
Citation: Wei, C.; Gupta, M.;

Czerniawski, T. Interoperability

between Deep Neural Networks and

3D Architectural Modeling Software:

Affordances of Detection and

Segmentation. Buildings 2023, 13,

2336. https://doi.org/10.3390/

buildings13092336

Academic Editor: Svetlana J. Olbina

Received: 17 August 2023

Revised: 12 September 2023

Accepted: 13 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Interoperability between Deep Neural Networks and 3D
Architectural Modeling Software: Affordances of Detection
and Segmentation
Chialing Wei * , Mohit Gupta and Thomas Czerniawski

School of Sustainable Engineering and the Built Environment, Arizona State University,
Tempe, AZ 85287-1404, USA; mgupta70@asu.edu (M.G.); thomas.czerniawski@asu.edu (T.C.)
* Correspondence: cwei32@asu.edu

Abstract: Building owners are working on converting their legacy documentation 2D floor plans into
digital 3D representations, but the manual process is labor-intensive and time-consuming. In this
paper, deep learning is leveraged to automate the process. This automation requires interoperability
between artificial neural networks and prevailing 3D modeling software. The system processes 2D
floor plans and outputs parameters of recognized walls, single doors, double doors, and columns.
The parameters include the start point and end point of the wall and the center point of the door and
column. These parameters are input into Revit 2022 through the Revit API 2022 after post-processing.
The dimensional parameter integration affordances of object detection and instance segmentation
are studied and compared using Faster R-CNN and Mask R-CNN models. Instance segmentation
was found to require more time for data labeling but was more capable of informing the modeling
of irregularly shaped objects. The mean Average Precision (mAP) of object detection and instance
segmentation are 71.7% and 69.3%, respectively. Apart from single doors, the average precision for
other categories falls within the range of 74% to 96%. The results provide software developers with
guidance on choosing between object detection and instance segmentation strategies for processing
legacy building documents. These types of systems are anticipated to be pivotal to the industry’s
transition from 2D to 3D information modalities and advise practitioners to carefully choose suitable
models and consider the recommendations provided in this study to mitigate potential failure cases.

Keywords: deep learning; object detection; image segmentation; 2D floor plan; 3D building models;
3D model reconstruction; BIM; Revit API 2022

1. Introduction

Building information modeling (BIM) benefits construction projects throughout the
whole project life cycle. It can enhance collaboration among entities, identify potential
design clashes ahead to reduce cost, execute effective site analysis and sustainable design,
and access precise information for asset management [1]. The process of creating digital
BIM models requires legacy system updates from 2D floor plans to 3D digital models.
However, this manual digitalization process is costly and time-consuming. Due to these
prohibitive costs and inefficiency, many researchers have been automating this digitalization
process using computer vision. Computer vision is a prevailing implementation of artificial
intelligence. It is used to perform such tasks as pattern recognition, object detection,
image classification, and instance segmentation on images, such as 2D floor plans. Some
researchers have used object detection to detect components in floor plans, identifying
their locations with bounding boxes and class labels [2–5]. Other researchers used instance
segmentation instead, with their system’s output location predictions with masks and class
labels [6–8].

To reconstruct the 3D model from 2D floorplans using computer vision techniques,
there are two main steps. The first step is to train a neural network model, and the second

Buildings 2023, 13, 2336. https://doi.org/10.3390/buildings13092336 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13092336
https://doi.org/10.3390/buildings13092336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-8191-9091
https://doi.org/10.3390/buildings13092336
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13092336?type=check_update&version=2

Buildings 2023, 13, 2336 2 of 27

step is to perform 3D model reconstruction from neural network outputs. However, the
previous research articles only focus on the first step and show performance metrics of the
model and visualizations of predictions on images. There is a research gap in the second
step, which is the practice of interoperability. Interoperability indicates how two software
systems communicate with each other. In this scenario, the first system is the neural net-
work “system” and the second one is the 3D modeling software “system”. The process of
3D reconstruction from the neural network outputs indicates their interoperability, which
demonstrates how well the neural network can communicate with 3D modeling software.
Furthermore, despite object detection and instance segmentation being used individually
for floor plan processing, the two have never been compared and tradeoffs identified.
For software developers to understand which of these they should use, the differences
between the post-processing of object detection output and instance segmentation output
to interoperate with 3D modeling software need to be explored. The comparison between
these two tasks is missing in current research papers. As a result, the following research
questions inspired us to conduct this research. “How to automate the process of using neu-
ral network outputs to generate 3D model?” and “What are the trade-offs and differences
between object detection and instance segmentation tasks under 3D reconstruction from
2D floorplans scenario?”.

In this context, the end-to-end 3D model reconstruction from 2D floor plans using
object detection and instance segmentation pipeline is proposed. This pipeline is composed
of two main parts: neural networks model training and interoperability between artificial
neural networks and building modeling software. This study uses Arizona State University
Tempe campus floor plans as a dataset including 29 sheets of size 3400 × 2200 pixels.
During the data preprocessing step, each sheet is randomly cropped into 800 × 800 pixels
100 times. The annotations are manually labeled, including walls, left single doors, right
single doors, double doors, and columns. The cropped images were fed into both object
detection and instance segmentation algorithms to predict the location of instances. To
reconstruct the 3D model in Revit 2022, the requirements for building each category are
referenced in the Revit API 2022 document. Based on the Revit API 2022 document, a
detailed procedure is provided for post-processing both object detection and instance
segmentation outputs when transforming 2D floor plans into 3D building models as the
concept of interoperability. Besides the statistical model evaluation, the detection and
segmentation models are compared, and failure cases are discussed.

This paper is arranged as follows: Section 2 illustrates the related work, including
processing 2D floor plans using deep learning and different approaches for 3D model
generation. Section 3 describes the details of the methodology, including data creation,
model training, and detailed post-processing algorithms to generate 3D models. Section 4
shows the performance metric of object detection and instance segmentation models and
the 3D reconstruction model visualization. This section also includes a discussion of
failure cases and future works. Section 5 indicates the conclusion of this paper. The main
contribution of this work is as follows:

• Propose a comprehensive post-processing workflow for refining object detection and
instance segmentation outputs to generate 3D models.

• Explore and present the considerations involved in choosing between object detection
and instance segmentation for recognizing building systems. Additionally, examine
instances of object recognition failures and their consequences on interoperability with
modeling software.

Implications

• Provide possible post-process algorithms to facilitate interoperability between neural
networks and 3D modeling software.

• The team’s developing machine learning systems will be able to perform resource
allocation more effectively, understanding the tradeoff between data labeling effort
and building component recognition capabilities and affordances.

Buildings 2023, 13, 2336 3 of 27

• Inform human-in-the-loop automated modeling quality control checklists.

The research domain of this paper combines elements of computer vision with the
field of architectural component digitalization, specifically focusing on how deep neural
networks can interoperate with 3D modeling software in the architectural context.

2. Related Work
2.1. Processing 2D Floor Plans Using Object Detection and Instance Segmentation

Deep learning is one of the machine learning algorithms that utilizes multiple layers to
progressively extract higher-level features from the raw input, which is based on artificial
neural networks with representation learning [9]. The deep learning algorithm is widely
used in computer vision tasks to perform pattern recognition, keypoint detection, object
detection, image classification, and instance segmentation on images since its capability
to attain cutting-edge outcomes in computer vision tasks is proven [10]. The use of deep
learning technology has been growing rapidly. Researchers have detected architectural
components on 2D floor plans with bounding boxes and class labels. Park and Kim [2]
proposed ensembled methods that combine data-based pattern recognition, object detec-
tion, and rule-based heuristic methods. The object detection tasks include wall junctions,
openings, and room detection tasks. The wall junction is divided into 13 types, and each
training data sample is less than 40 pixels. The openings class includes four types: right-
handed single door, left-handed single door, double-hinged door, and window. The room
detection has eight types: bedroom, restroom, entrance, balcony, stair room, closet, duck,
and living room. Mishra et al. [3] detected furniture objects, windows, doors, sofas, sinks,
and tables by Cascade Mask R-CNN network. They exploited and compared traditional
convolution and deformation convolution methods. Some other researchers concentrate
on detecting structural components. Zhao et al. [4] compared Faster R-CNN with YOLO
architecture models on grid head, column, and beam detection 2D structural drawings. The
result reveals that Faster R-CNN performs slightly better than YOLO based on precision,
recall, and F1 score. This study detects architectural components on floor plans using the
Faster R-CNN network. The detected components include walls, single doors, double
doors, and columns.

Some studies identified objects on 2D floor plans using semantic segmentation. Xiao et al. [11]
cropped the original 2D drawings into smaller image dimensions for feeding into a neural
network model. They manually did pixel-level labeling on 300 2D drawings and imple-
mented transfer learning from ResNet-152. This model is pretrained on the ImageNet
dataset and then executed recognition and localization on five architectural components:
wall, window, door, column, and stairs. Jang et al. [12] segmented doors and walls on
floor plan images by DeepLabV3+ architecture [13]. To restore the output to the original
size of images, they removed the final three layers, average pooling layer, fully connected
layer, and softmax layer, and added five deconvolution layers. They finally generate City
Geography Markup Language (CityGML) and Indoor Geography Markup Language (In-
doorGML) models from the further centerline and corner detection algorithm on walls
and doors. Seo et al. [14] also used the DeepLabV3+ architecture to conduct two semantic
segmentation experiments. The first experiment segmented walls, windows, hinged doors,
sliding doors, and evacuation doors on architectural drawings. The second experiment seg-
mented room, entrance, balcony, dress room, bathroom, living room, evacuation space, and
pantry. Proposed applications for their work included automated 3D modeling, generating
evacuation paths, calculating evacuation distance, and building energy rating analysis.

Some researchers combine the results of object detection and segmentation tasks on
2D drawings. Dodge et al. [5] first utilized fully convolutional networks (FCN) to do wall
segmentation after trying different pixel strides. They used the Faster R-CNN framework
to detect 6 classes on the same images and optical character recognition (OCR) to estimate
room size. Kippers et al. [15] developed an approach that combined semantic segmentation
with U-Net and object detection with Faster R-CNN on the floor plan. They obtained the
outline of the floor plan as a contour after the semantic segmentation task. The combination

Buildings 2023, 13, 2336 4 of 27

of the simplified contour with object detection task result is used for arranging doors and
windows. The previous studies combined the results of object detection and segmentation
models to achieve the best performance of object recognition on the floor plan. On the other
hand, the discussion of the differences between object detection and instance segmentation
models is focused on in this study in terms of interoperability between artificial neural
networks and prevailing 3D modeling software. The Fast R-CNN and Mask R-CNN models
were selected for this study since they are widely used in practice and research [3–5,14].

2.2. Different Approaches for 3D Model Generation

3D modeling involves creating a mathematical, three-dimensional representation of
an object, whether it is an inanimate item or a living entity. This is accomplished using
dedicated software to manipulate edges, vertices, and polygons within a simulated 3D
environment [16]. Researchers choose different 3D modeling software to reconstruct digital
models from floor plans. For example, a study interested in indoor space modeling aimed
to reconstruct Geography Markup Language (GML) models that could integrate, exchange,
and store 3D geospatial data. Jang et al. [12] generated vector output from deploying
segmentation on original floor plan images. City Geography Markup Language level of
detail 2 (CityGML LOD2) and Indoor Geography Markup Language (IndoorGML) 3D data
models were created automatically.

Other studies aim to create Industry Foundation Classes (IFC) files by extracting
information from 2D floor plans. Ideally, IFC files enable interoperability between BIM
software and facilitate communication among entities in a project. IFC files can be viewed
by IFC viewer software such as DDS-CAD viewer or imported into Revit. Zhao et al. [4]
detected grid head, column, and beam on drawings and got their geometry, location, and
attribute information stored in the XML file. They extracted and wrote the information in
the XML file into corresponding IFC entities. Lu et al. [17] preprocessed the CAD drawings
to filter and extract text belonging to beams and columns using OCR. The text includes
geometrical information and locations, which are outputted in Excel files. The structural
components in Excel files are integrated into TXT files. The structure of TXT files is building
object ID, relationship with other components, name, size, materials, local location, and
global location. These TXT files are input into ifcengine to create IFC files.

