
Accuracy

	
Precision

	
Recall

	
F1-Score

	
Cohen’s Kappa

	
AverageAUCPR




	

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test






	
Single Models




	
k-NN

	
83.873

	
78.902

	
86.026

	
79.143

	
83.873

	
78.902

	
83.902

	
78.930

	
78.818

	
72.285

	
89.773

	
87.262




	
ANN

	
87.561

	
85.944

	
87.611

	
86.010

	
87.561

	
85.943

	
87.551

	
85.929

	
83.756

	
81.693

	
94.085

	
93.325




	
LR

	
86.0623

	
85.327

	
86.185

	
85.497

	
86.062

	
85.327

	
86,056

	
85.330

	
81.810

	
80.918

	
93.455

	
93.106




	
SVM

	
86.591

	
85.568

	
86.735

	
85.751

	
86.591

	
85.568

	
86.585

	
85.571

	
82.503

	
81.226

	
93.686

	
93.217




	
DT

	
87.916

	
85.970

	
88.023

	
86.088

	
87.916

	
85.970

	
87.913

	
85.968

	
84.208

	
81.726

	
94.150

	
93.359




	
Ensemble Models




	
XGboost

	
90.929

	
86.639

	
90.933

	
86.708

	
90.929

	
86.639

	
90.916

	
86.633

	
88.127

	
82.591

	
95.993

	
93.437




	
RF

	
95.521

	
86.265

	
95.548

	
86.377

	
95.521

	
86.265

	
95.522

	
86.270

	
94.125

	
82.112

	
97.999

	
92.293
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Table 9. Model evaluation of deck conditions prediction using most common features (Model 3).






Table 9. Model evaluation of deck conditions prediction using most common features (Model 3).





	
Model

	
Accuracy

	
Precision

	
Recall

	
F1-Score

	
Cohen’s Kappa

	
AverageAUCPR




	

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test






	
Single Models




	
k-NN

	
50.394

	
45.809

	
50.058

	
44.0189

	
50.394

	
45.809

	
48.913

	
44.0189

	
32.479

	
26.100

	
62.504

	
59.269




	
ANN

	
48.011

	
47.389

	
48.060

	
45.713

	
48.011

	
47.389

	
46.539

	
45.533

	
31.319

	
28.223

	
60.554

	
58.985




	
LR

	
31.429

	
32.904

	
35.786

	
37.451

	
31.429

	
32.904

	
30.451

	
31.961

	
16.150

	
17.953

	
61.993

	
63.889




	
SVM

	
46.063

	
45.781

	
46.327

	
43.724

	
46.063

	
45.783

	
42.063

	
41.515

	
24.631

	
24.379

	
58.200

	
57.381




	
DT

	
49.538

	
45.783

	
49.734

	
44.601

	
49.538

	
45.873

	
47.730

	
43.621

	
30.941

	
25.722

	
60.755

	
58.249




	
Ensemble Models




	
XGboost

	
62.839

	
49.531

	
64.835

	
48.533

	
62.839

	
49.531

	
62.038

	
47.595

	
49.522

	
31.072

	
74.239

	
60.904




	
RF

	
87.575

	
49.933

	
88.588

	
48.702

	
87.575

	
49.933

	
87.506

	
48.110

	
83.419

	
31.764

	
88.821

	
60.502
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