
Citation: Lee, S.; Park, S.; Kang, B.;

Choi, M.-i.; Jang, H.; Shmilovitz, D.;

Park, S. Enhancing Zero-Energy

Building Operations for ESG:

Accurate Solar Power Prediction

through Automatic Machine

Learning. Buildings 2023, 13, 2050.

https://doi.org/10.3390/

buildings13082050

Academic Editor: Elena Lucchi

Received: 8 July 2023

Revised: 31 July 2023

Accepted: 7 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Enhancing Zero-Energy Building Operations for ESG: Accurate
Solar Power Prediction through Automatic Machine Learning
Sanghoon Lee 1 , Sangmin Park 1 , Byeongkwan Kang 1 , Myeong-in Choi 1 , Hyeonwoo Jang 2,
Doron Shmilovitz 3 and Sehyun Park 1,2,*

1 Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
leessan0@cau.ac.kr (S.L.); motlover@cau.ac.kr (S.P.); byeongkwan@cau.ac.kr (B.K.);
auddlscjswo@cau.ac.kr (M.-i.C.)

2 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
gostub123@cau.ac.kr

3 School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; shmilo@tauex.tau.ac.il
* Correspondence: shpark@cau.ac.kr; Tel.: +82-2-822-5338

Abstract: Solar power systems, such as photovoltaic (PV) systems, have become a necessary feature
of zero-energy buildings because efficient building design and construction materials alone are not
sufficient to meet the building’s energy consumption needs. However, solar power generation is
subject to fluctuations based on weather conditions, and these fluctuations are higher than other
renewable energy sources. This phenomenon has emphasized the importance of predicting solar
power generation through weather forecasting. In this paper, an Automatic Machine Learning (AML)-
based method is proposed to create multiple prediction models based on solar power generation and
weather data. Then, the best model to predict daily solar power generation is selected from these
models. The solar power generation data used in this study was obtained from an actual solar system
installed in a zero-energy building, while the weather data was obtained from open data provided by
the Korea Meteorological Administration. In addition, To verify the validity of the proposed method,
an ideal data model with high accuracy but difficult to apply to the actual system and a comparison
model with a relatively low accuracy but suitable for application to the actual system were created.
The performance was compared with the model created by the proposed method. Based on the
validation process, the proposed approach shows 5–10% higher prediction accuracies compared to
the comparison model.

Keywords: zero-energy building; carbone neutral; sustainable solar power system; prediction-based
ESG operational policy; automatic machine learning; EV charging platform

1. Introduction

Renewable energy systems, such as solar power systems, have become key compo-
nents of zero-energy buildings [1]. Zero-energy buildings can reduce energy consumption
through a Building Energy Management System (BEMS) and offset much of their energy
consumption by using renewable energy sources [2]. While the criteria to qualify as a
zero-energy building depends on the country, they generally share common characteris-
tics. The building reduces energy consumption via improved energy efficiency through
passive elements such as better insulation materials. Active elements like a BEMS are also
employed to further reduce energy consumption.

Moreover, renewable energy sources such as solar power are used to meet at least
some of the energy demands of the building [3]. These factors are essential requirements in
zero-energy buildings. In other words, zero-energy buildings require renewable energy
systems that can be connected to the building’s electrical grid. Solar power systems are most
commonly used for this purpose [4,5]. The primary reason for using solar power systems

Buildings 2023, 13, 2050. https://doi.org/10.3390/buildings13082050 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13082050
https://doi.org/10.3390/buildings13082050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-6900-681X
https://orcid.org/0000-0002-9068-6354
https://orcid.org/0000-0003-1164-754X
https://orcid.org/0000-0003-0671-9924
https://doi.org/10.3390/buildings13082050
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13082050?type=check_update&version=1


Buildings 2023, 13, 2050 2 of 22

in zero-energy buildings is their suitability for installation on buildings, particularly when
compared to other renewable energy systems like wind power [6].

When installing a renewable energy system, the factors to consider are the scale,
purpose, and location. Among these factors, the most important one when selecting a
renewable energy system for a building is the installation location [7]. Renewable energy
systems convert naturally occurring energy into electric energy. Among renewable en-
ergy systems, wind power systems utilize the kinetic energy of the wind to rotate blades
connected to a turbine, generating electricity [8]. Therefore, wind power systems should
be installed in areas where the wind speed is consistently above a certain threshold [9].
Suitable areas are mainly coastal regions or high mountainous areas [10]. Because most
buildings are not located in these areas, installing wind power systems on buildings is only
feasible in some locations.

Unlike wind power, solar power systems are less affected by the installation location.
Generally, solar energy can be received at any location on Earth. Most buildings are
regularly exposed to sunlight, which makes them suitable for solar power systems [11].
In addition, solar power systems can account for a low-sunlight location by increasing
the scale of the installation, thanks to modularized solar panels [12]. This low installation
threshold is why solar power systems are commonly (and primarily) used on buildings.

1.1. Renewable Energy Usage in Zero-Energy Buildings Confirmed

The primary role of a solar power system in a zero-energy building is to generate
energy within the system and offset a significant portion, if not all, of the building’s energy
consumption. This helps increase the building’s energy self-sufficiency. In general, a
significant fraction of energy consumed in buildings is in the form of electricity [13]. This
electricity is typically supplied to the building through the connected power grid.

Zero-energy buildings also employ solar power systems and other renewable energy
sources to harness carbon-neutral power. The more a building relies on solar power systems
for its energy consumption, the more it is recognized as a high-grade zero-energy building.
Note that this implies that buildings do not necessarily need to meet 100% energy self-
sufficiency to be recognized as zero-energy buildings. A standard already exists that can
classify zero-energy buildings according to the level of energy self-sufficiency for every
country [14]. The current energy self-sufficiency standard for zero-energy buildings in
Korea is as follows [15].

