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Abstract: The deterioration of a bridge’s deck endangers its safety and serviceability. Ohio has
approximately 45,000 bridges that need to be monitored to ensure their structural integrity. Adequate
prediction of the deterioration of bridges at an early stage is critical to preventing failures. The
objective of this research was to develop an accurate model for predicting bridge deck conditions in
Ohio. A comprehensive literature review has revealed that past researchers have utilized different
algorithms and features when developing models for predicting bridge deck deterioration. Since,
there is no guarantee that the use of features and algorithms utilized by past researchers would
lead to accurate results for Ohio’s bridges, this research proposes a framework for optimizing the
use of machine learning (ML) algorithms to more accurately predict bridge deck deterioration. The
framework aims to first determine “optimal” features that can be related to deck deterioration con-
ditions, specifically in the case of Ohio’s bridges by using various feature-selection methods. Two
feature-selection models used were XGboost and random forest, which have been confirmed by the
Boruta algorithm, in order to determine the features most relevant to deck conditions. Different ML
algorithms were then used, based on the “optimal” features, to select the most accurate algorithm.
Seven machine learning algorithms, including single models such as decision tree (DT), artificial
neural networks (ANNs), k-nearest neighbors (k-NNs), logistic regression (LR), and support vector
machines (SVRs), as well as ensemble models such as Random Forest (RF) and eXtreme gradient
boosting (XGboost), have been implemented to classify deck conditions. To validate the framework,
results from the ML algorithms that used the “optimal” features as input were compared to results
from the same ML algorithms that used the “most common” features that have been used in previous
studies. On a dataset obtained from the Ohio Department of Transportation (ODOT), the results
indicated that the ensemble ML algorithms were able to predict deck conditions significantly more ac-
curately than single models when the “optimal” features were utilized. Although the framework was
implemented using data obtained from ODOT, it can be successfully utilized by other transportation
agencies to more accurately predict the deterioration of bridge components.

Keywords: deck deterioration; feature selection; predictive analysis; machine learning

1. Introduction

The deterioration of infrastructure such as bridges has always been a concern for
transportation agencies [1]. The maintenance, repair, and replacement (MRR) of bridges
contribute to increased expenditure. Bridges are one of the essential components of our
roadways [2]. The function of connecting different geographic areas makes bridges critical
infrastructure. Frequent use of bridges accelerates their deterioration and complicates
the implementation of bridge-management systems (BMSs). BMSs are implemented by
transportation agencies to analyze bridge conditions, predict bridge deterioration, find the
most efficient strategies of maintenance, and then prioritize and optimize them.
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There are approximately 45,000 bridges in the state of Ohio [3], and every year, a
significant amount of money is spent to repair and maintain them. The deterioration of
bridges’ components significantly affects their integrity and structural safety [4]. It is crucial
to model and predict the future deterioration of bridges under different environmental
and location-specific conditions, among others, to forecast when a specific structure could
be expected to begin to degrade or display signs of failure [2]. Furthermore, the ability
to accurately predict the conditions of bridges may help ensure the proper and effective
distribution of funds allocated for the maintenance, rehabilitation, and repair of bridges.
This ability can also be helpful when determining which type of structure should be
considered for a specific location [5].

Previous studies focused on modelling and analyzing bridge deterioration using a
historical bridge inspection database [2]. Each state DOT maintains such a database. For
example, the Ohio Department of Transportation (ODOT) maintains a comprehensive
database of all bridges in Ohio, called AssetWise [3]. AssetWise is a web-based application
that includes inventory and appraisal (inspection) data that stretches back several decades.
A typical interval inspection is between 24 to 48 months, but an owner may request more
frequent inspections [2]. Bridge inventories contain more than 130 different features of
the bridges such as age, district, deck area, number of spans, etc. Moreover, they list the
condition of various elements of the bridge such as substructure, superstructure, and deck,
which make the analyses easier for researchers. Because bridge decks are more vulnerable
to damage and because the serviceability of bridges depends heavily upon them [3,6,7],
this study will focus on determining the rate of deterioration of bridge decks.

Predicting the condition of bridges has always been a challenging issue among scholars
and transportation agencies, given the various options available such as statistical and
machine learning techniques [8]. Nowadays, with the growing field of artificial intelligence
(AI), scholars and transportation agencies are more interested in using these techniques,
which typically yield more accurate predictions compared to statistical methods [9,10].
However, there are various ML models to implement, from simple algorithms such as kNN
and SVM to more complex methods such as xGBoost and random forest, which are referred
to as ensemble models. Therefore, choosing the most accurate ML model is an important
issue that needs to be addressed.

Furthermore, a comprehensive literature review has revealed that past researchers
have utilized different features when developing models for predicting bridge deck deterio-
ration. Some of these features were common among researchers such as age, location of the
bridge, and average daily traffic, while other features were unique. Since the accuracy of
the prediction models depends on the set of features utilized, the characteristics of the data,
and the chosen algorithm, there is a need for developing a framework for optimizing the
use of ML algorithms to more accurately predict bridge deck deterioration [2]. The needed
framework should provide a mechanism for (1) selecting the best set of features that are
most related to bridge deterioration to use as input to the ML algorithms, and (2) selecting
the most adequate ML algorithm.

The research described in this paper proposes such a framework to more accurately
predict bridge deck deterioration using proper feature selection methods. The research
methodology consisted of the following: (a) A comprehensive literature review which
included three main parts was conducted. First, the statistical techniques used by past
researchers for predicting bridge condition were reviewed. Secondly, ML techniques used
by past researchers for predicting bridge deterioration were reviewed. Finally, previous
studies on feature-selection methods were reviewed. (b) The NBI database was analyzed
to see if it contained all the needed information. (c) The most popular ML algorithms
were implemented to determine the most related features and the highest prediction
accuracy. (d) The most accurate algorithm was identified and the hyperparameters for each
model were optimized for evaluating each model’s accuracy, then feature selection models
proposed in this research were compared to models that used the most common features.
Each task is described in more detail in the following sections.
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2. Research Background

According to studies, there are two methods for predicting bridge deterioration [5].
The first method utilizes statistical techniques such as Markov chains to statistically evaluate
the effects of bridge characteristics on variations in bridge conditions and predict future
bridge conditions. The second method utilizes ML algorithms. Table 1 lists previous
research conducted using both methods.

Table 1. Reviewed studies that developed bridge deterioration prediction techniques.