Several previous works performed 3D modeling within Autodesk Revit. Yang et al. [18]
reconstruct beams, slabs, and columns 3D Revit model from CAD files. The reconstruc-
tion process includes four steps by plug-in Dynamo in Revit. The authors first generated
column and beam axes since the elements are defined by swept solids sweeping along a
direction. They further organized the semantic information into a parameter table. The
semantic information comprises axis ID, reference level, elevation, material, section height,
section width, web thickness, flange thickness, and element drawing code. Finally, the
semantic-rich element Revit model is constructed.

However, the detail of how to generate 3D models from manipulating and post-
processing neural network outputs is missing in the previous literature. In this study,
an API is being used, and perform modeling within proprietary software, rather than
focusing on open-source tools such as IFC, due to its popularity in the AEC industry.
This study generates the Revit 2022 model directly using the neural network output after
post-processing. The information exchange between the neural network and modeling
software can be more secure in this way since some information would be missing when
importing the IFC files to Revit from user feedback [19,20]. However, the open-source tools
are as essential as commercial software, so how the proposed workflow can be integrated
with tools, such as Blender 3.6, is demonstrated. Blender 3.6 is a free and open-source
3D software that can generate animated videos, 3D applications, video games, virtual
reality, etc. BlenderBIM v0.0.230902 is an add-on of Blender 3.6 that supports the BIM
model creation with the IFC format.

Buildings 2023, 13, 2336 5 of 27

3. Methodology

This section covers the data generation process, neural network training, inference,
post-processing, and 3D model reconstruction in Revit 2022 for both object detection and
instance segmentation tasks, as shown in Figure 1.

Buildings 2023, 13, x FOR PEER REVIEW 5 of 28

tools, such as Blender 3.6, is demonstrated. Blender 3.6 is a free and open‐source 3D soft‐

ware that can generate animated videos, 3D applications, video games, virtual reality, etc.

BlenderBIM v0.0.230902 is an add‐on of Blender 3.6 that supports the BIM model creation

with the IFC format.

3. Methodology

This section covers the data generation process, neural network training, inference,

post‐processing, and 3D model reconstruction in Revit 2022 for both object detection and

instance segmentation tasks, as shown in Figure 1.

Figure 1. Research framework and pipeline.

3.1. Data Creation

In this study, 2D architectural drawings of Arizona State University Tempe campus

buildings were provided by the University Facilities Management department. The da‐

taset comprised AutoCAD files along with their corresponding PDF counterparts. The 29

of these PDF files were transformed into JPG format, each with dimensions of 3400 × 2200

pixels, constituting the original dataset. This original dataset was then split into a training

set of 21 sheets and a validation set with 8 sheets. To conduct supervised learning tasks,

the dataset was annotated using the LabelMe annotation tool [21]. The annotation process

involved determining the class taxonomy and annotation format and technique.

In this paper, the taxonomy of classes includes single left‐hand doors (L door), single

right‐hand doors (R door), double doors, walls, and columns. After annotating all classes,

the entire dataset included 596 left‐hand door instances, 555 right‐hand door instances,

283 double‐side door instances, 6722 wall instances, and 485 column instances. Based on

the quantity of each class, it can be seen there are more than ten times as many wall in‐

stances as any other class instances. To solve this imbalanced data classification problem,

the common data‐based methods were not selected, i.e., over‐sampling the rare classes or

under‐sampling overrepresented classes. Instead, to avoid covariate shift, an ensemble of

multiple models was executed to boost the performance of prediction [22].

Object detection classifier 1 and instance segmentation classifier 2 were each two‐

model ensembles, as shown in Figure 2. The first model of each ensemble was trained on

Training Subset 1. This subset was comprised of only wall instances from the entire train‐

ing set, as shown in Figure 3b. The second model of each ensemble was trained on Train‐

ing Subset 2. This subset was comprised of all object instances except wall instances, as

shown in Figure 3c.

Figure 1. Research framework and pipeline.

3.1. Data Creation

In this study, 2D architectural drawings of Arizona State University Tempe campus
buildings were provided by the University Facilities Management department. The dataset
comprised AutoCAD files along with their corresponding PDF counterparts. The 29 of these
PDF files were transformed into JPG format, each with dimensions of 3400 × 2200 pixels,
constituting the original dataset. This original dataset was then split into a training set
of 21 sheets and a validation set with 8 sheets. To conduct supervised learning tasks, the
dataset was annotated using the LabelMe annotation tool [21]. The annotation process
involved determining the class taxonomy and annotation format and technique.

In this paper, the taxonomy of classes includes single left-hand doors (L door), single
right-hand doors (R door), double doors, walls, and columns. After annotating all classes,
the entire dataset included 596 left-hand door instances, 555 right-hand door instances,
283 double-side door instances, 6722 wall instances, and 485 column instances. Based
on the quantity of each class, it can be seen there are more than ten times as many wall
instances as any other class instances. To solve this imbalanced data classification problem,
the common data-based methods were not selected, i.e., over-sampling the rare classes or
under-sampling overrepresented classes. Instead, to avoid covariate shift, an ensemble of
multiple models was executed to boost the performance of prediction [22].

Object detection classifier 1 and instance segmentation classifier 2 were each two-
model ensembles, as shown in Figure 2. The first model of each ensemble was trained on
Training Subset 1. This subset was comprised of only wall instances from the entire training
set, as shown in Figure 3b. The second model of each ensemble was trained on Training
Subset 2. This subset was comprised of all object instances except wall instances, as shown
in Figure 3c.

Two different annotation techniques for object detection and instance segmentation
were used. For the object detection task, each object instance on each drawing sheet
with a bounding box and a class label was identified. For wall and column instances,
the bounding box encompassed the entire object symbol. For door instances, the wall

Buildings 2023, 13, 2336 6 of 27

opening was included but excluded the door swing portion of the symbol, as shown in
Figure 4a. This format for the door annotations was chosen to make the step of converting
the bounding box into a door during digital model reconstruction more convenient. For the
instance segmentation task annotations, a polygon was drawn surrounding the wall and
column instances and a rectangle for door instances encompassing the wall opening but
excluding the door swing portion of the symbol, as shown in Figure 4b. The blue arrows
in Figure 4a show the circumstances with different styles of annotations between object
detection and instance segmentation.

Buildings 2023, 13, x FOR PEER REVIEW 6 of 28

Figure 2. Object detection classifier and instance segmentation classifier.

(a) (b) (c)

Figure 3. (a) Original floor plan; (b) wall instances annotation; and (c) L door, R door, double door,

column instances annotation (Diverse color annotations are used to differentiate between various

categories).

Two different annotation techniques for object detection and instance segmentation

were used. For the object detection task, each object instance on each drawing sheet with

a bounding box and a class label was identified. For wall and column instances, the

bounding box encompassed the entire object symbol. For door instances, the wall opening

was included but excluded the door swing portion of the symbol, as shown in Figure 4a.

This format for the door annotations was chosen to make the step of converting the bound-

ing box into a door during digital model reconstruction more convenient. For the instance

segmentation task annotations, a polygon was drawn surrounding the wall and column

instances and a rectangle for door instances encompassing the wall opening but excluding

the door swing portion of the symbol, as shown in Figure 4b. The blue arrows in Figure

4a show the circumstances with different styles of annotations between object detection

and instance segmentation.

(a) (b)

Figure 4. Annotation: (a) Object detection; and (b) Instance Segmentation.

Figure 2. Object detection classifier and instance segmentation classifier.

Buildings 2023, 13, x FOR PEER REVIEW 6 of 28

Figure 2. Object detection classifier and instance segmentation classifier.

(a) (b) (c)

Figure 3. (a) Original floor plan; (b) wall instances annotation; and (c) L door, R door, double door,

column instances annotation (Diverse color annotations are used to differentiate between various

categories).

Two different annotation techniques for object detection and instance segmentation

were used. For the object detection task, each object instance on each drawing sheet with

a bounding box and a class label was identified. For wall and column instances, the

bounding box encompassed the entire object symbol. For door instances, the wall opening

was included but excluded the door swing portion of the symbol, as shown in Figure 4a.

This format for the door annotations was chosen to make the step of converting the bound-

ing box into a door during digital model reconstruction more convenient. For the instance

segmentation task annotations, a polygon was drawn surrounding the wall and column

instances and a rectangle for door instances encompassing the wall opening but excluding

the door swing portion of the symbol, as shown in Figure 4b. The blue arrows in Figure

4a show the circumstances with different styles of annotations between object detection

and instance segmentation.

(a) (b)

Figure 4. Annotation: (a) Object detection; and (b) Instance Segmentation.

Figure 3. (a) Original floor plan; (b) wall instances annotation; and (c) L door, R door, double
door, column instances annotation (Diverse color annotations are used to differentiate between
various categories).

Buildings 2023, 13, x FOR PEER REVIEW 6 of 28

Figure 2. Object detection classifier and instance segmentation classifier.

(a) (b) (c)

Figure 3. (a) Original floor plan; (b) wall instances annotation; and (c) L door, R door, double door,

column instances annotation (Diverse color annotations are used to differentiate between various

categories).

Two different annotation techniques for object detection and instance segmentation

were used. For the object detection task, each object instance on each drawing sheet with

a bounding box and a class label was identified. For wall and column instances, the

bounding box encompassed the entire object symbol. For door instances, the wall opening

was included but excluded the door swing portion of the symbol, as shown in Figure 4a.

This format for the door annotations was chosen to make the step of converting the bound-

ing box into a door during digital model reconstruction more convenient. For the instance

segmentation task annotations, a polygon was drawn surrounding the wall and column

instances and a rectangle for door instances encompassing the wall opening but excluding

the door swing portion of the symbol, as shown in Figure 4b. The blue arrows in Figure

4a show the circumstances with different styles of annotations between object detection

and instance segmentation.

(a) (b)

Figure 4. Annotation: (a) Object detection; and (b) Instance Segmentation. Figure 4. Annotation: (a) Object detection; and (b) Instance Segmentation.

Each sheet with 100 crops of 800 × 800 pixels was randomly sampled without scaling,
as shown in Figure 5, and the object annotation positions were recomputed to the local
crop coordinates. After this random cropping process, a JSON file was generated for each
crop. The JSON files were organized into the required sets to prepare for model training, as
defined in Figure 2.

Buildings 2023, 13, 2336 7 of 27

Buildings 2023, 13, x FOR PEER REVIEW 7 of 28

Each sheet with 100 crops of 800 × 800 pixels was randomly sampled without scaling,

as shown in Figure 5, and the object annotation positions were recomputed to the local

crop coordinates. After this random cropping process, a JSON file was generated for each

crop. The JSON files were organized into the required sets to prepare for model training,

as defined in Figure 2.

(a) (b)

Figure 5. Random cropping: (a) 3400 × 2200 pixels floor plan; and (b) 800 × 800 pixels crop randomly

sampled from (a).

3.2. Object Detection and Instance Segmentation Model Training

The first steps of doing model training were selecting a programming language, deep

learning libraries, a programming environment, and neural network architectures. Python

with Detectron2 library [23], a Pytorch 1.8 -based modular library, on Visual Studio Code

2022 and NVIDIA RTX A4000 GPU processor were used (NVIDIA, Santa Clara, CA, USA).