To be recognized as a zero-energy building, it needs to achieve an energy self-sufficiency
rate of at least 20% through renewable energy systems. These criteria help assess the scale
of the renewable energy systems needed when converting to or designing a zero-energy
building. According to the criteria, when converting an existing building into a zero-energy
building or designing a new zero-energy building, the process of determining the scale of
the solar power generation system can be as follows: For example, if a grade 4 zero-energy
building is to be achieved, the first step is to assess the energy consumption of the building.
Then, the solar power generation system should produce electric energy that covers more
than 40% but less than 60% of the total energy consumption.

The difference between the minimum and maximum values of energy self-sufficiency
for a given grade in Table 1 is about 20%, which is quite large. This difference accounts
for the variability in solar power generation due to weather, as the solar power generation
output can vary according to environmental factors [16]. The specific weather conditions
that affect the variation in solar power generation are temperature, humidity, solar radiation,
cloud cover, and more [17]. The degree of variation in solar power generation, in general,
is determined by the performance of the solar panels and the system’s condition, which
are both affected by the weather [18]. Therefore, to meet the requirements of a 4th-grade
zero-energy building, as mentioned in the example, the total capacity of the solar power
generation system needs to be selected in a way that the minimum and maximum power
generation levels are above 40% but below 60% of the building’s energy consumption,
respectively. In addition, some device or process is needed to predict the power generation
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at regular intervals. This enables the estimation of the actual power generation ahead of
time.

Table 1. Energy-independence rate for the five grades in Korea’s zero-energy building certification.

Grade of Zero-Energy Building Energy-Independence Rate

1st grade More than 100%
2nd grade More than 80%, below 100%
3rd grade More than 60%, below 80%
4th grade More than 40%, below 60%
5th grade More than 20%, below 40%

In order to benefit from these predictions, it is necessary to adjust the building’s energy
consumption to ensure the difference between the energy supply from the solar power
generation system and the building’s energy consumption does not exceed certain criteria.
However, even if these criteria for a zero-energy building based on performance indicators
of the installed solar power generation system in the building are met, the actual power
generation can still vary significantly. Therefore, it would be very helpful to predict the
actual power generation, which helps ensure that the building does not exceed the criteria.

The Environment, Social, and Governance (ESG) based operational policy is the factor
that enables achieving this [19]. In essence, ESG-based operational policy aims to derive
sustainable operational policies by considering environmental effects, social relations, and
appropriate governance.

To derive the operational policy for the solar power generation system within a zero-
energy building, based on ESG, the primary consideration is given to its environmental
effect. In other words, the solar power generation system prioritizes energy conservation in
the building. This means that the solar power generation system should be utilized as the
main energy supplier within the building, rather than merely serving as a supplementary
source, to effectively address environmental concerns. Therefore, when deriving the ESG-
based operational policy, the environmental effect should be taken into consideration
regarding the operational scale of the solar power generation system. The solar power
generation system operates by installing multiple solar panels but designates them into
groups for operation. In other words, according to the zero-energy building’s operational
policy, all groups can be activated, or alternatively, only some of them can be activated.
Applying the ESG-based operational policy would aim to operate as many groups as
possible.

Furthermore, considering the social relations, a zero-energy building with a solar
power generation system can be connected with nearby buildings that possess similar
renewable energy facilities in the future. This means that the surplus electricity produced
by the solar power generation system can be traded with neighboring buildings [20].
Therefore, when deriving the ESG-based operational policy, the social aspect should be
considered regarding the scope of application for the solar power generation system. The
decision needs to be made on whether the solar power generation system’s scope will be
limited to a single building or expanded to include multiple buildings for energy trading
between connected neighbors.

Finally, the current zero-energy building with a solar power generation system has a
system operating manager responsible for managing the system. The operating manager
owns all operating rights of the solar power system. Consequently, even though operational
policies are derived considering environmental effects and social relations, they can be
subject to changes by the system operator at their discretion. This is a crucial point that
must be addressed to achieve the core objective of the ESG-based operational policy, which
is to derive a sustainable operational policy. Therefore, a true ESG-based operational policy
for the solar power generation system should not rely solely on a centralized approach
where the existing system operator has complete control over everything. To achieve this,
it is essential to develop data-driven predictive models and implement an operational
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approach that utilizes these predictive models to determine the system’s operation status.
Therefore, deriving the ESG-based operational policy for the solar power generation system
starts with performing data-driven power generation forecasting.

1.2. Studies Related to Predicting the Output of a Solar Power System

The prediction of solar power generation is crucial, not only for meeting the criteria
of zero-energy buildings but also for controlling the supply in solar power plants. Con-
sequently, extensive research has been conducted in this field. In these studies, various
factors, such as the installation angle of the solar panels, the system status, accumulated
solar power generation data, and weather conditions including solar irradiance, are consid-
ered to predict solar power generation [21]. One characteristic of solar power generation is
that the power output is linearly dependent on the condition of the solar power system and
the weather [22]. Therefore, prediction methods for solar power generation often utilize
machine learning techniques like linear regression, which can achieve high prediction
accuracy under specific conditions. Many studies have been conducted to develop accurate
prediction models for solar power generation based on these approaches.

Several studies improved the prediction accuracy by introducing step-by-step ap-
proaches and hybrid prediction methods [23,24]. In several countries in the Middle East,
which is a region that is well-suited for solar power, research on solar power generation fore-
casting has been conducted using these methods [25,26]. Hybrid methods have also been
studied, which combine multiple algorithms to create prediction models [27]. In addition,
prediction models can also be created by integrating artificial neural networks [28–30].