Author Year AI Statistic

Manafpour et al. [5] 2018 X
Chang et al. [6] 2018 X
Srikanth and Arockiasamy [11] 2019 X
Alsharqawi et al. [12] 2019 X
Nguyen and Dinh [13] 2019 X
Lu et al. [14] 2019 X
Lim et al. [15] 2019 X
Ilbeigi et al. [2] 2020 X
Martinez et al. [1] 2020 X
Abedin et al. [16] 2021 X

2.1. Statistical Techniques to Predict Bridge Deterioration

Ilbeigi et al. used an ordinal regression model to predict future bridge conditions;
they focused on historical data in Ohio from 1992 to 2017 pertaining to 28,000 bridges [2].
Manafipour et al. evaluated deck deterioration rates by using explanatory factors such as
average daily traffic, route type, environmental condition, etc. They believed such factors
were statistically essential; furthermore, they evaluated remediation of those bridges’
decks [5]. O’Connor et al. divided bridge deterioration into two phases: initiation and
propagation which, according to them, makes the evaluation of the efficiency of bridges
much easier for owners [17]. Agrawal et al. applied Weibull distribution to analyze bridge
deterioration by using typical bridge characteristics in New York, and they concluded that
the Weibull-based approach is more accurate than Markov chains in terms of observed
conditions [12]. Wellalage et al. implemented a Metropolis–Hastings algorithm (MHA)-
based Markov chain Monte Carlo (MCMC) simulation technique which was more precise
than Markov deterioration models (SBMDM) in terms of uncertainties and network-level
conditions [18]. Ranjith et al. applied the Markov chain model to forecast the future
condition of timber bridges in Australia, and they concluded that the Markov chain model
has high accuracy for predicting the deterioration prediction of timber bridges [19].

Huang et al. suggested that statistical models such as the Markov chain have limi-
tations in predicting bridge deterioration due to their basic assumption that any future
state is independent of the past [10]; the results of their research showed that both age
and history influence deck deterioration. However, the Markovian deterioration model
considers both factors independently, which is invalid in that context. Hence, a machine
learning model has been used to predict the bridge condition, and features were chosen by
statistical analysis. They stated that the prediction of bridge conditions had a significant
effect on their maintenance; therefore, choosing the most accurate model is essential [10].
Srikanth and Arockiasamy discussed the pros and cons of using statistical and artificial
intelligence models, and compared the results of the two models using case studies. They
concluded that statistical methods are memoryless, and they require a significant amount
of data to predict accurately, while AI models do not have such limitations. However, they
also mentioned that ML algorithms are still in the nascent stage of development for use in
BMS [11]. However, as shown in Table 1, the use of AI models is becoming more popular.
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2.2. ML Applications in Predicting Bridge Deterioration

One of the branches of artificial intelligence is machine learning (ML), which can pre-
dict output variables accurately when given the values of input variables [20]. ML has been
used in many engineering applications, such as predicting pavement conditions, the failure
of water distribution pipes’ and wind turbines, and culvert maintenance prediction [21–23].
Additionally, ML models have been utilized for assessing structural performance against
hazards including reconstructing buildings’ seismic response and surrogate models for
predicting the seismic vulnerability of mid-rise buildings [24,25]. In civil engineering, ML
has been applied in different areas such as traffic control, evaluation, extracting feasibil-
ity information, and synthesis from design which indicates the ability of ML models in
various areas [26].

Many researchers have developed bridge deterioration prediction using ML; Table 2
summarizes the previous AI models used to predict bridge deterioration. ML models
can be categorized into single and ensemble approaches. An ensemble model is formed
by combining individual algorithms to make the model more powerful and improve its
performance. On the other hand, single models refer to individual algorithms which are
implemented independently [27]. Each model category has its own advantageous and
disadvantages; while an ensemble algorithm often has higher accuracy and robustness,
single models are simple to interpret and are more efficient in non-complex interactions.
For example, the XGboost model can outperform base learners (decision trees) in different
aspects such as robustness to overfitting, and exhibits better performance in nonlinear
interactions. They are also more efficient in imbalanced datasets. Therefore, it is crucial to
evaluate both single and ensemble models to produce a comprehensive analysis [24].

Table 2. Reviewed studies that developed bridge deterioration prediction using machine learning.

Author Year Model Focus

Assaad et al. [8] 2020 k-NN, ANN Prediction of bridges’ decks

Srikanth and Arockiasamy. [11] 2019 ANN Prediction of remaining useful life of timber and
concrete bridges

Nguyen and Dinh [13]. 2019 ANN Predict bridges’ decks
Lu et al. [14] 2019 LR Prediction of bridge components

Abedin et al. [16] 2021 SVR, Ordinary least-squares (OLS),
Multi-target regression (MTR) Bridge damage detection

Lim and Chi. [15] 2019 XGboost Bridge damage estimation

Martinez et al. [1] 2020
k-NN, decision trees (DTs), linear regression
(LR), ANN, and deep learning neural
networks (DLN)

Prediction of bridges’ future conditions

Assad et al. investigated the deck deterioration of 19,269 bridges using machine
learning in three stages: First, feature importance of bridges was identified, then artificial
neural networks (ANNs) and k-nearest neighbors (k-NNs) algorithms were implemented,
and finally, the highest-accuracy model was identified [8]. Melhem and Cheng demon-
strated that the k-nearest-neighbor instant-based learning (IBL) method is more efficient
than inductive learning (IL) in terms of predicting the remaining service life of a bridge
deck [26]. Nguyen and Dinh investigated the deck deterioration of 2572 bridges in the
state of Alabama using an ANN model, and the results indicated that the ANN model
is accurate enough to predict the deterioration curve of a bridge deck [13]. Srikanth and
Arockiasamy have applied some case studies of timber and concrete bridge decks to predict
their deterioration using both statistical and ANN models. In the end, they observed that
an ANN is able to predict the bridge decks’ deterioration with higher accuracy [11]. Lu
et al. asserted that being well informed about the maintenance, repair, and rehabilitation
(MPR) of bridges, and predicting the deterioration of bridge components is essential [14].
They developed a logistic regression (LR) model to predict the condition of a bridge com-
ponent using five criteria: prediction error, bias, accuracy, out-of-range forecasts, Akaike’s
information criteria (AIC), and log likelihood (LL). Abedini et al. proposed a new approach
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for detecting the location and severity of joint damage in bridges with high accuracy by
using a support vector machine (SVR), ordinary least-squares (OLS), and multi-target
regression (MTR) [16]. Lim et al. used the XGboost algorithm to predict the condition of
bridges at a particular damage level. They asserted that the advantage of the XGboost
model is its ability to handle numerous variables that affect bridge deterioration [15]. They
selected the features using the Shapley additive explanation (SHAP) value. They found
that age, average daily truck traffic, vehicle weight limit, total length, and effective width
are major factors that influence bridge deterioration. Martinez et al. utilized five different
algorithms including k-nearest neighbors (k-NN), decision trees (DTs), linear regression,
artificial neural networks (ANNs), and deep learning neural networks (DLN), to predict
the bridge condition index (BCI) in Ontario, Canada using data for 2802 bridges over a
10-year period [1]. Zhang et al. used a case study to compare various soft computing
methods (SCMs) such as the use of support vector machines (SVMs), eXtreme gradient
boosting (XGBoost), and ANNs. They concluded that every algorithm has limitations
and advantages based on the datasets and features selected [28]. They stated that some
simple algorithms such as KNNs cannot predict outliers precisely [29]; other algorithms
such as ANNs perform well in solving nonlinear problems, whereas LR is unable to solve
such problems; the use of SVMs is recommended for complex functions, but usually only
predicts accurately in small datasets; XGboost is a fast algorithm, however, it is susceptible
to overfitting [28,30–32].