To choose neural network architectures, state-of-the-art computer vision algorithms, such

as YOLO and SOLO, were not used since exploring the possible failure cases industry

practitioners would encounter is the purpose of this study. This study could be more in-

formative if the selected models were widely used in practice. As a result, the Faster R-

CNN model architecture for object detection and the Mask R-CNN model architecture,

for instance, segmentation, were selected. The hyperparameters used for training include

0.001 learning rate, 64 batch size, and 58 epochs.

3.3. Object Detection Inference and Post-Processing

After getting the Faster R-CNN trained model, object detection inference on the new

2D floor plan was executed. The detection model output the class and bounding box in-

formation of each predicted instance. Three post-processing steps were then conducted to

create 3D models, as shown in Figure 6. The post-processing steps include coordinate sys-

tem transformation, merging adjacent instances, and pairing door and host wall. For the

detailed pipeline, please refer to Figure A1.

Figure 5. Random cropping: (a) 3400× 2200 pixels floor plan; and (b) 800× 800 pixels crop randomly
sampled from (a).

3.2. Object Detection and Instance Segmentation Model Training

The first steps of doing model training were selecting a programming language, deep
learning libraries, a programming environment, and neural network architectures. Python
with Detectron2 library [23], a Pytorch 1.8 -based modular library, on Visual Studio Code
2022 and NVIDIA RTX A4000 GPU processor were used (NVIDIA, Santa Clara, CA, USA).
To choose neural network architectures, state-of-the-art computer vision algorithms, such
as YOLO and SOLO, were not used since exploring the possible failure cases industry
practitioners would encounter is the purpose of this study. This study could be more
informative if the selected models were widely used in practice. As a result, the Faster
R-CNN model architecture for object detection and the Mask R-CNN model architecture,
for instance, segmentation, were selected. The hyperparameters used for training include
0.001 learning rate, 64 batch size, and 58 epochs.

3.3. Object Detection Inference and Post-Processing

After getting the Faster R-CNN trained model, object detection inference on the new
2D floor plan was executed. The detection model output the class and bounding box
information of each predicted instance. Three post-processing steps were then conducted
to create 3D models, as shown in Figure 6. The post-processing steps include coordinate
system transformation, merging adjacent instances, and pairing door and host wall. For
the detailed pipeline, please refer to Figure A1.

Buildings 2023, 13, x FOR PEER REVIEW 7 of 28

Each sheet with 100 crops of 800 × 800 pixels was randomly sampled without scaling,

as shown in Figure 5, and the object annotation positions were recomputed to the local

crop coordinates. After this random cropping process, a JSON file was generated for each

crop. The JSON files were organized into the required sets to prepare for model training,

as defined in Figure 2.

(a) (b)

Figure 5. Random cropping: (a) 3400 × 2200 pixels floor plan; and (b) 800 × 800 pixels crop randomly

sampled from (a).

3.2. Object Detection and Instance Segmentation Model Training

The first steps of doing model training were selecting a programming language, deep

learning libraries, a programming environment, and neural network architectures. Python

with Detectron2 library [23], a Pytorch 1.8 -based modular library, on Visual Studio Code

2022 and NVIDIA RTX A4000 GPU processor were used (NVIDIA, Santa Clara, CA, USA).

To choose neural network architectures, state-of-the-art computer vision algorithms, such

as YOLO and SOLO, were not used since exploring the possible failure cases industry

practitioners would encounter is the purpose of this study. This study could be more in-

formative if the selected models were widely used in practice. As a result, the Faster R-

CNN model architecture for object detection and the Mask R-CNN model architecture,

for instance, segmentation, were selected. The hyperparameters used for training include

0.001 learning rate, 64 batch size, and 58 epochs.

3.3. Object Detection Inference and Post-Processing

After getting the Faster R-CNN trained model, object detection inference on the new

2D floor plan was executed. The detection model output the class and bounding box in-

formation of each predicted instance. Three post-processing steps were then conducted to

create 3D models, as shown in Figure 6. The post-processing steps include coordinate sys-

tem transformation, merging adjacent instances, and pairing door and host wall. For the

detailed pipeline, please refer to Figure A1.

Figure 6. Overall object detection inference pipeline.

To perform model inference on a new floor plan, each drawing was partitioned into
800 × 800 pixels crops in a sliding window sequence, as shown in Figure 7. This cropping
was necessary to match the data input size formatting requirement of the deep learning
algorithms that were set during the training process. The inference on each crop was run
using the trained Faster R-CNN model(s) outputting (1) crop index (the number inside

Buildings 2023, 13, 2336 8 of 27

each crop in Figure 7), (2) class, (3) confidence probability, (4) bounding box coordinates,
top left corner, and bottom right corner coordinates.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 28

Figure 6. Overall object detection inference pipeline.

To perform model inference on a new floor plan, each drawing was partitioned into

800 × 800 pixels crops in a sliding window sequence, as shown in Figure 7. This cropping

was necessary to match the data input size formatting requirement of the deep learning

algorithms that were set during the training process. The inference on each crop was run

using the trained Faster R-CNN model(s) outputting (1) crop index (the number inside

each crop in Figure 7), (2) class, (3) confidence probability, (4) bounding box coordinates,

top left corner, and bottom right corner coordinates.

Figure 7. 800 × 800 pixels sliding windows sequence cropping for 3400 × 2200 pixels floor plan.

(The numbers 1 to 14 indicate the sequence of crops).

3.3.1. Post-Process 1: Coordination System Transformation

The first step of post-processing the inference output was to transform the bounding

box outputs from local crop coordinates to global sheet coordinates, as shown in Figure 8.

Figure 8. Crop coordinate system transforms into sheet coordinate system.

3.3.2. Post-process 2: Merging Adjacent Instances

The useful information was aggregated from the neural network output in an array

so that it could be used for 3D reconstruction. Each instance inference is represented as a

1-D array with 10 values: (1) unique index, (2) class, (3) ���, (4) ���, (5) ���, (6) ���, (7)

���, (8) ���, (9) ���, (10) ���. The ��� represents � coordinate of the right bottom cor-

ner, ��� represents � coordinate of the left top corner, ��� represents � coordinate of

the left bottom corner, ��� represents y coordinate of the left bottom corner, as defined in

Figure 7. 800 × 800 pixels sliding windows sequence cropping for 3400 × 2200 pixels floor plan. (The
numbers 1 to 14 indicate the sequence of crops).

3.3.1. Post-Process 1: Coordination System Transformation

The first step of post-processing the inference output was to transform the bounding
box outputs from local crop coordinates to global sheet coordinates, as shown in Figure 8.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 28

Figure 6. Overall object detection inference pipeline.

To perform model inference on a new floor plan, each drawing was partitioned into

800 × 800 pixels crops in a sliding window sequence, as shown in Figure 7. This cropping

was necessary to match the data input size formatting requirement of the deep learning

algorithms that were set during the training process. The inference on each crop was run

using the trained Faster R-CNN model(s) outputting (1) crop index (the number inside

each crop in Figure 7), (2) class, (3) confidence probability, (4) bounding box coordinates,

top left corner, and bottom right corner coordinates.

Figure 7. 800 × 800 pixels sliding windows sequence cropping for 3400 × 2200 pixels floor plan.

(The numbers 1 to 14 indicate the sequence of crops).

3.3.1. Post-Process 1: Coordination System Transformation

The first step of post-processing the inference output was to transform the bounding

box outputs from local crop coordinates to global sheet coordinates, as shown in Figure 8.

Figure 8. Crop coordinate system transforms into sheet coordinate system.

3.3.2. Post-process 2: Merging Adjacent Instances

The useful information was aggregated from the neural network output in an array

so that it could be used for 3D reconstruction. Each instance inference is represented as a

1-D array with 10 values: (1) unique index, (2) class, (3) ���, (4) ���, (5) ���, (6) ���, (7)

���, (8) ���, (9) ���, (10) ���. The ��� represents � coordinate of the right bottom cor-

ner, ��� represents � coordinate of the left top corner, ��� represents � coordinate of

the left bottom corner, ��� represents y coordinate of the left bottom corner, as defined in

Figure 8. Crop coordinate system transforms into sheet coordinate system.

3.3.2. Post-Process 2: Merging Adjacent Instances

The useful information was aggregated from the neural network output in an array
so that it could be used for 3D reconstruction. Each instance inference is represented as a
1-D array with 10 values: (1) unique index, (2) class, (3) ltx, (4) lty, (5) lbx, (6) lby, (7) rtx,
(8) rty, (9) rbx, (10) rby. The rbx represents x coordinate of the right bottom corner, ltx
represents x coordinate of the left top corner, lby represents y coordinate of the left bottom
corner, lty represents y coordinate of the left bottom corner, as defined in Figure 9. All
instances inference arrays for all classes were assembled into a single 2D array called “Object
Detection Array”. For post-processing purposes, an “Object Detection Array Duplicate”
copied from “Object Detection Array” was created.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 28

Figure 9. All instances inference arrays for all classes were assembled into a single 2D

array called “Object Detection Array”. For post-processing purposes, an “Object Detection

Array Duplicate” copied from “Object Detection Array” was created.

Figure 9. Vertices of bounding box representation.

The requirements of 3D reconstruction in Revit 2022 for each class should be identi-

fied. The requirements were determined by the functions in Revit API 2022 Docs that were

used. There are three kinds of reconstruction processes. The first one is to reconstruct wall

instances that do not have any embedded instances (e.g., doors). Equation (1) is used to

reconstruct the wall instances. Secondly, to reconstruct column instances, the wall and

column should be modeled separately based on observation even if the column is embed-

ded in the wall, as shown in Figure 10. Equation (2) is used to reconstruct column in-

stances. The last one is to reconstruct the door instances which are embedded in their host

walls. The host wall is reconstructed by Equation (1), and Id of the host wall is acquired

from Equation (3). Equation (4) is then used to reconstruct single door or double door

instances. The different door types are specified in the symbol attribute in Equation (4).

Wall.Create(document, curve, wallTypeId, levelId, height, offset, flip, struc-

tural)
(1)

Create.NewFamilyInstance(location, symbol, level, structuralType) (2)

GetElement(wall.Id) (3)

Create.NewFamilyInstance(location, symbol, host, level, structuralType) (4)

Figure 10. Wall and column instance in Revit 2022.

The next step was merging the adjacent instances since the continuation of wall in-

stances across crop boundaries assumption was made, Figure 11b replaced by Figure 11a.

This merging step first separates the horizontal object instances from the vertical object

instances. If the width of the instance is larger than its height, it is determined as horizon-

tal and vice versa. All instances were looped through in “Object Detection Array Dupli-

cate” and merged adjacent instances if their coordinates were within a threshold proxim-

ity, set as 10 pixels through trial-and-error. The trial-and-error process is recommended

Figure 9. Vertices of bounding box representation.

Buildings 2023, 13, 2336 9 of 27

The requirements of 3D reconstruction in Revit 2022 for each class should be identified.
The requirements were determined by the functions in Revit API 2022 Docs that were
used. There are three kinds of reconstruction processes. The first one is to reconstruct
wall instances that do not have any embedded instances (e.g., doors). Equation (1) is
used to reconstruct the wall instances. Secondly, to reconstruct column instances, the wall
and column should be modeled separately based on observation even if the column is
embedded in the wall, as shown in Figure 10. Equation (2) is used to reconstruct column
instances. The last one is to reconstruct the door instances which are embedded in their host
walls. The host wall is reconstructed by Equation (1), and Id of the host wall is acquired
from Equation (3). Equation (4) is then used to reconstruct single door or double door
instances. The different door types are specified in the symbol attribute in Equation (4).

Wall.Create(document, curve, wallTypeId, levelId, height, offset, flip, structural) (1)

Create.NewFamilyInstance(location, symbol, level, structuralType) (2)

GetElement(wall.Id) (3)

Create.NewFamilyInstance(location, symbol, host, level, structuralType) (4)

Buildings 2023, 13, x FOR PEER REVIEW 9 of 28

Figure 9. All instances inference arrays for all classes were assembled into a single 2D

array called “Object Detection Array”. For post-processing purposes, an “Object Detection

Array Duplicate” copied from “Object Detection Array” was created.