These studies utilized accumulated weather data and available data from solar power
systems in specific regions to predict solar power generation using two main methods. The
first method involves directly predicting solar power generation via linear regression [31].
The second method indirectly predicts the power generation by first predicting the solar
irradiance using the same approach and then calculating the power generation based on
the performance indicators of the solar panels [32].

The first method, which directly predicts solar power generation, was used in studies
with access to weather and solar power system data. The second method, which predicts
solar power generation by first predicting solar irradiance, was used in cases where only
weather data were available. Both methods demonstrated good accuracy within a certain
range, but the superiority of one method over the other was not addressed in this paper.
The main factor that distinguishes these methods is the availability of data from the solar
power system. If the data are available from the solar power system, the direct prediction
method can be used for solar power generation.

When using the direct method to forecast solar power generation, several types of
linear regression algorithms can be employed [33]. Some commonly used algorithms
include ordinary linear regression, regression tree algorithms, lasso regression, and ridge
regression. It is difficult to determine which algorithm is superior because each of the
representative algorithms has its own advantages. The superiority of a prediction model
that uses a particular algorithm depends on the characteristics of the data used to create
the model, which can lead to varying prediction accuracy [34]. This fact demonstrates the
usefulness of employing multiple algorithms rather than relying on a single one for the
direct prediction of solar power generation.

In order to leverage these advantages, multiple linear regression algorithms can be
used to develop prediction models, and their accuracies can be compared to select the model
with the highest accuracy. In recent years, there has been an increase in the application of
Automatic Machine Learning (AML) for such tasks [35–37]. These case studies mostly apply
AML to existing systems. Similarly, AML can be used to predict solar power generation to
aid ESG operational policies. This approach to optimize scheduling and ESG operational
policy via prediction can also be applied to solar power generation systems of zero-energy
buildings. Moreover, these systems can also benefit from the use of scheduling strategies
based on the predicted generated output power.
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In this paper, the direct prediction of solar power generation using AML was used to
derive the most accurate prediction model, and the accuracy of the model was subsequently
validated using real data. To achieve this goal, data from solar power generation systems
installed in zero-energy buildings in South Korea were collected and utilized. Additionally,
weather data from the location where the zero-energy building was situated were obtained
from open data provided by the Korea Meteorological Administration and utilized in the
analysis.

1.3. Structure and Aim of this Study

This study aims to confirm the process and results of applying automatic machine
learning for the direct prediction of solar power generation in a zero-energy building with
an actual solar power generation system.

In the Section 2 of the paper, we discuss the status of existing zero-energy buildings
with installed solar power generation systems and the available data from these systems.
This information helps identify the types of data required for the direct prediction of solar
power generation and the processing steps involved in obtaining and handling these data.

In the Section 3, the paper describes the process of deriving a direct prediction model
for solar power generation using the acquired data through AML. This process includes
the characteristics of algorithms used in AML. In addition, important performance metrics
of the relevant models are considered.

In the Section 4, the characteristics of the ideal model, which has excellent perfor-
mance but has limitations in the actual system, and the comparison model, which has low
performance but can be applied to real systems, are identified. and We propose a model
that can take advantage of the ideal model and the comparison model.

In the Section 5, This section describes the flow chart for generating the three models
mentioned above and obtaining prediction values about the value of solar power generation
one day ahead at 10-min intervals. Results are compared and analyzed in the next section.

In the Section 6, performance metrics of the proposed model, comparative model, and
ideal model are presented. In addition, the accuracy is verified by comparing the actual
value with the predicted value of solar power generation one day ahead at 10-min intervals
obtained from each model.

In the Conclusions, the validity of the proposed prediction method is verified. Further-
more, the paper assesses the effectiveness and superiority of the newly derived ESG-based
operational policy by examining its application and impact on zero-energy building.

2. Data Set
2.1. Information about the Demonstration Site

South Korea’s zero-energy building certification system enables buildings to qualify as
zero-energy buildings based on specific criteria. These criteria include achieving an energy
self-sufficiency rate of at least 20%, which requires the use of renewable energy generation
facilities. The Energy Valley Enterprise Development Institute like a Figure 1, which was
utilized as a demonstration site in this paper, has several solar power generation facilities
that meet the criteria for zero-energy building certification.

The demonstration site has solar power generation facilities capable of producing
a maximum of approximately 135 kW like a Figure 2. All generated electricity by these
facilities is consumed within the building itself. The solar power generation facilities
consist of three separate lines, with capacities of approximately 40 kW, 40 kW, and 55 kW,
respectively.
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The separate lines are disconnected based on the building’s energy demand to prevent
power backflow into the general power grid due to excessive solar power generation.
However, the current solar power generation system at the case study site lacks a power
generation forecasting function. Therefore, the control of power backflow prevention
through disconnection is manually operated by the human manager like a Figure 3.

Buildings 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 
Figure 3. Schedule manager of the demonstration site’s power control system. 

2.2. Weather Data from the Meteorological Administration 
The first type of data is weather data, which includes sky conditions, precipitation, 

temperature, humidity, and other related factors. This type of data can be collected di-
rectly through sensors or obtained from open data sources. In this paper, the researchers 
utilized open data provided by the Korea Meteorological Administration’s Data Open 
Portal. The open data from this source are collected every minute through Unmanned 
Automatic Weather Stations (AWS) operated by the Korea Meteorological Administration 
and made available through the Internet [38]. We obtained daily data at 10-min intervals 
from January ‘22 to March ‘23 through this data source. In addition, for the same types of 
meteorological data, it is possible to obtain weather forecast data for the same conditions. 
Meteorological data are used to train the model to predict the generated solar power, 
while weather forecast data can be used as input data for the model when predicting the 
power generation. 