It was clear from the literature review that both single and ensemble ML algorithms
have their advantages and disadvantages. Hence, in the research described in this paper, we
evaluated the most popular algorithms which were used by previous researchers including
single models such as decision tree (DT), artificial neural networks (ANNs), k-nearest
neighbors (k-NN), logistic regression (LR), and support vector machines (SVRs), as well as
ensemble models such as random forest (RF) and eXtreme gradient boosting (XGboost) to
obtain the most accurate prediction for deck conditions, and to determine which algorithm
works best with the ODOT data.

2.3. Literature Review on Studied Feature Selection Methods

One of the most significant challenges in classification is identifying the most related
features as input to obtain the most accurate results. Input variables of ML algorithms are
known as features of classification models that predict the output variable. The NBI dataset
contains 130 fields for every single bridge [3], and nearly 31 of them, as shown in Table 3,
are related to decks. These fields can be potential features used for developing models to
predict deck conditions based on previous studies [8].

Table 3. Feature selection in reviewed studies.

Author Age ADT Deck
Area

Deck
Material

Structural
System

Length
of Span

Superstructure
and Sub-
structure

Number
of Spans

Truck
ADT

Design
Load

Wearing
Surface Skew Rib

Flange Location

Huang et al. [10] X X X X X X X X
Manafpour et al. [5] X X X X X X
Chang et al. [6] X X X X
Assad et al. [8] X X X X X X X
Srikanth and
Arockiasamy [11] X X X X X X

Nguyen and Dinh [13] X X X X X
Lu et al. [14] X X X X
Lim et al. [15] X X X X X X X
Ilbeigi et al. [2] X X X X X X X
Martinez et al. [1] X X X X X X

In the past, scholars have used various methods to select the important features to
utilize in their prediction models, as shown in Table 3. Some scholars used the most com-
mon features identified by previous studies such as Ilbeigi et al. [2] and Martinez el al. [1].
Some used either statistical or AI models to determine the features most correlated to deck
conditions. For example, Huang et al. utilized statistical analysis (ANOVA) to determine
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features related to deck deterioration and were able to achieve 75.39% accuracy for decks
of concrete bridges in Wisconsin [10]. Assad et al. used the Boruta feature selection method
and were able to obtain 91.44% accuracy for the NBI dataset of Missouri [8]. Srikanth
and Arockiasamy used the Heatmap method and were able to obtain 91% accuracy [11].
Manafpour et al. used the maximum likelihood estimate (MLE) method on the PennDOT
dataset in Pennsylvania [5]. Nguyen and Dine used sensitivity analysis in the state of
Alabama [13]. Chang et al. used logistic regression [6]. Lim et al., determined the features
by the Shapley Additive Explanation (SHAP) value using data from the Korean Bridge
Management System [15]. In this research, we aim to first determine “optimal” features that
can be related to deck deterioration conditions using various feature selection methods. We
will use these features as input to ML algorithms to predict deck conditions. Subsequently,
results from the ML algorithms using “optimal” features will be compared to results from
the same ML algorithms if the input is only based on the “most common” features that
have been used by previous studies, to determine if our proposed methodology improves
the prediction accuracy.

3. Methodology
3.1. Model Development

Machine learning algorithms are able to predict the future based on available historical
data. There are many ML algorithms that can be used, and every algorithm has its own
pros and cons as was discussed previously. In this research, we will use the most popular
algorithms based on the literature review to predict the deck condition of bridges and
compare the results. The objective is to estimate deck deterioration conditions which can be
described by 1 out of 9 categories based on the NBI dataset: condition 0 represents an out-
of-service deck and condition 9 represents an excellent (new) deck. It is worth mentioning
that the ODOT database did not contain any records for bridges with conditions 0, 1, and 2.
The research methodology is divided into five steps as shown in Figure 1.

3.1.1. Data Gathering

AssetWise is a database compiled by the Ohio Department of Transportation (ODOT)
that contains data for Ohio bridges. AssetWise is web-based and includes inventory and
appraisal (inspection) data [3]. The data gathered over many years equip researchers
with a valuable and reliable resource that enables them to predict the future condition
of bridges, as well as to make informed decisions. The data used in this study were
retrieved from the AssetWise database for the years 1992 to 2021. AssetWise contains more
than 100 types of information (fields) about each bridge. ODOT contains 12 districts with
43,000 m of highway, and is one of the largest in the nation, having over $115 billion in
infrastructure assets such as culverts, traffic signals, highway signs, etc. From Assetwise,
it was determined that concrete bridges comprise the majority of the inventory at 60.7%,
followed by steel structures at 35.7%, and the rest of the bridges consist of masonry/stone,
and other structures. Furthermore, concrete bridges can be further categorized into 32%
multiple-box structures, 25% concrete culverts, and 23% concrete-slap structures. Assetwise
also contains information such as average daily traffic (ADT), age of the bridge, area of the
deck, deck width, deck geometry, and conditions of core elements of the bridge including
superstructure, substructure, and deck condition which all have been explained in Table 4.
Every single feature has been described in a guideline entitled the Ohio Bridge Inventory
Coding Guide. Each bridge has a structural file number (SFN) which is the identification
number for the data file of the structure [3]. This research focuses on concrete bridges
which comprise the majority (60.7%) of the inventory.
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Table 4. Features’ description.

Number Features Description

1 Superstructure Indicates the condition of all the superstructure element of the bridge

2 Deck wearing Indicates protective system of the bridge deck and its wear information

3 District The territory in which the bridge is located

4 Substructure Indicates the condition of the substructural elements of the bridge

5 Age The year the bridge was built

6 Deck area The deck area is a product of the bridge deck width and structure length

7 Length of maximum span Indicates the centerline of the bridge

8 Channel protection Indicates the channel protection type used, such as concrete, stone, rip
rap, etc.

9 Structure evaluation Evaluation of a bridge in relation to the level of service

10 Deck width Record and code to show the out-to-out width

11 Structure type Indicates the predominant type of design and/or type of construction
such as slab, tee beam, girder, etc.

12 Average daily traffic (ADT) Shows the average daily traffic volume for the inventory route

13 Operating rating
This capacity rating, referred to as the operating rating, results in the
absolute maximum permissible load level to which the structure may be
subjected for the vehicle type used in the rating.

14 Approach roadway width Represents the normal width of the roadway approaching the structure.

15 Maintenance responsibility Represent the type of agency that has primary responsibility for
maintaining the structure.

16 Deck geometry Indicate the geometry of bridge’s deck

17 Scour Represents the erosion of soil surrounding a bridge foundation
(piers and abutments).

18 Bypass detour length Indicates the actual detour length

19 Type of wearing surface Indicate the type of wearing surface such as super plasticized, microsilica,
polyester, etc.

20 Skew The skew angle is the angle between the centerline of a pier, abutment, or
pipe, and a line normal to the roadway centerline.