Figure 9. Vertices of bounding box representation.

The requirements of 3D reconstruction in Revit 2022 for each class should be identi-

fied. The requirements were determined by the functions in Revit API 2022 Docs that were

used. There are three kinds of reconstruction processes. The first one is to reconstruct wall

instances that do not have any embedded instances (e.g., doors). Equation (1) is used to

reconstruct the wall instances. Secondly, to reconstruct column instances, the wall and

column should be modeled separately based on observation even if the column is embed-

ded in the wall, as shown in Figure 10. Equation (2) is used to reconstruct column in-

stances. The last one is to reconstruct the door instances which are embedded in their host

walls. The host wall is reconstructed by Equation (1), and Id of the host wall is acquired

from Equation (3). Equation (4) is then used to reconstruct single door or double door

instances. The different door types are specified in the symbol attribute in Equation (4).

Wall.Create(document, curve, wallTypeId, levelId, height, offset, flip, struc-

tural)
(1)

Create.NewFamilyInstance(location, symbol, level, structuralType) (2)

GetElement(wall.Id) (3)

Create.NewFamilyInstance(location, symbol, host, level, structuralType) (4)

Figure 10. Wall and column instance in Revit 2022.

The next step was merging the adjacent instances since the continuation of wall in-

stances across crop boundaries assumption was made, Figure 11b replaced by Figure 11a.

This merging step first separates the horizontal object instances from the vertical object

instances. If the width of the instance is larger than its height, it is determined as horizon-

tal and vice versa. All instances were looped through in “Object Detection Array Dupli-

cate” and merged adjacent instances if their coordinates were within a threshold proxim-

ity, set as 10 pixels through trial-and-error. The trial-and-error process is recommended

Figure 10. Wall and column instance in Revit 2022.

The next step was merging the adjacent instances since the continuation of wall
instances across crop boundaries assumption was made, Figure 11b replaced by Figure 11a.
This merging step first separates the horizontal object instances from the vertical object
instances. If the width of the instance is larger than its height, it is determined as horizontal
and vice versa. All instances were looped through in “Object Detection Array Duplicate”
and merged adjacent instances if their coordinates were within a threshold proximity,
set as 10 pixels through trial-and-error. The trial-and-error process is recommended to
determine the appropriate threshold for different sizes of drawings. Proximity refers to
both a threshold gap and threshold overlap, as shown in Figure 12. Prior to merging the
instances, the instance was checked to establish whether it had horizontal or vertical shape.

Buildings 2023, 13, x FOR PEER REVIEW 10 of 28

to determine the appropriate threshold for different sizes of drawings. Proximity refers to

both a threshold gap and threshold overlap, as shown in Figure 12. Prior to merging the

instances, the instance was checked to establish whether it had horizontal or vertical

shape.

(a) (b)

Figure 11. Revit 2022 model example: (a) Without merging instances; and (b) after merging pro-

cess.

Figure 12. The gap threshold implication for merging instances.

For horizontal instance A in “Object Detection Array Duplicate”, another adjacent

horizontal instance B was searched on the positive direction of the x-axis with a larger x

value in “Object Detection Array Duplicate”, as shown in Figure 13. There were three

possible combinations of instance A and instance B, as shown in Figure 14. The proposed

strategy was merging all adjacent wall and door instances on the floor plan. After merg-

ing, this post-merging instance was set as a wall instance and all door instances were

placed on this wall. There were five conditions that needed to be met. First, both A and B

were horizontal instances. Secondly, both A and B did not belong to the column class.

Thirdly, ���� minus ���� was less than 10 pixels. Fourthly, ���� was larger than ����.

Lastly, the difference between ���� and ���� was less than 10 pixels.

Figure 13. Horizontal instances A and B in “Object Detection Array Duplicate”.

Figure 11. Revit 2022 model example: (a) Without merging instances; and (b) after merging process.

Buildings 2023, 13, 2336 10 of 27

Buildings 2023, 13, x FOR PEER REVIEW 10 of 28

to determine the appropriate threshold for different sizes of drawings. Proximity refers to

both a threshold gap and threshold overlap, as shown in Figure 12. Prior to merging the

instances, the instance was checked to establish whether it had horizontal or vertical

shape.

(a) (b)

Figure 11. Revit 2022 model example: (a) Without merging instances; and (b) after merging pro-

cess.

Figure 12. The gap threshold implication for merging instances.

For horizontal instance A in “Object Detection Array Duplicate”, another adjacent

horizontal instance B was searched on the positive direction of the x-axis with a larger x

value in “Object Detection Array Duplicate”, as shown in Figure 13. There were three

possible combinations of instance A and instance B, as shown in Figure 14. The proposed

strategy was merging all adjacent wall and door instances on the floor plan. After merg-

ing, this post-merging instance was set as a wall instance and all door instances were

placed on this wall. There were five conditions that needed to be met. First, both A and B

were horizontal instances. Secondly, both A and B did not belong to the column class.

Thirdly, ���� minus ���� was less than 10 pixels. Fourthly, ���� was larger than ����.

Lastly, the difference between ���� and ���� was less than 10 pixels.

Figure 13. Horizontal instances A and B in “Object Detection Array Duplicate”.

Figure 12. The gap threshold implication for merging instances.

For horizontal instance A in “Object Detection Array Duplicate”, another adjacent
horizontal instance B was searched on the positive direction of the x-axis with a larger
x value in “Object Detection Array Duplicate”, as shown in Figure 13. There were three
possible combinations of instance A and instance B, as shown in Figure 14. The proposed
strategy was merging all adjacent wall and door instances on the floor plan. After merging,
this post-merging instance was set as a wall instance and all door instances were placed
on this wall. There were five conditions that needed to be met. First, both A and B were
horizontal instances. Secondly, both A and B did not belong to the column class. Thirdly,
ltxB minus rtxA was less than 10 pixels. Fourthly, ltxB was larger than ltxA. Lastly, the
difference between rtyA and ltyB was less than 10 pixels.

Buildings 2023, 13, x FOR PEER REVIEW 10 of 28

to determine the appropriate threshold for different sizes of drawings. Proximity refers to

both a threshold gap and threshold overlap, as shown in Figure 12. Prior to merging the

instances, the instance was checked to establish whether it had horizontal or vertical

shape.

(a) (b)

Figure 11. Revit 2022 model example: (a) Without merging instances; and (b) after merging pro-

cess.

Figure 12. The gap threshold implication for merging instances.

For horizontal instance A in “Object Detection Array Duplicate”, another adjacent

horizontal instance B was searched on the positive direction of the x-axis with a larger x

value in “Object Detection Array Duplicate”, as shown in Figure 13. There were three

possible combinations of instance A and instance B, as shown in Figure 14. The proposed

strategy was merging all adjacent wall and door instances on the floor plan. After merg-

ing, this post-merging instance was set as a wall instance and all door instances were

placed on this wall. There were five conditions that needed to be met. First, both A and B

were horizontal instances. Secondly, both A and B did not belong to the column class.

Thirdly, ���� minus ���� was less than 10 pixels. Fourthly, ���� was larger than ����.

Lastly, the difference between ���� and ���� was less than 10 pixels.

Figure 13. Horizontal instances A and B in “Object Detection Array Duplicate”.
Figure 13. Horizontal instances A and B in “Object Detection Array Duplicate”.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 28

Figure 14. Three possible combinations of adjacent instances A and B.

If instance B conforming to these five requirements was found, three manipulations

to A and B instances in “Object Detection Array Duplicate” were conducted. First, ����

equal to ���� , ���� equal to ���� , ���� equal to ���� and ���� equal to ���� were set,

which indicates that A merged into B. Secondly, the class of instance B to be the wall class

was set. Lastly, instance A in “Object Detection Array Duplicate” was removed. For the

vertical instances, the horizontal merging pipeline was repeated for the vertical bounding

boxes.

3.3.3. Post-Process 3: Pairing Door and Host Wall Instances

At this point, two arrays were held: the “Object Detection Array” and the “Object

Detection Post-Merging Array”. To reconstruct door instances in Revit 2022, their host

wall needed to be specified, which means each door was embedded in a specific host wall.

The proposed strategy was to append the door instances from “Object Detection Array”

to “Object Detection Post-Merging Array” and set the index value of the doors (unique

index, the first value of the array) to be the same as their host walls so that using a dic-

tionary can pair them by their index as key later. To conduct this strategy, all instances

were looped through in the “Object Detection Post-Merging Array” for each door instance

in the “Object Detection Array” and fed into either horizontal or vertical instance opera-

tion.

For horizontal door D in “Object Detection Array”, its host wall C was searched in

“Object Detection Post-Merging Array”, as shown in Figure 15. There were four rules that

needed to be followed. First, both C and D were horizontal instances. Secondly, instance

D belonged to one of the left-hand door, right-hand door, and double door classes.

Thirdly, ���� was larger than ���� and smaller than ���� . Lastly, the difference between

���� and ���� was less than 10 pixels. If an instance C was discovered following these

four criteria, two actions were taken. First, the index value of the D instance in “Object

Detection Array” was set to be the same as the index value of the C instance in “Object

Detection Post-Merging Array”. Next, the D instance in “Object Detection Array” was ap-

pended to “Object Detection Post-Merging Array”. For the vertical instances, the horizon-

tal pairing pipeline was repeated for the vertical door and host wall pairs.

Figure 15. Horizontal wall instance C and door instance D.

The last step of preparation for 3D model reconstruction was creating a dictionary.

To generate this dictionary from “Object Detection Post-Merging Array”, first the

Figure 14. Three possible combinations of adjacent instances A and B.

If instance B conforming to these five requirements was found, three manipulations
to A and B instances in “Object Detection Array Duplicate” were conducted. First, ltxB
equal to ltxA, lbxB equal to lbxA, ltyB equal to ltyA and lbyB equal to lbyA were set, which
indicates that A merged into B. Secondly, the class of instance B to be the wall class was
set. Lastly, instance A in “Object Detection Array Duplicate” was removed. For the vertical
instances, the horizontal merging pipeline was repeated for the vertical bounding boxes.

3.3.3. Post-Process 3: Pairing Door and Host Wall Instances

At this point, two arrays were held: the “Object Detection Array” and the “Object
Detection Post-Merging Array”. To reconstruct door instances in Revit 2022, their host
wall needed to be specified, which means each door was embedded in a specific host wall.
The proposed strategy was to append the door instances from “Object Detection Array” to
“Object Detection Post-Merging Array” and set the index value of the doors (unique index,
the first value of the array) to be the same as their host walls so that using a dictionary can

Buildings 2023, 13, 2336 11 of 27

pair them by their index as key later. To conduct this strategy, all instances were looped
through in the “Object Detection Post-Merging Array” for each door instance in the “Object
Detection Array” and fed into either horizontal or vertical instance operation.

For horizontal door D in “Object Detection Array”, its host wall C was searched in
“Object Detection Post-Merging Array”, as shown in Figure 15. There were four rules
that needed to be followed. First, both C and D were horizontal instances. Secondly,
instance D belonged to one of the left-hand door, right-hand door, and double door classes.
Thirdly, ltxD was larger than ltxC and smaller than rtxC. Lastly, the difference between
ltyC and ltyD was less than 10 pixels. If an instance C was discovered following these four
criteria, two actions were taken. First, the index value of the D instance in “Object Detection
Array” was set to be the same as the index value of the C instance in “Object Detection
Post-Merging Array”. Next, the D instance in “Object Detection Array” was appended to
“Object Detection Post-Merging Array”. For the vertical instances, the horizontal pairing
pipeline was repeated for the vertical door and host wall pairs.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 28

Figure 14. Three possible combinations of adjacent instances A and B.