The definition of weather data is shown in Table 2. First, “MeterDate” means the time 
data was measured. Next, we define the “Weather” type. In the case of “RAIN_STATUS”, 
it has a specific integer value in order, and according to the value, it means the presence 
of rain and the type of rain. Next, “HUMI” means humidity in the air. Next, 
“RAIN_PRECIP” means precipitation. Next, in the case of “SKY_STATS”, it has a specific 
integer value, and according to the value, it means the existence of clouds and the shape 
of clouds. Next, “TEMP” means the temperature of the atmosphere. Next, “WIND_DI-
RECTION” has an azimuth value and means the direction of the wind. A value of ‘0’ de-
grees mean north, and a value of ‘90’ degrees mean east. “WIND_SPEED” means wind 
speed. 

Table 2. Elements of the used weather and weather forecast data. 

Type Data Value [Unit] 
Variable Names Used in 

the Model 

TIME Meterdate YYYY-DD-MM 
hh:mm:ss MeterDate 

WEATHER 

Status of Rain 

0: None 
1: Rain 

2: Rain/Snow 
4: Rain Shower 

RAIN_STATUS 

Humidity 0~100 [%] HUMI 
Precipitation of Rain 0~1000 [mm] RAIN_PRECIP 

Status of Sky 1: Clean, 3: Cloudy, 4: 
Dark Cloudy 

SKY_STATUS 

Figure 3. Schedule manager of the demonstration site’s power control system.

Despite the availability of solar power generation data for a period of four years
(‘19–’22), the case study site lacks an appropriate predictive-based ESG operational policy
to effectively utilize these data. The operation of all solar power generation facilities is
currently performed using a general schedule-based operational policy. Unfortunately, it is
not efficient enough to achieve an energy self-sufficiency rate exceeding 20%. Therefore, it
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is planned to introduce a prediction-based ESG operational policy that can address this
issue by analyzing the solar power generation data of the building. To directly predict the
solar power generation of the building, the required data consists entirely of time series
data, which can be classified into two types based on their acquisition sources.

2.2. Weather Data from the Meteorological Administration

The first type of data is weather data, which includes sky conditions, precipitation,
temperature, humidity, and other related factors. This type of data can be collected directly
through sensors or obtained from open data sources. In this paper, the researchers utilized
open data provided by the Korea Meteorological Administration’s Data Open Portal. The
open data from this source are collected every minute through Unmanned Automatic
Weather Stations (AWS) operated by the Korea Meteorological Administration and made
available through the Internet [38]. We obtained daily data at 10-min intervals from January
‘22 to March ‘23 through this data source. In addition, for the same types of meteorological
data, it is possible to obtain weather forecast data for the same conditions. Meteorological
data are used to train the model to predict the generated solar power, while weather forecast
data can be used as input data for the model when predicting the power generation.

The definition of weather data is shown in Table 2. First, “MeterDate” means the time
data was measured. Next, we define the “Weather” type. In the case of “RAIN_STATUS”,
it has a specific integer value in order, and according to the value, it means the presence of
rain and the type of rain. Next, “HUMI” means humidity in the air. Next, “RAIN_PRECIP”
means precipitation. Next, in the case of “SKY_STATS”, it has a specific integer value, and
according to the value, it means the existence of clouds and the shape of clouds. Next,
“TEMP” means the temperature of the atmosphere. Next, “WIND_DIRECTION” has an
azimuth value and means the direction of the wind. A value of ‘0’ degrees mean north, and
a value of ‘90’ degrees mean east. “WIND_SPEED” means wind speed.

Table 2. Elements of the used weather and weather forecast data.

Type Data Value [Unit] Variable Names Used
in the Model

TIME Meterdate YYYY-DD-MM hh:mm:ss MeterDate

WEATHER

Status of Rain

0: None
1: Rain

2: Rain/Snow
4: Rain Shower

RAIN_STATUS

Humidity 0~100 [%] HUMI

Precipitation of Rain 0~1000 [mm] RAIN_PRECIP

Status of Sky 1: Clean, 3: Cloudy, 4: Dark
Cloudy SKY_STATUS

Temperature −99~100 [◦C] TEMP

Direction of Wind 0~359 [◦] WIND_DIRECTION

Speed of Wind 0~1000 [m/s] WIND_SPEED

2.3. PV Data of the Demonstration Site

The second type of data is data received from solar power systems. In this paper,
we refer to these data as PV data. This type of data depends on the specifications and
configuration of the solar power system. The PV data types that can be checked through the
monitoring and control program (Figure 2) of the photovoltaic power generation system at
the demonstration site are as follows: PV data, like weather data, were collected at 10-min
intervals, daily, from January 2022 to March 2023.

The definition of PV data is shown in Table 3. First, “MeterDate” is a time type and
means when the data was recorded. Next, the “PV_SENSOR” type can be defined as the
data collected from the solar power generation system to monitor its status. In the case of
“CH#_SINK_TEMP” in order, it means the average temperature measured at the heatsink
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of the panels belonging to a specific solar panel line. the “#” means the number of the line.
If it is ‘1’, it represents ‘line 1’. Next, “CH#_IN_TEMP” represents the average temperature
measured at the surface of panels belonging to a specific solar panel line. Similarly, “#”
means the number of a line.

Table 3. Elements of the used PV data.