21 Approach roadway alignment

Identifies bridges which do not function properly or adequately due to
the alignment of the approaches. In fact, it indicates how the alignment of
the roadway approaches to the bridge relate to the general highway
alignment for the section of highway the bridge is on.

22 Bridge posting This item evaluates the load capacity of a bridge in comparison to the
state legal load.

23 Inventory rating Indicates load level which can safely utilize an existing structure for an
indefinite period.

24 Structure material Indicates the predominant type of design and/or type of construction
such as concrete, steel, timber, etc.

25 Bridge median
Indicate whether the median is non-existent, open, or closed. The median
is closed when the area between the two (2) roadways at the structure are
bridged over and can support traffic.

26 Number of spans Records the number of spans in the main or major unit

27 Direction of traffic The direction for traffic on a route that is indicated by arrows on a
reference chart

28 Deck structure type Record the type of deck system on the bridge such as concrete
cas-in-place, open grating, timber, etc.

29 Service on bridge This item is intended to show the type of service on the bridge such as
highway, railroad, pedestrian–bicycle, etc.

30 Structure material span Indicate materials which are used for structure of spans such as
aluminum, prestressed concrete, etc.

31 Service under bridge This item is intended to show the type of service under the bridge such as
highway, railroad, pedestrian–bicycle, etc.

3.1.2. Data Preparation

Since the focus of the research is concrete bridges, non-concrete bridges were removed
from the dataset. Additionally, records having non-applicable deck conditions were re-
moved instead of imputing, due to the few numbers of nulls (fewer than 200 null records).
Because it is not possible for most machine learning algorithms to handle categorical vari-
ables such as structure type, structure material, type of service, bridge median, etc., such



Buildings 2023, 13, 1517 9 of 22

data were transformed before implementation. The research team has evaluated the need
for data standardization. Since the features that were used had different magnitudes, units,
and ranges (for instance, the bridge age is in years while the structure length is in meters),
magnitude issues could arise requiring data standardization to bring all features to the
same level of magnitude [8]. Data standardization also ensures that the distribution of all
variables is zero-centered and that the input features are standardized for efficient data
processing. Equation (1) was used for data standardization: where z = scaled value of the
unscaled variable x that has a mean of µ, and a standard deviation of σ.

z =
x − µ

σ
(1)

After cleaning the dataset, and removing the null data, 18,673 concrete bridges re-
mained and were used to implement the ML algorithms. 80% of the dataset (14,938) is
selected as training data and 20% (3735) as testing data [8].

3.1.3. Feature Selection

According to the proposed framework, the first task that needs to be completed is to
find the “optimal” features that are most correlated to deck conditions. As shown in Table 3,
features that have been used by previous studies are not identical. Some features have been
used more frequently and include age, Average Daily Traffic (ADT), deck area, and length
of spans. Other features were uniquely used in previous studies and include wearing
surface, rib flange, and skew angle [2,8,13]. The disparity of features used in previous
studies can be attributed to the various feature selection models that each researcher has
chosen or the specific location of the bridges or even the characteristics of the dataset
that they were examining. In this research, we determined the “most common” features
as features that have been chosen more than three times in previous studies as input.
On the other hand, for the “optimal” features, Boruta, XGboost, and random forest (RF)
algorithms have been used to determine them. The reason for using Boruta algorithms is
that they have high accuracy in picking the most related features to the response from a
large number of variables, even if the relationship between the variables is complex [4,8].
In general, the Boruta algorithm does not measure each feature, but basically confirms or
rejects the selected features, and in some cases, gives the number of tentative variables. It
is, therefore, necessary to implement some other feature importance algorithms to evaluate
the importance of each feature [4]. Therefore, in this study, we used XGboost (Model 1)
and RF (Model 2) to measure the relationship between features and response. One of the
most powerful methods for improving classification accuracy is feature selection based
on XGboost [33]. This method provides a high-level understanding of how variables are
related. RF is among the most popular feature-selection algorithms due to its simplicity, low
overfitting, and high performance [34]. After implementing all three methods of feature-
selection algorithms, the most related features which have been confirmed by Boruta and
which are also among the top important features of both XGboost and RF were chosen as
input for machine learning algorithms. Python was used to implement the algorithms.

3.1.4. Develop ML Models
Description of ML Models

Based on the literature review, the most popular and powerful algorithms for pre-
dicting the deck conditions have been chosen to obtain the most accurate results. These
algorithms include artificial neural networks (ANNs), k-nearest neighbors (k-NN), eXtreme
gradient boosting (XGBoost), logistic regression (LR), support vector machine (SVR), ran-
dom forest (RF), and decision tree. The characteristics of the used algorithms are briefly
described below.

k-nearest neighbor (k-NN) is known as one of the most popular classification algo-
rithms that group test data into classes based on closeness to the number of k-neighbors-
trained data [8]. Distance measures are the criteria for evaluating closeness. High accuracy
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and simplicity have made the k-NN popular. However, previous studies indicate that the
existence of outliers in the dataset results in poor prediction. Furthermore, since k-NN does
not learn from the training data during the training, it is known as a lazy algorithm [29]. To
make the prediction, k-NN relies on the closest neighbors of each query point; parameter k
represents the number of neighbors considered which can be varied for each dataset. The
grid search method can be conducted to find the optimal value of k. [8]

The eXtreme gradient boost (XGBoost) is a decision tree boosting algorithm. It is a
grouping model which learns from subsequent trees, minimizing the errors of earlier trees
as a result [35,36]. The main idea behind this model is to fit the current regression tree
by learning the errors of earlier trees [36]. Since learning from previous trees minimizes
the errors, XGboost is considered a fast algorithm that can find the optimal solution.
However, in the case of small datasets, XGboost is susceptible to overfitting [28,32]. The
most common hyperparameters of XGboost include “learning-rate” to control the step size
and shrinkage during the boosting process. “Max-depth” determines the maximum depth
of each decision tree, “sub-sample” controls the fraction of samples in each individual tree,
and “gamma” minimizes the loss reduction required to make a split; a higher value of
gamma can reduce overfitting and also make the algorithm more conservative. “colsample
by tree” indicates the ratio of each column for sampling to build a tree, and “minimum
child weight” indicates the minimum sum of weight which is required in a leaf (child)
which help control overfitting. [15,25]

Support vector machines (SVMs) are used for both classification and regression mod-
els [37]. The use of SVMs aims to predict the output variable based on trained data. In
this method, a decision plane is used to separate the objects where each object belongs
to various classes [37]. SVM’s ability to solve complex functions using kernel function
makes it one of the most powerful algorithms. However, when the dataset size increases,
the accuracy of SVM typically decreases [30]. The most common hyperparameters of
SVM include “C” which controls the regularization strength between training errors and
complexity of the model, the “kernel” function, and the kernel coefficient called “gamma”.
The hyperparameter called “class-weight”, used to assign weight to every class, will also
be evaluated to improve the performance of the model [14,30,38–40].