If instance B conforming to these five requirements was found, three manipulations

to A and B instances in “Object Detection Array Duplicate” were conducted. First, ����

equal to ���� , ���� equal to ���� , ���� equal to ���� and ���� equal to ���� were set,

which indicates that A merged into B. Secondly, the class of instance B to be the wall class

was set. Lastly, instance A in “Object Detection Array Duplicate” was removed. For the

vertical instances, the horizontal merging pipeline was repeated for the vertical bounding

boxes.

3.3.3. Post-Process 3: Pairing Door and Host Wall Instances

At this point, two arrays were held: the “Object Detection Array” and the “Object

Detection Post-Merging Array”. To reconstruct door instances in Revit 2022, their host

wall needed to be specified, which means each door was embedded in a specific host wall.

The proposed strategy was to append the door instances from “Object Detection Array”

to “Object Detection Post-Merging Array” and set the index value of the doors (unique

index, the first value of the array) to be the same as their host walls so that using a dic-

tionary can pair them by their index as key later. To conduct this strategy, all instances

were looped through in the “Object Detection Post-Merging Array” for each door instance

in the “Object Detection Array” and fed into either horizontal or vertical instance opera-

tion.

For horizontal door D in “Object Detection Array”, its host wall C was searched in

“Object Detection Post-Merging Array”, as shown in Figure 15. There were four rules that

needed to be followed. First, both C and D were horizontal instances. Secondly, instance

D belonged to one of the left-hand door, right-hand door, and double door classes.

Thirdly, ���� was larger than ���� and smaller than ���� . Lastly, the difference between

���� and ���� was less than 10 pixels. If an instance C was discovered following these

four criteria, two actions were taken. First, the index value of the D instance in “Object

Detection Array” was set to be the same as the index value of the C instance in “Object

Detection Post-Merging Array”. Next, the D instance in “Object Detection Array” was ap-

pended to “Object Detection Post-Merging Array”. For the vertical instances, the horizon-

tal pairing pipeline was repeated for the vertical door and host wall pairs.

Figure 15. Horizontal wall instance C and door instance D.

The last step of preparation for 3D model reconstruction was creating a dictionary.

To generate this dictionary from “Object Detection Post-Merging Array”, first the

Figure 15. Horizontal wall instance C and door instance D.

The last step of preparation for 3D model reconstruction was creating a dictionary. To
generate this dictionary from “Object Detection Post-Merging Array”, first the coordinates
of the four vertices needed to be converted to start point and end point representation, as
shown in Figure 16, since these two points were offered for reconstructing every instance
later. The x coordinate of the start point is represented as xmin, which is equal to ltx for
the horizontal instance and the middle value of ltx and rtx for the vertical instance. The y
coordinate of the start point is represented as ymin, which is the middle value of lty and lby
for horizontal instance and equal to lty for vertical instance. The x coordinate of endpoint
is represented as xmax, which is equal to rtx for horizontal instance and the middle value of
lbx and rbx for vertical instance. The y coordinate of the endpoint is represented as ymax,
which is the middle value of rty and rby for horizontal instance and equal to lby for vertical
instance. After this conversion, a 2D “Object Detection Post-Merging Array” composed of a
1-D array for each inference instance was generated. This 1-D array contained (1) index (the
door and its host wall have the same index, other instances have a unique index), (2) class,
(3) xmin, (4) ymin, (5) xmax, (6) ymax.

Buildings 2023, 13, x FOR PEER REVIEW 12 of 28

coordinates of the four vertices needed to be converted to start point and end point rep-

resentation, as shown in Figure 16, since these two points were offered for reconstructing

every instance later. The x coordinate of the start point is represented as ���� , which is

equal to ��� for the horizontal instance and the middle value of ��� and ��� for the ver-

tical instance. The � coordinate of the start point is represented as ����, which is the mid-

dle value of ��� and ��� for horizontal instance and equal to ��� for vertical instance.

The � coordinate of endpoint is represented as ���� , which is equal to ��� for horizontal

instance and the middle value of ��� and ��� for vertical instance. The � coordinate of

the endpoint is represented as ���� , which is the middle value of ��� and ��� for hori-

zontal instance and equal to ��� for vertical instance. After this conversion, a 2D “Object

Detection Post-Merging Array” composed of a 1-D array for each inference instance was

generated. This 1-D array contained (1) index (the door and its host wall have the same

index, other instances have a unique index), (2) class, (3) ���� , (4) ����, (5) ����, (6) ���� .

Vertices to start point and end point representation.

Figure 16. Vertices to start point and end point representation.

Finally, a dictionary named “Object Detection Dictionary” from “Object Detection

Post-Merging Array” was finalized for the following 3D reconstruction step. The key of

“Object Detection Dictionary” was defined as the index in “Object Detection Post-Merging

Array” and the value of “Object Detection Dictionary” was an array having (1) class, (2)

���� , (3) ����, (4) ����, (5) ���� .

3.4. Instance Segmentation Inference and Post-Processing

After getting the Mask R-CNN trained model, the instance segmentation inference

process could be executed on the new 2D floor plan. The detection model output the class

and mask information of each predicted instance. Each instance was first distinguished

into horizontal, vertical, and irregular shapes based on the predicted mask. Horizontal

and vertical instances were separated with irregular ones to do the following post-pro-

cessing. There were three post-processing steps: coordinating system transformation,

merging adjacent instances, and pairing door and host wall, which were the same as object

detection inference pipeline. Finally, all post-processing results were aggregated to create

3D Revit 2022 models, as shown Figure 17. For the detailed pipeline, please refer to Figure

A2.

Figure 16. Vertices to start point and end point representation.

Buildings 2023, 13, 2336 12 of 27

Vertices to start point and end point representation.
Finally, a dictionary named “Object Detection Dictionary” from “Object Detection Post-

Merging Array” was finalized for the following 3D reconstruction step. The key of “Object
Detection Dictionary” was defined as the index in “Object Detection Post-Merging Array”
and the value of “Object Detection Dictionary” was an array having (1) class, (2) xmin,
(3) ymin, (4) xmax, (5) ymax.

3.4. Instance Segmentation Inference and Post-Processing

After getting the Mask R-CNN trained model, the instance segmentation inference
process could be executed on the new 2D floor plan. The detection model output the class
and mask information of each predicted instance. Each instance was first distinguished
into horizontal, vertical, and irregular shapes based on the predicted mask. Horizontal and
vertical instances were separated with irregular ones to do the following post-processing.
There were three post-processing steps: coordinating system transformation, merging
adjacent instances, and pairing door and host wall, which were the same as object detection
inference pipeline. Finally, all post-processing results were aggregated to create 3D Revit
2022 models, as shown Figure 17. For the detailed pipeline, please refer to Figure A2.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 28

Figure 17. Overall instance segmentation inference pipeline.

Each drawing was cropped into 800 × 800 pixels in size in the sequence of a sliding

window. Each crop was done through the inference process using the trained Mask R-

CNN model(s) outputting (1) crop index, (2) class, (3) confidence probability, (4) bounding

box coordinates, top left corner, and bottom right corner coordinates, (5) vertices of masks.

3.4.1. Distinguish the Shape of the Instance

A pipeline was created in Figure 18 to distinguish the shape of each instance since

different algorithms would be fed into it depending on its shape. Instances were sorted

into horizontal, vertical, and irregular shape instances. To have a better understanding of

the shape of an instance from its mask, a set of segmentation points, the convex hull points

were calculated and the four vertices points, (���, ���), (���, ���), (���, ���), (���, ���),

were extracted on the edges to represent each mask, as shown in Figure 19. The first shape

identifier used the values from these four points to distinguish the shape. If Equations (5)

and (6) were satisfied, the shape of the instance would be determined as either vertical or

horizontal. However, if the two inequalities were not all satisfied, a second shape identi-

fier was applied, which compared the four vertices with bounding box coordinates. Take

an instance in Figure 19 as an example, both bounding box coordinates and four vertices

of convex hull information for an instance existed. The area enclosed by the bounding box

and convex hull were calculated separately. If Equation (7) was satisfied, the shape of the

instance was determined as either vertical or horizontal. Otherwise, like the case in Figure

20, the shape of the instance was determined as diagonal. The 0.3 threshold in Equation

(7) was determined through a trial-and-error process. This process is recommended to

practitioners to decide the appropriate threshold for instance shape identification in their

study.

|��� − ���| ≤ 10 (5)

where ��� is left top corner x-axis coordinate of four vertices points from convex hull, ���

is left bottom corner x-axis coordinate of four vertices points from convex hull.

|��� − ���| ≤ 10 (6)

where ��� is right top corner y-axis coordinate of four vertices points from convex hull,

��� is left top corner y-axis coordinate of four vertices points from convex hull.

���������� ��� − ������� �����

��������� ���

 ≤ 0.3 (7)

where ��������� ��� is the area enclosed by bounding box, ������� ���� is the area en-

closed by four vertices points from convex hull.

Figure 17. Overall instance segmentation inference pipeline.

Each drawing was cropped into 800 × 800 pixels in size in the sequence of a sliding
window. Each crop was done through the inference process using the trained Mask R-CNN
model(s) outputting (1) crop index, (2) class, (3) confidence probability, (4) bounding box
coordinates, top left corner, and bottom right corner coordinates, (5) vertices of masks.

3.4.1. Distinguish the Shape of the Instance

A pipeline was created in Figure 18 to distinguish the shape of each instance since
different algorithms would be fed into it depending on its shape. Instances were sorted into
horizontal, vertical, and irregular shape instances. To have a better understanding of the
shape of an instance from its mask, a set of segmentation points, the convex hull points were
calculated and the four vertices points, (ltx, lty), (lbx, lby), (rtx, rty), (rbx, rby), were
extracted on the edges to represent each mask, as shown in Figure 19. The first shape identi-
fier used the values from these four points to distinguish the shape. If Equations (5) and (6)
were satisfied, the shape of the instance would be determined as either vertical or horizon-
tal. However, if the two inequalities were not all satisfied, a second shape identifier was
applied, which compared the four vertices with bounding box coordinates. Take an instance
in Figure 19 as an example, both bounding box coordinates and four vertices of convex hull
information for an instance existed. The area enclosed by the bounding box and convex
hull were calculated separately. If Equation (7) was satisfied, the shape of the instance
was determined as either vertical or horizontal. Otherwise, like the case in Figure 20, the
shape of the instance was determined as diagonal. The 0.3 threshold in Equation (7) was
determined through a trial-and-error process. This process is recommended to practitioners
to decide the appropriate threshold for instance shape identification in their study.

|ltx− lbx| ≤ 10 (5)

Buildings 2023, 13, 2336 13 of 27

where ltx is left top corner x-axis coordinate of four vertices points from convex hull, lbx is
left bottom corner x-axis coordinate of four vertices points from convex hull.

|rty− lty| ≤ 10 (6)

where rty is right top corner y-axis coordinate of four vertices points from convex hull, lty
is left top corner y-axis coordinate of four vertices points from convex hull.∣∣∣ABounding Box − AConvex Hull

∣∣∣
ABounding Box

≤ 0.3 (7)

where ABounding Box is the area enclosed by bounding box, AConvex Hull is the area enclosed
by four vertices points from convex hull.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 28

Figure 18. The pipeline of identifying the shape of inference instances.

Figure 19. Process of getting four vertices of convex hull from mask.

Figure 20. A diagonal instance example identified from second shape identifier.

For each instance, the representation of their coordinates, ��� , ���, ��� , ���, ��� ,

���, ���, ���, was subject to its shape. If the shape was a horizontal or vertical instance,

its bounding box coordinates were used to reconstruct after transforming its coordination

system to sheet system, which means ���, ���, ���, ���, ���, ���, ���, ��� values were

computed from bounding box coordinates. However, if the shape was a diagonal instance,

the coordination system of its four vertices points was transformed from convex hull.