Type Data Value [Unit] Variable Names Used
in the Model

TIME Meterdate YYYY-DD-MM
hh:mm:ss MeterDate

PV_SENSOR
Temperature of heatsink 0~100 [◦C] CH#_SINK_TEMP

Temperature of panel’s
surface 0~100 [◦C] CH#_IN_TEMP

PV_ENERGY

Voltage measured at PCS 0~1000 [V] INPUT_VOL

Current measured at
PCS 0~1000 [A] INPUT_CUR

Power measured at PCS 0~1000 [kW] INPUT_PWR

PV_STATUS
Mode of PCS

0: Manual Mode
1: Safety Mode

2: Schedule Mode
PCS_MODE

Status of PCS 0: Off
1: On PCS_STATUS

The meaning of # is “PV line number”.

The “PV_ENERGY” type is collected by the solar power system to check the amount
of solar power generation. All that type of data is measured at Power Control System (PCS).
In order, “INPUT_VOL” is the voltage measured at the PCS. “INPUT_CUR” is the current
measured at the PCS. “INPUT_PWR” is the power measured at the PCS. In the case of
“INPUT_PWR”, it also means the amount of solar power generation.

Next, the “PV_STATUS” type is the data collected to check the status of the solar power
system. First, “PCS_MODE” has a specific integer value, and according to the value, it
means the operating mode of the current PV system. “PCS_STATUS” has a specific integer
value, and according to the value, it means whether the PV system is currently operating
or not.

2.4. Pre-Processing for Data Set

The two data types mentioned above need to be integrated into one data set for the
prediction model. Hence, pre-processing of the data was performed as follows:

The first step is to deal with any missing data. This process works for both data
types [39]. Missing data are identified when the interval between data records exceeds
10 min. In the case of weather data, a missing record is replaced with weather forecast data
of the same section first.

If the weather forecast data are unsuitable, they are replaced with weather data from
the nearest AWS available at the site. For PV data, if there are missing intervals, the missing
segments are replaced with the average of the adjacent data. The number of data samples
used to calculate the average is twice the number of available data points within the missing
intervals.

The second step involves processing erroneous data. This is also applicable to both
data types [40]. The detection of erroneous data is conducted using error detection models,
which are not discussed in detail in this paper. In addition to handling missing or erroneous
data, a process to remove unnecessary data could be implemented. However, this process
was not utilized in this study. As an example, certain data points in the PV data show
a constant value for a specific interval, indicating a valid characteristic. In this case, the
interval was not removed. This data represents the power among the PV data types and
signifies nighttime periods.



Buildings 2023, 13, 2050 9 of 22

After going through the process, the two types of data can be integrated to produce
datasets that consist of data with 10-min intervals for each PV line. These constructed
datasets are then used to create solar power generation prediction models using the AML
approach.

3. Methods—Creation of the Models via Automatic Machine Learning
3.1. Automatic Machine Learning (AML)

The applied AML process allows for the division of stages into dataset construction,
parameter tuning, model generation for each algorithm, model comparison, model selection
and validation, and derivation and validation of prediction results. Each of these stages
is performed automatically [41]. Therefore, by utilizing a properly constructed dataset, it
is easy to generate multiple models and compare their performance to identify the best-
performing model. This approach was chosen in this paper due to the convenience and the
following benefits:

Firstly, when creating models, it is possible to simultaneously generate and compare
data models using multiple algorithms. This is particularly beneficial when different
algorithms may be more suitable to create excellent data models based on the characteristics
of the dataset. The names and characteristics of the algorithms used in AML are shown in
Table 4.

Table 4. List of the algorithms used to create models with the AML method.

Algorithm Abbreviation

Linear Regression ‘lr’
Lasso Regression ‘lasso’
Ridge Regression ‘ridge’

Elastic Net ‘en’
Least Angle Regression ‘lar’

Lasso Least Angle Regression ‘llar’
Orthogonal Matching Pursuit ‘omp’

Bayesian Ridge ‘br’
Automatic Relevance Determination ‘ard’

Passive Aggressive Regressor ‘par’
Random Sample Consensus ‘ransac’

Theil-Sen Regressor ‘tr
Huber Regressor ‘huber’

Kernel Ridge ‘kr’
Support Vector Regression ‘svm’

K Neighbors Regressor ‘knn’
Decision Tree Regressor ‘dt’

Extra Trees Regressor ‘et’
AdaBoost Regressor ‘ada’

Gradient Boosting Regressor ‘gbr’
MLP Regressor ‘mlp’

Extreme Gradient Boosting ‘xgboost’
Light Gradient Boosting Machine ‘lightgbm’

CatBoost Regressor ‘catboost’

When predicting solar power generation, like in the previous case, the suitability of
algorithms to create excellent models may vary depending on the season and location
because the variability of weather data changes. Both weather data and PV data exhibit
changes in their characteristics, with intervals of approximately three months due to factors
such as seasons, over a one-year period. Therefore, by utilizing algorithms that are well-
suited for capturing the changing characteristics of the data during model creation, it
becomes possible to obtain a model with higher accuracy [42].
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3.2. Process of Creating Models via AML

Accordingly, the process of deriving a solar power generation prediction model using
the AML method through the data set obtained earlier is described next like a Figure 4. This
process aims to select the best model among the created models after generating several
models with the AML method and the dataset. If some of the performance indicators of
the best model fall below a certain threshold, the process is repeated [43]. In particular,
the R-squared performance determines whether to repeat the process. The R-squared is
the ratio between the difference of the target variance and the variance of the prediction
error, and the target variance itself. It helps us understand how well the data used in the
model-building process fits the regression. R-squared measures how closely the regression
predictions approximate the actual values. A higher R-squared score indicates that the
model is better at approximating the actual values.
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Figure 4. Illustration of the process to create models via AML using the data set [’22.01~’23.03], and
the meaning of # is “PV line number”.