The use of an ANN is a growing research field in supervised learning techniques [41].
ANNs are “generally nonlinear mathematical learning algorithms that attempt to imitate
some of the workings of the human brain”, [8,31], to identify the pattern between input
and output. When the relation between input and output data is nonlinear, the accuracy of
ANNs is high. For this reason, when there are no rules among datasets, ANN would be
the best option [42]. An ANN consists of three types of layers: (1) input layer, (2) hidden
layer, and (3) output layer. Each layer has neurons that implement the operation. The
number of neurons in the input layer is equal to the number of features. The number of
neurons in the output layers depends on the number of classification classes. The number
of neurons in the hidden layer is identified through trial and error. Other hyperparameters
which have been considered to affect the performance of the ANN model include “learning
rate”, which indicates the step size of the model to converge to an optimal model and
varies from 0.1 to 0.0001. The hyperparameter known as “batch-size” indicates the number
of training examples in each iteration; a high value of batch size accelerates the training
but reduces the model’s ability to generalize, whereas a low value increases the training
time but gives updates to the model more frequently. Different sizes from 16, 32, 64,
128, and 256 are investigated in this paper. The hyperparameter known as “optimization
algorithm”, which updates the weights and biases in the model including limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS), the stochastic gradient descent (SGD), and
the adaptive moment estimation (ADAM). All these hyperparameters will be optimized
using the grid search method to improve the performance of the ANN model [8].

Logistic regression (LR) is a supervised machine learning classification algorithm [43].
It provides the binomial outcome as it gives the probability that an event will occur or
not (in terms of 0 and 1), based on the values of input variables. It widely deals with the
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prediction of the target variable. This algorithm is predominantly used to solve problems
on an industrial scale. The simplicity of implementation and computational efficiency are
some advantages of LR algorithms, while the disadvantages of LR include the inability to
solve non-linear problems, as its decision surface is linear, prone to overfitting, and will
not work out well unless all independent variables are identified. The use of grid search
hyperparameters—such as “c”, which represents the inverse of regularization strength;
“max-iter”, which indicates the maximum number of iterations; and “class-weight”, which
assigns weight to each class during the training—will be evaluated [43].

Random forest (RF) is created by multiple random decision tree predictors. Each
decision tree is trained on a random subset, and an aggregation of all the predicted trees
will be the final prediction. It is typically used for classification models and is able to
evaluate numerical and categorical features. Having high accuracy, being robust to outliers,
and handling high-dimensional data are considered advantages of this model; however,
being biased in imbalanced datasets and the complexity of the model are disadvantages
of RF models. Parameters such as “n-estimator” which represents the number of trees,
“max-depth”, “class-weight”, and also “random-state”, which are used to set the random
seed for reproducibility, are among the most commonly used hyperparameters that will be
optimized using the grid search method [24,38,42].

A decision tree (DT) is a supervised machine learning algorithm that can be used
for both regression and classification models [27,43]. The structure of a DT resembles
a tree where each internal node represents a feature, each branch represents a decision
based on that feature, and each leaf node represents the predicted outcome. DT models
are easy to interpret but suffer from overfitting. In this research, hyperparameters such
as “max-depth”, the minimum number of samples required to split an internal node
“min_sample_split”, and the minimum number of samples required to be at a leaf/terminal
node “min_sample_leaf” will be implemented to optimize the model [38].

Hyperparameters Optimization

Hyperparameters play a pivotal role in the performance of each ML algorithm due
to their direct impact on the model [8]. Depending on the type of ML algorithms, hy-
perparameters can vary but generally, they help in various aspects including improving
computational efficiency, control overfitting, and handling imbalanced classes. Grid search
is a commonly used tuning technique that is built on the hyperparameter of each model
and iterates through all the hyperparameters of the given model to determine the most
optimal ones. Overfitting problems have been prevented using k-fold cross-validation.
As data split to 80% training and 20% testing, training dataset groups in k groups/folds,
they will be fit with the first fold and validated using the remaining folds, this process is
repeated k times for the remaining folds, so that k number of performance achieved. Once
the cross-validation has been repeated k times, the average accuracy of k folds will be the
result [8,38,44,45].

3.1.5. Model Evaluation

Obtaining high accuracy is a primary concern in every machine learning implementa-
tion. There are several ways to evaluate the precision of our model, and one of the most
popular is the confusion matrix, which gives us the accuracy, precision, recall, and F1-score
using Equations (2)–(6) [43]. The reason that the confusion matrix has been chosen to eval-
uate the model is that this metric is robust and generalized [46], and avoids overfitting [47].
Two other means of evaluating the performance of models that have been implemented in
this research are Cohen’s Kappa and average area under the precision–recall curve (AUC-
PR), as shown in Equation (6) where “Po” represents observed agreement and “Pe” repre-
sents expected agreement [38]. After implementing all the ML models, they were compared
based on these metrics, depending on the true or false prediction of the deck conditions.

Precision =
True Positive

True Positive + False Positive
(2)
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Recall =
True Positive

True Positive + False Negetive
(3)

Accuracy =
True Positive + True Negetive

True Positive + True Negetive + False Positive + False Negetive
(4)

F1 − Score = 2 × (
Precision × Recall
Precision + Recall

) (5)

κ =
Po − Pe
1 − Pe

(6)

4. Results
4.1. Selected Features

Three feature selection models proposed by this research include XGboost (Model 1)
and random forest (Model 2), as well as the “most common” features (Model 3) which
have been used by previous studies. Features that have been used more than three times
in previous research are considered as the most common features, and include age, ADT,
district, deck area, structure materials, deck structure type, number of spans, length of
maximum spans, design load (inventory rating, operating rating, bridge posting), as shown
in Table 5.

Table 5. Feature-selection models.