Ultimately, each instance was represented by a 1-D array with 11 values: (1) unique

index, (2) class, (3) shape, (4) ���, (5) ���, (6) ���, (7) ���, (8) ���, (9) ���, (10) ���, (11)

���. For post-processing purposes, the vertical and horizontal instance information was

extracted to an array called “Instance Segmentation Regular Shape Array” and the rest of

the instances to the other array called “Instance Segmentation Irregular Shape Array”.

Figure 18. The pipeline of identifying the shape of inference instances.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 28

Figure 18. The pipeline of identifying the shape of inference instances.

Figure 19. Process of getting four vertices of convex hull from mask.

Figure 20. A diagonal instance example identified from second shape identifier.

For each instance, the representation of their coordinates, ��� , ���, ��� , ���, ��� ,

���, ���, ���, was subject to its shape. If the shape was a horizontal or vertical instance,

its bounding box coordinates were used to reconstruct after transforming its coordination

system to sheet system, which means ���, ���, ���, ���, ���, ���, ���, ��� values were

computed from bounding box coordinates. However, if the shape was a diagonal instance,

the coordination system of its four vertices points was transformed from convex hull.

Ultimately, each instance was represented by a 1-D array with 11 values: (1) unique

index, (2) class, (3) shape, (4) ���, (5) ���, (6) ���, (7) ���, (8) ���, (9) ���, (10) ���, (11)

���. For post-processing purposes, the vertical and horizontal instance information was

extracted to an array called “Instance Segmentation Regular Shape Array” and the rest of

the instances to the other array called “Instance Segmentation Irregular Shape Array”.

Figure 19. Process of getting four vertices of convex hull from mask.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 28

Figure 18. The pipeline of identifying the shape of inference instances.

Figure 19. Process of getting four vertices of convex hull from mask.

Figure 20. A diagonal instance example identified from second shape identifier.

For each instance, the representation of their coordinates, ��� , ���, ��� , ���, ��� ,

���, ���, ���, was subject to its shape. If the shape was a horizontal or vertical instance,

its bounding box coordinates were used to reconstruct after transforming its coordination

system to sheet system, which means ���, ���, ���, ���, ���, ���, ���, ��� values were

computed from bounding box coordinates. However, if the shape was a diagonal instance,

the coordination system of its four vertices points was transformed from convex hull.

Ultimately, each instance was represented by a 1-D array with 11 values: (1) unique

index, (2) class, (3) shape, (4) ���, (5) ���, (6) ���, (7) ���, (8) ���, (9) ���, (10) ���, (11)

���. For post-processing purposes, the vertical and horizontal instance information was

extracted to an array called “Instance Segmentation Regular Shape Array” and the rest of

the instances to the other array called “Instance Segmentation Irregular Shape Array”.

Figure 20. A diagonal instance example identified from second shape identifier.

Buildings 2023, 13, 2336 14 of 27

For each instance, the representation of their coordinates, ltx, lty, lbx, lby, rtx, rty, rbx,
rby, was subject to its shape. If the shape was a horizontal or vertical instance, its bounding
box coordinates were used to reconstruct after transforming its coordination system to
sheet system, which means ltx, lty, lbx, lby, rtx, rty, rbx, rby values were computed from
bounding box coordinates. However, if the shape was a diagonal instance, the coordination
system of its four vertices points was transformed from convex hull.

Ultimately, each instance was represented by a 1-D array with 11 values: (1) unique
index, (2) class, (3) shape, (4) ltx, (5) lty, (6) lbx, (7) lby, (8) rtx, (9) rty, (10) rbx, (11) rby. For
post-processing purposes, the vertical and horizontal instance information was extracted to
an array called “Instance Segmentation Regular Shape Array” and the rest of the instances
to the other array called “Instance Segmentation Irregular Shape Array”.

3.4.2. 3 Post-Processing Steps

There were three main steps for post-processing: (1) coordination system transfor-
mation, (2) merging adjacent instances, and (3) pairing doors and host walls. The exact
same process was applied as object detection inference on horizontal or vertical instances.
For diagonal instances, the same concept was used but with two modifications. First,
the instances were separated into positively and negatively sloped diagonal instances,
as shown in Figure 21. The instances were split with a positive slope of centerline from
negative ones. Secondly, the gap threshold was set to 50 pixels instead of 10 pixels. The
threshold was being loosened since the predicted diagonal instances exhibited diverse
slopes. Raising the threshold to 50 pixels could aid in combining the neighboring diagonal
instances with different slopes. Finally, information could be aggregated and finalized in a
dictionary named “Instance Segmentation Dictionary” for later 3D reconstruction. The re-
sults of merging and pairing regular shape instances with irregular shape instances named
“Instance Segmentation Post-Pairing Array” were combined. The key of the “Instance
Segmentation Dictionary” was the index in the “Instance Segmentation Post-Pairing Array”
and the value of “Instance Segmentation Dictionary” was an array having (1) class, (2) xmin,
(3) ymin, (4) xmax, (5) ymax.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 28

3.4.2. 3 Post-Processing Steps

There were three main steps for post-processing: (1) coordination system transfor-

mation, (2) merging adjacent instances, and (3) pairing doors and host walls. The exact

same process was applied as object detection inference on horizontal or vertical instances.

For diagonal instances, the same concept was used but with two modifications. First, the

instances were separated into positively and negatively sloped diagonal instances, as

shown in Figure 21. The instances were split with a positive slope of centerline from neg-

ative ones. Secondly, the gap threshold was set to 50 pixels instead of 10 pixels. The thresh-

old was being loosened since the predicted diagonal instances exhibited diverse slopes.

Raising the threshold to 50 pixels could aid in combining the neighboring diagonal in-

stances with different slopes. Finally, information could be aggregated and finalized in a

dictionary named “Instance Segmentation Dictionary” for later 3D reconstruction. The re-

sults of merging and pairing regular shape instances with irregular shape instances

named “Instance Segmentation Post-Pairing Array” were combined. The key of the “In-

stance Segmentation Dictionary” was the index in the “Instance Segmentation Post-Pair-

ing Array” and the value of “Instance Segmentation Dictionary” was an array having (1)

class, (2) ����, (3) ����, (4) ����, (5) ����.

Figure 21. Two types of diagonal instances description.

3.5. 3D Model Reconstruction in Revit 2022

After model inference and post-processing, a dictionary for both object detection and

instance segmentation was created. To create a 3D model in Revit 2022, a script was written

to extract information from the dictionary in Visual Studio code referencing the Revit API

2022, and the whole process is displayed in Figure 22. Take an object (one pair of key and

value) in the dictionary, the key is a unique index, and the value is a 2D instance array class,

���� , ����, ���� , ���� . For example, if index 20 is a pair of a double door and its host wall,

it would be represented as

“20”: �[����, ����, ����, ����, ����], [������ ����, ����, ����, ����, ����]� in the diction-

ary.

Figure 21. Two types of diagonal instances description.

3.5. 3D Model Reconstruction in Revit 2022

After model inference and post-processing, a dictionary for both object detection and
instance segmentation was created. To create a 3D model in Revit 2022, a script was written
to extract information from the dictionary in Visual Studio code referencing the Revit API
2022, and the whole process is displayed in Figure 22. Take an object (one pair of key and
value) in the dictionary, the key is a unique index, and the value is a 2D instance array class,
xmin, ymin, xmax, ymax. For example, if index 20 is a pair of a double door and its host wall,
it would be represented as “20”: [[wall, xmin, ymin, xmax, ymax], [double door, xmin, ymin,
xmax, ymax]] in the dictionary.

Buildings 2023, 13, 2336 15 of 27
Buildings 2023, 13, x FOR PEER REVIEW 16 of 28

Figure 22. 3D reconstruction pipeline by a given dictionary.

The first step was to check the number of instances for each object depending on its

value. If there was only one instance, it must be either a column or a wall instance, which

means there were no instances embedded in it. Equation (1) was used to reconstruct the

wall, and Equation (2) to reconstruct the column model in Revit 2022. If there was more

than one instance, one of them would be a wall instance, and the others would be any

kind of door instance, which indicates the door instances were embedded in the wall in-

stance. In this case, the Id of the wall instance from Equation (3) was set to the host variable

in Equation (4). The type of door was set to the symbol variable, and the middle coordinate

of the door was set to the location variable in Equation (4). Finally, the 3D model in Revit

2022 was generated automatically when this script was activated.

4. Results and Discussion

This section covers the quantitative performance metric of object detection and in-

stance segmentation classifiers, identifying failure cases of object recognition and their

downstream impacts on interoperability with modeling software, comparing processing

on floor plans and results of using object detection versus instance segmentation models,

and exploring alternative open-source 3D modeling software (Blender 3.6), as shown in

Figure 1.

4.1. Quantitative Results of Object Detection and Instance Segmentation Classifiers

The average precision with a 0.5 IoU threshold (����) of each class is used to evaluate

the results of each classifier and calculated the mean average precision from all five classes

discretely, as shown in Table 1. Comparing the results among classes, the column in-

stances could mostly be recognized, double door and wall instances have about 70 to 90%

average precision, left-handed door, and right-handed door instances are much more

challenging to be recognized.

Table 1. Average precision of each class for Object Detection and Instance Segmentation Classifi-

ers.

Class Wall L Door R Door Double Door Column mAP

Classifier 1

(Object Detection)
74.5 51.7 47.9 87.9 96.5 71.7

Figure 22. 3D reconstruction pipeline by a given dictionary.

The first step was to check the number of instances for each object depending on its
value. If there was only one instance, it must be either a column or a wall instance, which
means there were no instances embedded in it. Equation (1) was used to reconstruct the
wall, and Equation (2) to reconstruct the column model in Revit 2022. If there was more
than one instance, one of them would be a wall instance, and the others would be any kind
of door instance, which indicates the door instances were embedded in the wall instance.
In this case, the Id of the wall instance from Equation (3) was set to the host variable in
Equation (4). The type of door was set to the symbol variable, and the middle coordinate
of the door was set to the location variable in Equation (4). Finally, the 3D model in Revit
2022 was generated automatically when this script was activated.

4. Results and Discussion

This section covers the quantitative performance metric of object detection and in-
stance segmentation classifiers, identifying failure cases of object recognition and their
downstream impacts on interoperability with modeling software, comparing processing
on floor plans and results of using object detection versus instance segmentation models,
and exploring alternative open-source 3D modeling software (Blender 3.6), as shown in
Figure 1.

4.1. Quantitative Results of Object Detection and Instance Segmentation Classifiers

The average precision with a 0.5 IoU threshold (AP50) of each class is used to evaluate
the results of each classifier and calculated the mean average precision from all five classes
discretely, as shown in Table 1. Comparing the results among classes, the column instances
could mostly be recognized, double door and wall instances have about 70 to 90% average
precision, left-handed door, and right-handed door instances are much more challenging to
be recognized.

Table 1. Average precision of each class for Object Detection and Instance Segmentation Classifiers.

Class Wall L Door R Door Double Door Column mAP

Classifier 1
(Object Detection) 74.5 51.7 47.9 87.9 96.5 71.7

Classifier 2
(Instance Segmentation) 74.4 48.6 50.0 77.1 96.8 69.3

Buildings 2023, 13, 2336 16 of 27

4.2. Inference Results

The object detection and instance segmentation inference results are shown in
Figures 23 and 24, which are a portion of a new floor plan. The colors of bounding
boxes and masks are subject to different classes and the number beside the class label
in Figures 23c and 24c are the confidence probability of the instances.

Buildings 2023, 13, x FOR PEER REVIEW 17 of 28

Classifier 2

(Instance Segmentation)
74.4 48.6 50.0 77.1 96.8 69.3

4.2. Inference Results

The object detection and instance segmentation inference results are shown in Fig-

ures 23 and 24, which are a portion of a new floor plan. The colors of bounding boxes and

masks are subject to different classes and the number beside the class label in Figures 23c

and 24c are the confidence probability of the instances.