1. The period of the obtained dataset is from ‘22.01 to ‘23.03. This period is divided into
four seasonal intervals as follows:

• Interval A [’22.03 to ’22.05]
• Interval B [’22.06 to ’22.08]
• Interval C [’22.09 to ’22.11]
• Interval D [’22.12 to ’23.02]

The unused data for Interval E [‘23.03] are used to verify the actual accuracy by
comparing it with the predicted values obtained from the data models generated for the
previous Interval A.

2. Each data interval is divided into training data and validation data randomly in a 9:1
ratio.

3. The available algorithms are utilized using the training data to create solar power
generation models.

4. The generated models are evaluated using the validation data to derive their perfor-
mance and compare them to select the best model.

5. If the best model’s performance falls below a certain threshold for certain metrics, the
process is repeated from step 2.

6. If there is a model that meets all criteria, the algorithms and performance metrics of
the prediction models generated concurrently with that model are also checked.
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7. The best prediction models for each interval are derived by executing steps 3 to 6 for
all intervals.

By using the above process, it is possible to find the best model for each PV line based
on the data characteristics of each interval. Even though the algorithm that demonstrates
superior performance may vary for each interval, by using these models, accurate prediction
becomes possible [44].

However, this result was obtained using an ideal dataset. In order to apply this process
to an actual solar power system, a dataset should be used that excludes data that cannot be
obtained in advance [45].

4. Methods—Improving the Accuracy of the Model
4.1. Relation of Data to Improve Accuracy

The model derived from the dataset that contains all weather and PV data like a
Figure 5 is ideal model and not suitable for application to actual solar power systems.
This is because some of the data in the dataset cannot be obtained in advance, making it
impossible to use them as inputs for the models.
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In other words, to create models that can be applied to actual solar power generation
systems, it is necessary to exclude some of the data that cannot be obtained in advance
from the data set. The following steps like a Figure 6 are taken to create an ideal model, a
comparison model, and a proposed model. These models are then compared to find an
approach that can be applied to actual solar power generation systems.

We obtained a dataset consisting of 15 data elements for a certain period. Among
these, ‘0’ represents the measurement time information. ‘1 to 7’ represent the weather
data, more specifically, the weather information (WEATHER). The remaining data are the
PV data, where ‘8 to 9’ contain PV sensor information (PV_SENSOR), ‘10 to 12’ represent
the PV energy generation information (PV_ENERGY), and ‘13 to 14’ contain the PV sta-
tus information (PV_STATUS). This process attempts to create a model that predicts the
value ‘12’ by including all data in this dataset. We will generate models for each PV line
(PV1_IDEAL_MODEL, PV2_IDEAL_MODEL, PV3_IDEAL_MODEL) and classify them as
ideal models. Subsequently, the performance indicators of these models are evaluated.
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Next, we will create a comparison model (PV1_COMPARISON_MODEL, PV2_COM
PARISON_MODEL, PV3_COMPARISON_MODEL) using the information that can be
obtained in advance through weather forecasts and PV scheduling operations. It includes
data from ‘0 to 7’ (WEATHER) and data from ‘13 to 14’ (PV_STATUS). We then classify these
models as comparison models and evaluate their performance indicators. The information
used to create the comparison models can be obtained in advance through weather forecasts
and schedule-based operational policies. The comparison models are also applicable to
actual solar power systems. However, in this paper, to enable higher accuracy than these
models, the following approach is applied to create the proposed model and evaluate its
performance indicators. It has been observed that the ideal model generated using all
weather information and PV data, as shown in Figure 4, exhibits superior performance.
Additionally, it has been confirmed that the comparative model derived from available
information can be applied to actual solar power generation systems. If the differences
in data composition between the ideal model and the comparative model are addressed
and utilized to create the model, it would be possible to apply it to actual solar power
generation systems like the comparative model and expect higher accuracy. The difference
in data composition lies in the presence of PV_ENERGY (‘10’, ‘11’, ‘12’). Among these, ‘12’
is the target for prediction, so obtaining a substitutable value for the actual values of ‘10’
and ‘11’ is necessary.

We examine the relationship between the available information, ‘0 to 7’ (WEATHER)
and ‘13 to 14’ (PV_STATUS) like a Figure 7. Regarding the relationship with ‘12’, it is closely
linked to ‘10’ and ‘11’. We can identify the following characteristics to confirm the relation
between them:
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1. It can be observed that ‘10’ is closely related to ‘0’ and ‘1’. For example, when it is ‘0’ at
sunrise, ‘10’ increases with time, and when it approaches ‘0’ at sunset, ‘10’ decreases.
During this process, if ‘1’, the sky status becomes ‘cloudy’, and the fluctuation range
of ‘10’ decreases.

2. It can be observed that ‘11’ is closely related to ‘10 and 14’. For example, when the
value of ‘10’ increases, ‘11’ increases proportionally and remains constant. Conversely,
when the value of ‘10’ decreases, ‘11’ decreases proportionally and remains constant.
During this process, if the state of ‘14’ is ‘Off’, the value of ‘11’ is fixed at zero.