Features Number Boruta Model 1 Model 2 Model 3

District 0 X X X X
Structure Material 1 X X
Structure Type 2 X X
Maintenance Responsibility 3 X X
Deck Area 4 X X X X
Deck Wearing 5 X X
Deck Structure Type 6 X
Average Daily Traffic (ADT) 7 X X X X
Designated National Network 8
Structure Material Span 9
Structure Type Span 10
Number of Spans 11 X X
Number of Approach Spans 12
Length of Maximum Span 13 X X X X
Wearing Surface 14 X
Superstructure 15 X X X
Substructure 16 X X X
Channel Protection 17 X X X
Scour 18 X
Structural Evaluation 19 X X X
Inventory Rating 20 X X X
Operating Rating 21 X X X X
Deck Width 22 X X X
Deck Geometry 23 X
Type of Wearing Surface 24 X
Structure Flared 25
Approach Roadway Width 26 X X X
Bridge Median 27 X
Skew 28 X
Bypass Detour Length 29 X X
Navigation Vertical Clearance 30
Navigation Horizontal Clearance 31
Approach Roadway Alignment 32 X
Bridge Posting 33 X X
Direction of Traffic 34 X
Service on Bridge 35
Service under Bridge 36
Age 37 X X X X
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By developing the ML models, the Boruta algorithm has been used to determine
whether or not the examined feature is correlated to deck conditions. As shown in Table 5,
27 out of the 38 input features were confirmed by Boruta, while 12 of the input features
were rejected. Some features might have been rejected because of either poor relation
or lack of relation with the output, or even because of the nature of the dataset. Due to
the fact that Boruta does not provide evaluation measurements for each feature, XGboost
and RF methods were used to determine the importance of each feature. By examining
Figures 2 and 3, it can be observed that the most highly related features between the two
methods of XGboost and RF are the same, and all of them have been confirmed by the Boruta
algorithms. This shows that the feature importance methods used in this research work
properly. The XGboost algorithm gives a score between 0 to 900, where 0 represents the least
correlated feature and 900 represents the highest correlated feature. In this research, features
having a score of more than 100 are selected. Similarly, the RF algorithm gives a score
between 0 to 0.4, where 0 represents the least correlated feature and 0.4 represent the highest
correlated feature. In this research, features having a score of more than 0.2 are considered
important features. Based on the results, it was determined that the top important features
using the two methods of XGboost and RF include superstructure, substructure, deck
wearing, age, district, ADT, channel protection, operating rating, structure evaluation, deck
area, deck width, length of maximum span, and approach roadway width. On the other
hand, features that received low scores include navigation, horizontal/vertical clearance,
service on/under the bridge, structure flared, and the number of approaches spans. In
addition, there are three differences between the feature importance as determined from
XGboost and RF; for example, deck wearing, structure type and maintenance responsibility
are considered among the top features based on XGboost, while bypass detour length,
inventory rating, and skew have high importance based on RF.
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The results of the completed feature selection process indicate that some of the selected
features are consistent with previous research, such as age, ADT, deck area, operating
rating, and length of the maximum span. However, features, such as approach roadway
width, channel protection, and district, which are among the most relevant variables to
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deck condition based on the XGboost and RF feature selection, were not considered by
previous research.
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4.2. Machine Learning Outputs

Using the “optimal” features that were identified based on the three feature selection
models, seven ML algorithms have been implemented to determine which ML algorithm
has the highest accuracy for predicting deck conditions.

Before implementing the ML algorithms, their hyperparameters have been optimized
using a grid search with 5-fold cross-validation. Due to the high number of possible
combinations of hyperparameter ranges, the most common ranges have been analyzed. As
shown in Table 6, the optimal k value of the kNN algorithm for both XGboost (Model 1)
and RF (Model 2) features selection models is 9, while the optimal k value is 32 when
the most-common-feature model (Model 3) is used. All the optimal hyperparameters of
XGboost and RF algorithms are the same for all three feature selection models. For the LR
algorithm, while the optimal C value for Model 1 and Model 2 is 10, the optimal C is 0.1 in
the case of Model 3. For the SVM algorithm, all the optimal hyperparameters are similar
in all three feature selection models. For the ANN, only the optimal number of hidden
layers and the optimal number of neurons in case of Model 3 is different, with 5 layers
and 11 neurons for each layer compared to Model 1 and Model 2 with 6 hidden layers and
12 neurons for each layer. For the DT algorithms, the optimal max_depth for Model 1 is 5,
and 7 for Model 2 and model 3. Two samples were required to split an internal node and be
at a leaf node for both Model 1 and Model 2, but Model 3 required 10 numbers for splitting
in an internal node and one number to be at a leaf node.

The performance of each model was evaluated using the confusion matrix by six
different validation metrics: (1) accuracy, (2) precision, (3) recall, (4) F1-score, (5) Cohen’s
Kappa, and (6) average area under the precision-recall curve (AUC-PR) on both training
and test datasets to avoid overfitting. These are the most common metrics for evaluating
classifiers [43]. After cleaning the dataset, 18,969 records for concrete bridges in Ohio
were used. A total of 80% of the dataset was used for training, and 20% for testing. All
the classification models, including k-NN, ANN, SVM, LR, DT, RF, and XGboost, were
implemented to identify the most accurate results. Tables 7–9 summarize the ML algorithms’
deck condition prediction results when the different sets of features were utilized.
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Table 6. Hyperparameter Optimization.

Model Hyperparameter Analyzed Values Model 1 Model 2 Model 3

kNN K value [1–40] 9 9 38
DT max_depth [non, 3–10] 5 7 7

min_sample_split [2, 5, 10] 2 2 10
min_sample_leaf [1, 2, 4] 2 2 1

XGboost max_depth [3–10] 6 6 6
Learning_rate [0.01–0.3] 0.1 0.1 0.1

Gamma [0–0.5] 0.2 0.2 0.2
subsample [0.5–1] 0.7 0.7 0.7

Colsample_bytree [0.5–0.9] 0.7 0.7 0.7
Min_child_wieght [1–5] 5 5 5

RF max_depth [5–15] 15 15 15
N_estimators [100, 200, 300] 300 300 300
Class_wieght [None, balanced] None None None
Random_state 42 42 42 42

LR C [0.1, 1, 10] 10 10 0.1
Class_wieght [None, balanced] balanced balanced balanced
Random-state 42 42 42 42

SVM C [0.1, 1, 10] 10 10 10
Gamma [0.1, 0.01, 0.001 ] 0.01 0.01 0.01

Class_weight [None, balanced] None None None
Kernel [linear, rbf, sigmoid] rbf rbf rbf

ANN Number of hidden layers [1, 2, 3, 4, 5] 6 6 5
Number of neoruns [1–10] 12 12 11

Learning rate [0.1, 0.01, 0.001, 0.001] 0.1 0.1 0.1
Batch_size [16, 32, 64, 128, 256] 32 32 32
optimizer [LBFGS, SGD, ADAM] ADAM ADAM ADAM

Table 7. Model evaluation of deck condition prediction using XGboost feature selection (Model 1).

Model Accuracy Precision Recall F1-Score Cohen’s Kappa AverageAUCPR

Train Test Train Test Train Test Train Test Train Test Train Test

Single Models
k-NN 81.650 74.564 81.847 75.006 81.650 74.564 81.669 74.589 75.848 66.486 85.974 80.543
ANN 87.930 85.943 87.989 86.009 87.930 85.943 87.906 85.928 84.246 81.697 94.419 92,529
LR 85.834 84.899 85.959 85.058 85.834 84.899 85.828 85.058 81.516 80.368 93.391 92.998
SVM 86.651 85.568 86.793 85.761 86.651 85.568 86.645 85.572 82.579 81.227 93.727 93.231
DT 86.946 85.836 87.064 86.030 86.946 85.836 86.933 85.829 82.985 81.608 93.878 93.447

Ensemble Models
XGboost 91.210 86.827 91.217 86.872 91.210 86.827 91.198 86.819 88.494 82.818 96.084 93.505
RF 95.802 86.586 95.824 86.692 95.802 86.586 95.805 86.589 94.494 82.524 98.195 92.467

Table 8. Model evaluation of deck conditions prediction using RF feature selection (Model 2).