(a) (b) (c)

Figure 23. Object detection inference result: (a) Original floorplan; (b) predicted bounding boxes; (c)

floorplan with predicted bounding boxes.

(a) (b) (c)

Figure 24. Instance segmentation inference result: (a) Original floorplan; (b) predicted mask and

bounding boxes; (c) floorplan with predicted mask and bounding boxes.

To visualize the entire floorplan model reconstruction, two different floorplan exam-

ples are shown. The first reconstructed Revit 2022 model was generated from the object

detection system, as shown in Figure 25a, which contains all horizontal and vertical in-

stances. The second one was generated from the instance segmentation system as shown,

in Figure 25b. There are not only vertical and horizontal instances but also some diagonal

walls being constructed.

Figure 23. Object detection inference result: (a) Original floorplan; (b) predicted bounding boxes;
(c) floorplan with predicted bounding boxes.

Buildings 2023, 13, x FOR PEER REVIEW 17 of 28

Classifier 2

(Instance Segmentation)
74.4 48.6 50.0 77.1 96.8 69.3

4.2. Inference Results

The object detection and instance segmentation inference results are shown in Fig-

ures 23 and 24, which are a portion of a new floor plan. The colors of bounding boxes and

masks are subject to different classes and the number beside the class label in Figures 23c

and 24c are the confidence probability of the instances.

(a) (b) (c)

Figure 23. Object detection inference result: (a) Original floorplan; (b) predicted bounding boxes; (c)

floorplan with predicted bounding boxes.

(a) (b) (c)

Figure 24. Instance segmentation inference result: (a) Original floorplan; (b) predicted mask and

bounding boxes; (c) floorplan with predicted mask and bounding boxes.

To visualize the entire floorplan model reconstruction, two different floorplan exam-

ples are shown. The first reconstructed Revit 2022 model was generated from the object

detection system, as shown in Figure 25a, which contains all horizontal and vertical in-

stances. The second one was generated from the instance segmentation system as shown,

in Figure 25b. There are not only vertical and horizontal instances but also some diagonal

walls being constructed.

Figure 24. Instance segmentation inference result: (a) Original floorplan; (b) predicted mask and
bounding boxes; (c) floorplan with predicted mask and bounding boxes.

To visualize the entire floorplan model reconstruction, two different floorplan exam-
ples are shown. The first reconstructed Revit 2022 model was generated from the object
detection system, as shown in Figure 25a, which contains all horizontal and vertical in-
stances. The second one was generated from the instance segmentation system as shown,
in Figure 25b. There are not only vertical and horizontal instances but also some diagonal
walls being constructed.

Buildings 2023, 13, 2336 17 of 27
Buildings 2023, 13, x FOR PEER REVIEW 18 of 28

(a) (b)

Figure 25. Reconstructed Revit 2022 models: (a) From object detection output; (b) from instance

segmentation output.

4.3. Observations and Failure Cases on Inference Results

The observations from the inference result include two parts. The first part is the fail-

ure cases coming from neural network prediction. The second part is the failure cases that

happened when communicating between the neural network output and Revit 2022.

4.3.1. Neural Network Failure Cases

Title block. The building name in the title block was misclassified as a wall since the

alphabet letters contain straight lines similar to the wall instance, as shown in Figure 26.

Two suggestions are provided to prevent these failure cases. The first one is to manually

eliminate the title block before the inference process. The second solution is feeding each

inferred floor plan into an automatic main viewport detection system before making in-

ference.

Figure 26. Title block failure case.

Insufficient diversity of training set. If the instance types or shapes are encountered

that do not appear much in the training set, they would be difficult to recognize. The ex-

pectation of detection and segmentation inference on the instance at the bottom of Figure

27a should be a single horizontal wall, but the result is not consistent as expected, as

shown in Figure 27b, since this wall type is not well represented in the training set. An-

other example is curved wall recognition. Both models can recognize the curved wall in

Figure 28 but cannot recognize it in Figure 29 (the red circle indicates the curved wall)

since there are not many curved walls existing in the training set. The types and shapes of

each class should be more diverse in the training set so that the trained model could be

more capable of recognizing different types and shape instances during the inference pro-

cess.

Figure 25. Reconstructed Revit 2022 models: (a) From object detection output; (b) from instance
segmentation output.

4.3. Observations and Failure Cases on Inference Results

The observations from the inference result include two parts. The first part is the
failure cases coming from neural network prediction. The second part is the failure cases
that happened when communicating between the neural network output and Revit 2022.

4.3.1. Neural Network Failure Cases

Title block. The building name in the title block was misclassified as a wall since the al-
phabet letters contain straight lines similar to the wall instance, as shown in Figure 26. Two
suggestions are provided to prevent these failure cases. The first one is to manually elimi-
nate the title block before the inference process. The second solution is feeding each inferred
floor plan into an automatic main viewport detection system before making inference.

Buildings 2023, 13, x FOR PEER REVIEW 18 of 28

(a) (b)

Figure 25. Reconstructed Revit 2022 models: (a) From object detection output; (b) from instance

segmentation output.

4.3. Observations and Failure Cases on Inference Results

The observations from the inference result include two parts. The first part is the fail-

ure cases coming from neural network prediction. The second part is the failure cases that

happened when communicating between the neural network output and Revit 2022.

4.3.1. Neural Network Failure Cases

Title block. The building name in the title block was misclassified as a wall since the

alphabet letters contain straight lines similar to the wall instance, as shown in Figure 26.

Two suggestions are provided to prevent these failure cases. The first one is to manually

eliminate the title block before the inference process. The second solution is feeding each

inferred floor plan into an automatic main viewport detection system before making in-

ference.

Figure 26. Title block failure case.

Insufficient diversity of training set. If the instance types or shapes are encountered

that do not appear much in the training set, they would be difficult to recognize. The ex-

pectation of detection and segmentation inference on the instance at the bottom of Figure

27a should be a single horizontal wall, but the result is not consistent as expected, as

shown in Figure 27b, since this wall type is not well represented in the training set. An-

other example is curved wall recognition. Both models can recognize the curved wall in

Figure 28 but cannot recognize it in Figure 29 (the red circle indicates the curved wall)

since there are not many curved walls existing in the training set. The types and shapes of

each class should be more diverse in the training set so that the trained model could be

more capable of recognizing different types and shape instances during the inference pro-

cess.

Figure 26. Title block failure case.

Insufficient diversity of training set. If the instance types or shapes are encountered
that do not appear much in the training set, they would be difficult to recognize. The
expectation of detection and segmentation inference on the instance at the bottom of
Figure 27a should be a single horizontal wall, but the result is not consistent as expected, as
shown in Figure 27b, since this wall type is not well represented in the training set. Another
example is curved wall recognition. Both models can recognize the curved wall in Figure 28
but cannot recognize it in Figure 29 (the red circle indicates the curved wall) since there
are not many curved walls existing in the training set. The types and shapes of each class
should be more diverse in the training set so that the trained model could be more capable
of recognizing different types and shape instances during the inference process.

Single door prediction. The AP50 of the left-handed door and right-handed door
classes are 0.5. When the prediction results are visualized on floor plan images, the models
can identify the location of doors accurately, but it is hard for the classifier to distinguish
if the door swung left or right, as shown in Figure 30. As a result, merging the labels
of left-handed doors and right-handed doors into a single class called ‘Single Door’ is
recommended. Whether the door opens externally or internally can be determined instead,
as well as the location of the door hinge during post-processing, as shown in Figure 31. The

Buildings 2023, 13, 2336 18 of 27

first post-process step is to identify which side the door opens. Two adjacent rectangles
on each side of the inferred single-door rectangle are created, as shown in Figure 32. The
pixel intensities of both rectangles can be checked to establish which one contains mostly
all white pixels and which one contains some black pixels, the latter indicates the side
door opens. The second step is to create a bar chart from the rectangle containing black
pixels. The x-axis of the bar chart is the length of the rectangle along with inferred door,
divided into small bins. The y-axis is the sum of pixel intensities of each bin, as shown in
Figure 33b. According to the bar chart, the identification of the door hinge position relies
on determining the side with a higher concentration of black pixels, as shown on the left
side in Figure 33a.

Buildings 2023, 13, x FOR PEER REVIEW 19 of 28

(a) (b)

Figure 27. Unseen wall type in training set example: (a) Expected inference result indicated by blue

dash line; (b) real inference result.

(a) (b)

Figure 28. Example of recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

(a) (b)

Figure 29. Example of not recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

Single door prediction. The ���� of the left-handed door and right-handed door

classes are 0.5. When the prediction results are visualized on floor plan images, the models

can identify the location of doors accurately, but it is hard for the classifier to distinguish

if the door swung left or right, as shown in Figure 30. As a result, merging the labels of

left-handed doors and right-handed doors into a single class called ‘Single Door’ is rec-

ommended. Whether the door opens externally or internally can be determined instead,

as well as the location of the door hinge during post-processing, as shown in Figure 31.

The first post-process step is to identify which side the door opens. Two adjacent rectan-

gles on each side of the inferred single-door rectangle are created, as shown in Figure 32.

Figure 27. Unseen wall type in training set example: (a) Expected inference result indicated by blue
dash line; (b) real inference result.

Buildings 2023, 13, x FOR PEER REVIEW 19 of 28

(a) (b)

Figure 27. Unseen wall type in training set example: (a) Expected inference result indicated by blue

dash line; (b) real inference result.

(a) (b)

Figure 28. Example of recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

(a) (b)

Figure 29. Example of not recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

Single door prediction. The ���� of the left-handed door and right-handed door

classes are 0.5. When the prediction results are visualized on floor plan images, the models

can identify the location of doors accurately, but it is hard for the classifier to distinguish

if the door swung left or right, as shown in Figure 30. As a result, merging the labels of

left-handed doors and right-handed doors into a single class called ‘Single Door’ is rec-

ommended. Whether the door opens externally or internally can be determined instead,

as well as the location of the door hinge during post-processing, as shown in Figure 31.

The first post-process step is to identify which side the door opens. Two adjacent rectan-

gles on each side of the inferred single-door rectangle are created, as shown in Figure 32.

Figure 28. Example of recognized curved wall: (a) Object detection inference result; (b) instance
segmentation inference result.

Buildings 2023, 13, x FOR PEER REVIEW 19 of 28

(a) (b)

Figure 27. Unseen wall type in training set example: (a) Expected inference result indicated by blue

dash line; (b) real inference result.

(a) (b)

Figure 28. Example of recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

(a) (b)

Figure 29. Example of not recognized curved wall: (a) Object detection inference result; (b) instance

segmentation inference result.

Single door prediction. The ���� of the left-handed door and right-handed door

classes are 0.5. When the prediction results are visualized on floor plan images, the models

can identify the location of doors accurately, but it is hard for the classifier to distinguish

if the door swung left or right, as shown in Figure 30. As a result, merging the labels of

left-handed doors and right-handed doors into a single class called ‘Single Door’ is rec-

ommended. Whether the door opens externally or internally can be determined instead,

as well as the location of the door hinge during post-processing, as shown in Figure 31.

The first post-process step is to identify which side the door opens. Two adjacent rectan-

gles on each side of the inferred single-door rectangle are created, as shown in Figure 32.

Figure 29. Example of not recognized curved wall: (a) Object detection inference result; (b) instance
segmentation inference result.