3. It can be observed that ‘12’ is closely related to ‘10’ and ‘11’. ‘12’ is a value that can be
derived through the multiplication of ‘10’ and ‘11’. This derived value is affected by
the values ‘1 to 7’, ‘8 to 9’, and ‘13 to 14’ and can, therefore, vary accordingly. Through
the first condition among the three conditions, it is possible to create a model for
predicting ‘10’ using the dataset composed of information that can be obtained in
advance. Therefore, it is possible to obtain predicted values for ‘10’ that are similar
to the actual values and construct the dataset by replacing the actual values with the
predicted values.
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Through the second condition, by composing the dataset with information that can be
obtained in advance and the values of ‘10’, it is possible to create a model for predicting
‘11’. Similarly, it is possible to obtain predicted values for ‘11’ that are similar to the actual
values and construct the dataset by replacing the actual values with the predicted values.

In other words, it is possible to obtain substitutable values for the actual values of ‘10’
and ‘11’ using only the information that can be obtained beforehand.
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4.2. Process to Improve the Accuracy of the Model

The following process is performed to increase the prediction accuracy of ‘12’ using
the above associations, see also Figure 8.
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1. Check the “Data Set 01”, which includes all data.
2. Create a model to predict ‘10’ by excluding ‘11 and 12’ from the original dataset.

Obtain the predicted ‘10’ for a specific period.
3. Replace ‘10’ in the “Data Set 01” with the predicted values obtained in step (2) to

create the “Data Set 02”.
4. Create a model to predict ‘11’ by excluding ‘12’ from the “Data Set 02”. Obtain the

predicted ‘11’ for a specific period.
5. Replace ‘11’ in “Data Set 02” with the predicted values obtained in step (4) to create

“Data Set 03”.
6. Create a model to predict ‘12’ using the “Data Set 03”. Obtain the predicted values of

‘12’ for a specific period. This is the final prediction for solar power generation.
7. Utilize the models generated in steps (2), (4), and (6) as the proposed models, and eval-

uate their performance using the model obtained in step (6) as the main performance
indicator.

The proposed model, as derived using this procedure, can be applied to the actual
solar power system, and is expected to perform well, similar to the comparison model.
The performance metrics for the ideal model, proposed model, and comparison model can
be observed in ‘Results’, and it is anticipated that the performance will follow the order
best-performing first: the ideal model, proposed model, and comparison model.
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After identifying the creation method for the model using AML and a procedure to
apply it to the actual solar power system while improving accuracy, the effectiveness of the
proposed approach is validated by implementing all methods in the real system.

5. Methods—Application on an Actual System

The process is divided into two steps to apply both the AML-based prediction model
creation method and the procedure to actual solar power systems: Step 1 is “creating a
model”, and Step 2 is “predicting the solar power generation”. The purpose of Step 1 is to
find the best-performing model that can predict the generated solar power using the AML
method by using only data that can be confirmed in advance from the data set.

5.1. Create a Model through AML with Increased Accuracy

The model creation step like a Figure 9 involves creating prediction models for “IN-
PUT_VOL”, “INPUT_CUR”, and “INPUT_PWR” in this order. Next, the purpose of
“predicting the solar power generation” is to use the solar power generation prediction
model with data that can be checked in advance to find the predicted value for solar power
generation at 10-min intervals for the next 24 h.
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5.2. Predict Value via AML with Increased Accuracy

This step involves finding predicted values like a Figure 10 for “INPUT_VOL”, “IN-
PUT_CUR”, and “INPUT_PWR” in this order. The “creating a model” and “predicting
the solar power generation” steps were performed for each PV line, and the results were
evaluated.
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6. Results
6.1. Performance of Each Model

We used AML to create an ideal model, a proposed model, and a comparison model.
Each model aims to predict solar power generation. The proposed model was applied with
the accuracy improvement method in Figure 8. The data used for model creation consists
of PV data and weather data for each PV line corresponding to “Interval A (‘22.03~‘22.05)”
in Figure 4.

Table 5 presents the performance comparison of three types of models used to predict
solar power generation (INPUT_PWR) for PV Line 1. In this table, we can check the
algorithms used for each model and their performance metrics based on Mean Absolute
Error (MAE) and R-squared score (R2).

Table 5. Performance of the ideal-, proposed-, and comparison- models derived from the PV1 line.

Model Target Algorithm MAE R2 Training
Time [s]

IDEAL
MODEL INPUT_PWR Bayesian Ridge 0.207 0.997 0.137

PROPOSED
MODEL

INPUT_VOL Random Forest
Regressor 14.495 0.976 0.281

INPUT_CUR Extra Tree Regressor 1.280 0.934 0.239

INPUT_PWR Bayesian Ridge 0.375 0.974 0.134

COMPARISON
MODEL INPUT_PWR Bayesian Ridge 1.744 0.845 -
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A lower MAE and a R2 value closer to ‘1’ indicate superior model performance. The
“Training Time” represents the time taken to create each model and is measured in seconds.
It is evident from the table that all three types of models were created with a fast speed of
under 0.5 s using AML.

Based on Table 5, we can confirm that the model performance for solar power genera-
tion prediction in PV Line 1 is superior in the order of ideal model, proposed model, and
comparison model. Furthermore, since all the models were created using AML, we can
observe that there are differences in the most optimal algorithms employed for each model.

Similarly, Tables 6 and 7 display the performance comparison of the three types of
models for predicting solar power generation for PV Lines 2 and 3, respectively. As in
Table 5, we can observe that for both PV Lines 2 and 3, the Ideal Model, Proposed Model,
and Comparison Model show superior performance in the same order.

Table 6. Performance of the ideal-, proposed-, and comparison- models derived from the PV2 line.

Model Target Algorithm MAE R2 Training
Time [s]

IDEAL
MODEL INPUT_PWR Random Forest

Regressor 0.05 0.999 0.103

PROPOSED
MODEL

INPUT_VOL Random Forest
Regressor 14.435 0.976 0.167

INPUT_CUR Random Forest
Regressor 1.131 0.925 0.213

INPUT_PWR Random Forest
Regressor 0.324 0.968 0.223

COMPARISON
MODEL INPUT_PWR Random Forest

Regressor 0.577 0.908 -

Table 7. Performance of the ideal-, proposed-, and comparison- models derived from PV3 line.