Model Accuracy Precision Recall F1-Score Cohen’s Kappa AverageAUCPR

Train Test Train Test Train Test Train Test Train Test Train Test

Single Models
k-NN 83.873 78.902 86.026 79.143 83.873 78.902 83.902 78.930 78.818 72.285 89.773 87.262
ANN 87.561 85.944 87.611 86.010 87.561 85.943 87.551 85.929 83.756 81.693 94.085 93.325
LR 86.0623 85.327 86.185 85.497 86.062 85.327 86,056 85.330 81.810 80.918 93.455 93.106
SVM 86.591 85.568 86.735 85.751 86.591 85.568 86.585 85.571 82.503 81.226 93.686 93.217
DT 87.916 85.970 88.023 86.088 87.916 85.970 87.913 85.968 84.208 81.726 94.150 93.359

Ensemble Models
XGboost 90.929 86.639 90.933 86.708 90.929 86.639 90.916 86.633 88.127 82.591 95.993 93.437
RF 95.521 86.265 95.548 86.377 95.521 86.265 95.522 86.270 94.125 82.112 97.999 92.293
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Table 9. Model evaluation of deck conditions prediction using most common features (Model 3).

Model Accuracy Precision Recall F1-Score Cohen’s Kappa AverageAUCPR

Train Test Train Test Train Test Train Test Train Test Train Test

Single Models
k-NN 50.394 45.809 50.058 44.0189 50.394 45.809 48.913 44.0189 32.479 26.100 62.504 59.269
ANN 48.011 47.389 48.060 45.713 48.011 47.389 46.539 45.533 31.319 28.223 60.554 58.985
LR 31.429 32.904 35.786 37.451 31.429 32.904 30.451 31.961 16.150 17.953 61.993 63.889
SVM 46.063 45.781 46.327 43.724 46.063 45.783 42.063 41.515 24.631 24.379 58.200 57.381
DT 49.538 45.783 49.734 44.601 49.538 45.873 47.730 43.621 30.941 25.722 60.755 58.249

Ensemble Models
XGboost 62.839 49.531 64.835 48.533 62.839 49.531 62.038 47.595 49.522 31.072 74.239 60.904
RF 87.575 49.933 88.588 48.702 87.575 49.933 87.506 48.110 83.419 31.764 88.821 60.502

Table 7 shows the results when XGboost feature selection (Model 1) was used. As
shown in Table 7, it was determined that, in general, the ensemble models exhibited bet-
ter performance compared to the single models. While the RF algorithm could achieve
the highest performance in terms of training sets (accuracy = 95.521%, kappa = 94.494%,
AUC-PR = 98.195%), the XGboost algorithm, on an unseen dataset, could achieve the best
performance (accuracy = 86.639%, kappa = 88.494%, AUC-PR = 93.505%). In terms of the
training dataset, the RF model exhibited the highest accuracy (accuracy = 95.802%), and the
level of agreement between predicted and actual samples was significant (kappa = 94.494%)
with perfect precision and recall (AUC-PR = 92.467%). Having high performance in the
training dataset demonstrates that the model has learned the pattern adequately and is
able to make accurate predictions on an unseen dataset. On the test dataset, the XG-
boost model could classify the majority of the samples adequately (accuracy = 86.827%),
and it performed well in terms of precision, recall, and F1-score (precision = 86.872%,
recall = 86.827%, F1-Score = 86.819%). It also demonstrated excellent performance in terms
of the trade-off between precision and recall (AUC-PR = 93.505%). A high kappa value
(k = 82.818) indicates an acceptable agreement between predicted and actual classes. Gener-
ally, the XGboost model exhibited reasonable performance. It is worth mentioning that both
XGboost and RF models could achieve significant performance in both training and test
sets. Among the single algorithms, the ANN and DT models achieved the best performance
in terms of test and training sets. It should be noted that while XGboost and RF algorithms
as ensemble models showed the highest accuracy, ANN, DT, SVM, and LR models could
predict deck condition with acceptable performance. The kNN exhibited the poorest perfor-
mance among all the algorithms that were used (accuracy = 74.564%, precision = 75.006%,
recall = 74.564%, F1-Score = 74.589%, kappa = 66.486%, AUC-PR = 80.543%).

Table 8 shows the results when RF feature selection (Model 2) was used. Similar to
Model 1, ensemble models including RF and XGboost, respectively, could achieve the
highest prediction performance on the training and test datasets. All the evaluation metrics
for the RF algorithm on the training dataset were larger than 94%. On the test dataset, the
XGboost model achieved more than 86% accuracy, recall, precision, and F1-score, and more
than 93% of AUC-PR could produce a significant prediction. Among single models, similar
to Model 1, the ANN, DT, SVM, and LR models exhibited an acceptable performance, and
kNN achieved the lowest accuracy. For further visualization of the results, the confusion
matrices of the RF algorithms corresponding to the three feature selection models are
shown in Figure 4a–c as an example. In these confusion matrices, the rows represent the
true deck condition, and the columns indicate the predicted deck conditions.
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Figure 4. (a) Confusion matrix of RF algorithms Model 1; (b) Confusion matrix of RF algorithms
Model 2; (c) Confusion matrix of RF algorithms Model 3.
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Table 9 shows the results of the ML algorithms when only the “most common” fea-
tures were used as input for the prediction algorithm (Model 3). As shown in Table 9,
none of the ML algorithms were able to achieve more than 50% accuracy in the test
group set, which indicates that the models are not able to classify the data properly.
Furthermore, less than 65% AUC-PR for all the evaluation metrics indicates that poor
performance between precision and recall occurred. The RF model was able to achieve
the highest performance with (accuracy = 49.933%, precision = 48.702%, recall = 49.933%,
F1-score = 48.110%, kappa = 31.764%, AUC-PR = 60.502%), XGboost had the second best
performance (Accuracy = 49.521%, Precision = 48.533%, Recall = 49.531%, F1-Sscore = 47.595%,
kappa = 31.072%, AUC-PR = 60.904%), and the ANN, DT, kNN, SVM and LR models’ per-
formances were lower. This confirms the research hypothesis that the use of features
that may have worked well in previous research studies on different locations does not
necessarily guarantee the adequacy of their use in other locations. Thus, DOTs in differ-
ent geographic locations need to conduct a feature-selection analysis to best select the
related features which are specific to their own dataset. This validates the usefulness of the
proposed framework.

In comparison to other studies, obtaining more than 93% AUC-PR, and 86% accuracy
for XGboost and RF models, as well as more than 92% AUC-PR and 85% accuracy for ANN,
SVM, and LR is acceptable for predicting deck condition. Previous studies such as Assad
et, al. [8], Nguyen and Dinh [13], and Liu et al. [48], were able to achieve similar accuracies.
However, they used different datasets corresponding to other states. The model which has
been developed by this study can assist ODOT in predicting the future deck condition of
bridges accurately, and transportation agencies will be able to save time and money when
making informed decisions about their maintenance priorities.