Model Target Algorithm MAE R2 Training
Time [s]

IDEAL
MODEL INPUT_PWR Bayesian Ridge 0.007 0.999 0.107

PROPOSED
MODEL

INPUT_VOL Random Forest
Regressor 20.520 0.970 0.168

INPUT_CUR Extra Tree Regressor 1.864 0.929 0.123

INPUT_PWR Random Forest
Regressor 0.737 0.977 0.105

COMPARISON
MODEL INPUT_PWR Bayesian Ridge 0.972 0.920 -

6.2. Prediction Accuracy of Each Model

In Section 6.1, the ideal model, the proposed model, and the control group model
were derived using AML using the data of “Interval A (‘22.03~‘22.05)” in Figure 4, and the
performance was verified. Similarly, in this section, we check the predicted values through
each model and check the validity of the actual model.

The forecast period is “Interval E (23.03)” in Figure 4. Section A and Section E are PV
data and weather data with a difference in one year. Table 8 is the result of deriving the
predicted value of solar power generation in section E through three types of models that
predict the solar power generation (INPUT_PWR) of PV line 1 and comparing it with the
actual solar power generation predicted value.
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Table 8. Comparison between the actual value and the predicted value from the PV1 line.

Model Average of Predicted
Value by the Model

Average of Solar Power
Generation Value by

PV1
Average of Errors

IDEAL MODEL 20.5092

20.5341

0.3849

PROPOSED MODEL 19.1675 3.2467

COMPARISON MODEL 16.9806 5.3285

The table shows the average amount of solar power generated by PV line 1. Prediction
values similar to actual values were derived in the order of the ideal model, the proposed
model, and the comparative model. In the case of the comparative model, the error is large
compared to the proposed model.

Through Tables 9 and 10, the models that derived predicted values similar to the actual
amount of photovoltaic power generation produced in PV 2 and PV 3 lines were in the
order of the ideal model, the proposed model, and the comparison model.

Table 9. Comparison between the actual value and the predicted value from the PV2 line.

Model
Average of Predicted

INPUT_PWR Value by
the Model

Average of Solar Power
Generation Value by

PV2
Average of Errors

IDEAL MODEL 18.7010

19.1666

0.5888

PROPOSED MODEL 21.2819 4.2394

COMPARISON MODEL 17.7638 5.6152

Table 10. Comparison between the actual value and the predicted value from the PV3 line.

Model
Average of Predicted

INPUT_PWR Value by
the Model

Average of Solar Power
Generation Value by

PV3
Average of Errors

IDEAL MODEL 24.3856

24.4906

0.3447

PROPOSED MODEL 23.6446 4.5075

COMPARISON MODEL 25.0363 5.5748

Figures 11–13 are a graph showing the actual power generation and predicted values
for each model for 3 days (‘23.03.02~‘23.03.04) during Interval E. The period from 19:00
to 06:00, when solar power generation is not performed, was excluded. The blue line
represents the actual solar power generation. The green dotted line represents the predicted
value of the ideal model. The red line represents the predicted value of the proposed model.
The black dotted line represents the predicted value of the comparison model. In all graphs,
it can be seen that the red line is more similar to the shape of the blue and green dotted
lines compared to the black dotted line.

Through the results section we can finally check the performance of the model and the
validity of the predicted value in the order of the ideal model, the proposed model, and the
comparative model. As a result, we can confirm that the proposed model is advantageous
in predicting solar power generation because it has high accuracy similar to the ideal model
and can be applied to actual systems like the comparison model.
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7. Conclusions

This paper aims to propose a correct ESG-based operational policy for renewable
energy systems, an essential component of zero-energy buildings. To achieve this goal,
AML was used to derive a solar power generation prediction method. To do this, PV data
from a demonstration site in South Korea was collected and combined with weather data
to create the dataset. The proposed prediction model exhibits both actual applicability and
high prediction accuracy. In order to validate the superiority of the proposed model, it
was compared with the Ideal Model and Comparison Model, and their performance and
prediction accuracy were compared.

To enable the proposed method in demonstration sites, we developed a Representa-
tional State Transfer Application Programming Interface (REST API). Through this REST
API, the zero-energy building’s solar power generation system can make decisions on the
individual operations of the three solar power generation lines based on 10-min ahead
solar power generation predictions. The operation policy determines whether to operate
the solar power generation line to minimize the intervention of the manager of the solar
power generation system and maximize energy-saving efficiency.

Through the proposed method, it is expected that renewable energy operational
policies for carbon reduction can be derived in zero-energy buildings of various scales and
domains. In particular, a demand-oriented operational policy for green energy, such as
solar power, could generate surplus electricity. Therefore, this surplus electricity could be
applied to building-integrated services such as EV charging platforms. It is anticipated
that such integration will contribute significantly to reducing carbon emissions within the
building as well as in the city, leading to carbon neutrality.

Moreover, we have prepared another demonstration site in Malaysia so that our pro-
posed method can be applied to the tropical climate of Southeast Asia. The demonstration
site is a large 28-floor building located in Kuala Lumpur, Malaysia, and no renewable
energy systems are installed. We plan to install a photovoltaic power generation system
consisting of a total of 5 PV lines and an Energy Storage System (ESS) on the roof of this
building by 2023. In addition, we plan to derive ESG-based operating policies by applying
the proposed methods verified in this paper.
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