5. Discussion

As discussed previously, every dataset will have some common and some unique
features depending on the location of the dataset, weather, service type, nature of the
data, etc. We can identify, from the features importance models implemented by this
research, which features have the most significant effects on the deterioration of bridges
in Ohio. Features such as deck area, deck width, length of maximum span, and approach
roadway width relate to the geometry of the bridge, while features such as superstructure,
substructure, channel protection, operating rating, and structure evaluation reflect the
importance of core elements of bridges. Deck wearing and ADT can be related to the
volume of traffic on Ohio bridges. The district is another factor to consider for predicting
deck conditions, and it can also be interpreted that the location of the bridge has a significant
effect on the condition of the bridge and can be related to the weather or the volume of
traffic. Additionally, the age of the bridge is another important feature that has been
considered in many previous research studies. It is worth mentioning that features such as
approach roadway width, channel protection, and district are not collected by other states.
Similarly, other scholars have found unique features based on their datasets, as illustrated
in Table 3, such as wearing surface, rib flange, and skew angle [2,8,13]. Therefore, we
can conclude that the set of important features for predicting bridge conditions may vary
between locations because geographic variations, such as temperature, average daily traffic,
and environmental conditions, can significantly affect the optimal features that should be
used in ML models for predicting the deck condition.

This research conducted a comprehensive comparison of machine learning algorithms
for predicting deck conditions. Since this study looked for the most accurate results, the
most common ML models have been implemented, including artificial neural networks
(ANN), k-nearest neighbors (k-NN), decision tree (DT), eXtreme gradient boosting (XG-
boost), logistic regression (LR), random forest (RF), and support vector machine (SVR).
Different evaluation metrics including accuracy, precision, recall, F1-score, Cohen’s kappa,
and AUC-PR have been utilized to evaluate and compare the ML model. As illustrated in
Tables 7 and 8, and after optimizing the hyperparameters, results indicate that ensemble
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algorithms such as XGboost and RF achieved more than 92% AUC-PR, 86% accuracy and
82% kappa, and were the most accurate algorithms to predict the deck conditions. In terms
of the training sets, RF achieved more than 92% accuracy in all the evaluation metrics,
which was significant. However, the kNN model achieved the lowest performance when
both the RF and XGboost feature-selection models were used, with less than 80% accuracy
and less than 80% kappa. It should be noted that single models such as ANN, DT, LR, and
SVM achieved more than 92% AUC-PR and more than 85% accuracy, which is an acceptable
performance. Tables 7 and 8 demonstrate that XGboost feature selection (Model 1) and
RF feature selection (Model 2) performed well and they produced very similar results in
both training and test datasets using seven different ML algorithms; however, XGboost
feature selection generally demonstrated slightly better performance compared to the RF
feature selection model. As shown in Table 9, ML algorithms were not able to predict deck
conditions properly when the “most common” features (Model 3) was used. The accuracies
of all seven ML algorithms using Model 3 were less than 50%, which indicates that the
algorithms were not able to classify unseen datasets properly, and the fact that all of the
evaluation metrics were less than 30% kappa indicates a poor level of agreement between
predicted and actual classes. Additionally, having less than 61% AUC-PR for all the ML
algorithms demonstrates a poor trade-off between precision and recall.

It is important to compare the performance of ML models for different reasons. Firstly,
it allows us to compare all ML models and achieve the best performance for predicting
the deck conditions. Additionally, it is helpful for future research. Moreover, using both
ensemble and single algorithms enhances researchers’ understanding of the strengths and
limitations of different models, and also enables them to analyze these models individually
to discern their specific characteristics and hyperparameters. The proposed approach
provides valuable insight for future research to improve the understanding of various ML
models. It should be noted that the fact that XGboost and RF algorithms achieved the best
results in this research does not necessarily mean that they are the best algorithms to use in
other locations. Since all the algorithms achieved a fair accuracy and were implemented in
a very short time, selecting the best algorithm based on the characteristics of the data and
strengths of the algorithms, as discussed in Section 2.2, is recommended for every project,
to achieve the most accurate results.

Findings from this research will enhance researchers’ understanding of the most
significant parameters that can affect the deterioration of a bridge’s deck, specifically in the
state of Ohio. This research represents an application of ML models on the ODOT dataset
to predict bridges’ deck conditions and provides valuable insight for future research. It
helps scholars to choose the best ML algorithms for their future works, with the most
optimized hyperparameters. Additionally, it indicates that different locations may have
different important features in the prediction of the deterioration of a bridge’s deck. This
research also enhances agencies’ perspectives on the overall performance and general life
expectancy of bridges using machine learning. Such knowledge may help bridge owners
be proactive in terms of planning maintenance and replacement activities. The information
obtained from this research may be useful for planning purposes during the development
of Capital Improvement Program plans, to ensure the proper and effective distribution of
funds allocated for the maintenance, rehabilitation, and repair of bridges.

6. Conclusions

Decks are the most vulnerable part of bridges, and their exposure to damage will incur
a significant maintenance expense. For this reason, it is important to be able to predict
deck conditions accurately and to effectively allocate resources for repair and maintenance
activities when needed. The research described in this paper proposed a framework for
optimizing the use of machine learning (ML) algorithms to predict bridge deck deterioration
more accurately. The framework first determines “optimal” features that can be related to
deck deterioration conditions using XGboost and random forest feature-selection methods.
The framework then proposes the use of different ML algorithms based on the “optimal”
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features to select the most accurate algorithm. Based on the research findings, the following
conclusions can be made:

• XGboost and RF feature selection models could adequately select optimal features
with very similar results; however, XGboost feature selection (Model 1) generally
demonstrates slightly better performance compared to RF (Model 2).

• Seven machine learning algorithms, including artificial neural networks (ANN), k-
nearest neighbors (k-NN), decision tree (DT), eXtreme gradient boosting (XGboost),
logistic regression (LR), random forest and support vector machine (SVR), have been
implemented to classify deck conditions. Findings from this research showed that en-
semble ML models are more accurate than single models. XGboost and RF algorithms
with 93% and 92% AUC-PR, respectively, could have an excellent trade-off between
precision and recall, as well as more than 86% accuracy for both algorithms, indicating
a satisfactory classification strength. However, single models such as kNNs, that could
achieve less than 80% accuracy and less than 88% AUC-PR in both XGboost and RF
feature selection models, were not as accurate as ensemble models.

• This research demonstrates that ML algorithms using the most common features
(Model 3) were not able to classify datasets properly, with less than 50% accuracy and
less than 30% kappa when all seven ML algorithms were used.

• It has been concluded that every dataset in each geographic location needs a separate
analysis to select the features that most impact deck conditions. It is suggested that
each DOT needs to conduct a separate feature-selection analysis for their own datasets
to determine the most important features.

It has been concluded that the framework that has been proposed in the paper could
predict deck condition deterioration with acceptable accuracy using ML algorithms, pro-
vided that the optimal features are used as input to the algorithms. Therefore, this research
can serve as a valuable resource to help various agencies allocate their budgets efficiently
and obtain the most accurate measurements for future bridges. Future work can further
investigate the reasons why different features have been selected by different scholars, and
can also implement the proposed prediction framework to predict the future condition of
other bridge components such as the superstructure and substructure.
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