Buildings 2023, 13, 2336 19 of 27

Buildings 2023, 13, x FOR PEER REVIEW 20 of 28

The pixel intensities of both rectangles can be checked to establish which one contains

mostly all white pixels and which one contains some black pixels, the latter indicates the

side door opens. The second step is to create a bar chart from the rectangle containing

black pixels. The x-axis of the bar chart is the length of the rectangle along with inferred

door, divided into small bins. The y-axis is the sum of pixel intensities of each bin, as

shown in Figure 33b. According to the bar chart, the identification of the door hinge posi-

tion relies on determining the side with a higher concentration of black pixels, as shown

on the left side in Figure 33a.

Figure 30. Inference result.

Figure 31. External/internal door and door hinge position indication.

Figure 32. Two rectangle creations from the inferred single-door intersection.

 (a) (b)

Figure 30. Inference result.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 28

The pixel intensities of both rectangles can be checked to establish which one contains

mostly all white pixels and which one contains some black pixels, the latter indicates the

side door opens. The second step is to create a bar chart from the rectangle containing

black pixels. The x-axis of the bar chart is the length of the rectangle along with inferred

door, divided into small bins. The y-axis is the sum of pixel intensities of each bin, as

shown in Figure 33b. According to the bar chart, the identification of the door hinge posi-

tion relies on determining the side with a higher concentration of black pixels, as shown

on the left side in Figure 33a.

Figure 30. Inference result.

Figure 31. External/internal door and door hinge position indication.

Figure 32. Two rectangle creations from the inferred single-door intersection.

 (a) (b)

Figure 31. External/internal door and door hinge position indication.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 28

The pixel intensities of both rectangles can be checked to establish which one contains

mostly all white pixels and which one contains some black pixels, the latter indicates the

side door opens. The second step is to create a bar chart from the rectangle containing

black pixels. The x-axis of the bar chart is the length of the rectangle along with inferred

door, divided into small bins. The y-axis is the sum of pixel intensities of each bin, as

shown in Figure 33b. According to the bar chart, the identification of the door hinge posi-

tion relies on determining the side with a higher concentration of black pixels, as shown

on the left side in Figure 33a.

Figure 30. Inference result.

Figure 31. External/internal door and door hinge position indication.

Figure 32. Two rectangle creations from the inferred single-door intersection.

 (a) (b)

Figure 32. Two rectangle creations from the inferred single-door intersection.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 28

The pixel intensities of both rectangles can be checked to establish which one contains

mostly all white pixels and which one contains some black pixels, the latter indicates the

side door opens. The second step is to create a bar chart from the rectangle containing

black pixels. The x-axis of the bar chart is the length of the rectangle along with inferred

door, divided into small bins. The y-axis is the sum of pixel intensities of each bin, as

shown in Figure 33b. According to the bar chart, the identification of the door hinge posi-

tion relies on determining the side with a higher concentration of black pixels, as shown

on the left side in Figure 33a.

Figure 30. Inference result.

Figure 31. External/internal door and door hinge position indication.

Figure 32. Two rectangle creations from the inferred single-door intersection.

 (a) (b)

Figure 33. Door hinge position indication. (a) Inferred door; (b) column chart for door hinge position
identification.

4.3.2. Interoperability Failure Cases

Isolated door instances. The post-processing algorithms in Section 3 could make
the 3D digital reconstruction mostly align with the neural network output, as shown in
Figure 34. For door instances creation in 3D modeling software, all door instances are
assumed to be embedded in their host wall, so Equation (4) is used to generate all door

Buildings 2023, 13, 2336 20 of 27

instances in Revit 2022. However, the case falling out of this assumption is discovered, as
shown in Figure 35. This door cannot be generated during the 3D reconstruction phase
even if this door instance exists in the neural network output. The proposed advice is
that the door instances without a host wall should be isolated during the post-processing
phase, and there are two possible solutions. First, placing the isolated door by creating a
custom door family rather than using Equation (4). Secondly, creating a wall with the same
location, the value of xmin, ymin, xmax, ymax, as the isolated door, and set it to the host wall.

Buildings 2023, 13, x FOR PEER REVIEW 21 of 28

Figure 33. Door hinge position indication. (a) Inferred door; (b) column chart for door hinge position

identification.

4.3.2. Interoperability Failure Cases

Isolated door instances. The post-processing algorithms in Section 3 could make the

3D digital reconstruction mostly align with the neural network output, as shown in Figure

34. For door instances creation in 3D modeling software, all door instances are assumed

to be embedded in their host wall, so Equation (4) is used to generate all door instances in

Revit 2022. However, the case falling out of this assumption is discovered, as shown in

Figure 35. This door cannot be generated during the 3D reconstruction phase even if this

door instance exists in the neural network output. The proposed advice is that the door

instances without a host wall should be isolated during the post-processing phase, and

there are two possible solutions. First, placing the isolated door by creating a custom door

family rather than using Equation (4). Secondly, creating a wall with the same location,

the value of ����, ����, ���� , ���� , as the isolated door, and set it to the host wall.

(a) (b) (c)

Figure 34. A successful case of neural network output and 3D modeling software communication.

(a) Neural network output visualization; (b) 2D floor plan of 3D model reconstruction; (c) 3D model

reconstruction.

Figure 35. The case of a door not embedded in a host wall.

Door instance placement on diagonal merging wall. The neural network output vis-

ualization is shown in Figure 36a, and it could successfully detect or segment the double

door and its host wall, originally two walls adjacent to the door. The 3D reconstruction

after the post-process is shown in Figure 36b, which indicates that merging and pairing

the walls and double door instances are achieved but the double door could not be placed.

The reason is that the ratios of two sides of diagonal door and post-merging wall are dif-

ferent. Because of this, the location of the double door position is not aligned with the

centerline of its host wall after merging, so the double door is missing on the 3D model.

The proposed suggestion is to adjust the position of the door to overlap the centerline of

its host wall.

Figure 34. A successful case of neural network output and 3D modeling software communication.
(a) Neural network output visualization; (b) 2D floor plan of 3D model reconstruction; (c) 3D model
reconstruction.

Buildings 2023, 13, x FOR PEER REVIEW 21 of 28

Figure 33. Door hinge position indication. (a) Inferred door; (b) column chart for door hinge position

identification.

4.3.2. Interoperability Failure Cases

Isolated door instances. The post-processing algorithms in Section 3 could make the

3D digital reconstruction mostly align with the neural network output, as shown in Figure

34. For door instances creation in 3D modeling software, all door instances are assumed

to be embedded in their host wall, so Equation (4) is used to generate all door instances in

Revit 2022. However, the case falling out of this assumption is discovered, as shown in

Figure 35. This door cannot be generated during the 3D reconstruction phase even if this

door instance exists in the neural network output. The proposed advice is that the door

instances without a host wall should be isolated during the post-processing phase, and

there are two possible solutions. First, placing the isolated door by creating a custom door

family rather than using Equation (4). Secondly, creating a wall with the same location,

the value of ����, ����, ���� , ���� , as the isolated door, and set it to the host wall.

(a) (b) (c)

Figure 34. A successful case of neural network output and 3D modeling software communication.

(a) Neural network output visualization; (b) 2D floor plan of 3D model reconstruction; (c) 3D model

reconstruction.

Figure 35. The case of a door not embedded in a host wall.

Door instance placement on diagonal merging wall. The neural network output vis-

ualization is shown in Figure 36a, and it could successfully detect or segment the double

door and its host wall, originally two walls adjacent to the door. The 3D reconstruction

after the post-process is shown in Figure 36b, which indicates that merging and pairing

the walls and double door instances are achieved but the double door could not be placed.

The reason is that the ratios of two sides of diagonal door and post-merging wall are dif-

ferent. Because of this, the location of the double door position is not aligned with the

centerline of its host wall after merging, so the double door is missing on the 3D model.

The proposed suggestion is to adjust the position of the door to overlap the centerline of

its host wall.

Figure 35. The case of a door not embedded in a host wall.

Door instance placement on diagonal merging wall. The neural network output
visualization is shown in Figure 36a, and it could successfully detect or segment the double
door and its host wall, originally two walls adjacent to the door. The 3D reconstruction
after the post-process is shown in Figure 36b, which indicates that merging and pairing the
walls and double door instances are achieved but the double door could not be placed. The
reason is that the ratios of two sides of diagonal door and post-merging wall are different.
Because of this, the location of the double door position is not aligned with the centerline of
its host wall after merging, so the double door is missing on the 3D model. The proposed
suggestion is to adjust the position of the door to overlap the centerline of its host wall.

The thickness of wall instances. The thickness of all wall instances in the 3D recon-
struction model is the same constant value since their length is only defined by giving the
value of xmin, ymin, xmax, ymax. Figure 36a shows that the thickness of the wall instance can
be recognized with a purple circle indication, but this information is ignored to construct
the 3D model in Figure 36b. This can be solved by expanding the Revit 2022 reconstruction
script with additional functionalities offered by the Revit API 2022 so that the model would
be more customized.

Buildings 2023, 13, 2336 21 of 27

Buildings 2023, 13, x FOR PEER REVIEW 22 of 28

The thickness of wall instances. The thickness of all wall instances in the 3D recon-

struction model is the same constant value since their length is only defined by giving the

value of ����, ����, ����, ���� . Figure 36a shows that the thickness of the wall instance

can be recognized with a purple circle indication, but this information is ignored to con-

struct the 3D model in Figure 36b. This can be solved by expanding the Revit 2022 recon-

struction script with additional functionalities offered by the Revit API 2022 so that the

model would be more customized.

(a) (b)

Figure 36. Illustration of missing double door (red circle) and thickness of wall ignorance (purple

circle) during 3D reconstruction. (a) Instance segmentation output visualization; (b) 2D floor plan

of 3D model reconstruction.

4.4. Comparison of Object Detection and Instance Segmentation Results

The main difference between object detection and instance segmentation inference

results is the prediction of instances with irregular shapes. The object detection model

inferred the diagonal walls in Figure 37a with a bounding box surrounding it, as shown

in Figure 37b with red circles, which cause these walls to become horizontal walls in the

3D model, as shown in Figure 37c, since its start point and end point are computed, as

described in Figure 17. In contrast, the instance segmentation model inferred these walls

using a mask with a polygon surrounding it, as shown in Figure 38b, so that its start point

and end point toward the diagonal orientation can be computed. Hence, the instance seg-

mentation model can make the diagonal instances generated in the 3D model correctly

but they would be failure cases if the object detection model is chosen. Although the in-

stance segmentation model seems more robust, there is a trade-off between prediction

accuracy and annotation efforts. When annotating the instances for the instance segmen-

tation task, a polygon needs to be drawn carefully, matching the boundary of the instance,

which needs more time and patience in comparison to drawing a rectangle by giving two

points for the object detection task. To gain a sense of how labeling the instance segmen-

tation task is more time-consuming, the annotation procedure of Figure 39 is timed for the

object detection task and instance segmentation task separately. The result shows that it

took twice as long to do instance segmentation annotation as it did to do object detection

annotation. Accordingly, the proposed recommendation is that the choice between object

detection and instance segmentation should consider time constraints and the number of

irregular instances in the inference floor plan. If the floor plan mostly consists of regular

shape instances, as shown in Figure 40a, the object detection model should be considered

to save time and labor. If there are many irregularly shaped instances, as shown in Figure

40b, it is suitable for implementing instance segmentation tasks for digital reconstruction.

Figure 36. Illustration of missing double door (red circle) and thickness of wall ignorance (purple
circle) during 3D reconstruction. (a) Instance segmentation output visualization; (b) 2D floor plan of
3D model reconstruction.

4.4. Comparison of Object Detection and Instance Segmentation Results

The main difference between object detection and instance segmentation inference
results is the prediction of instances with irregular shapes. The object detection model
inferred the diagonal walls in Figure 37a with a bounding box surrounding it, as shown in
Figure 37b with red circles, which cause these walls to become horizontal walls in the 3D
model, as shown in Figure 37c, since its start point and end point are computed, as described
in Figure 17. In contrast, the instance segmentation model inferred these walls using a
mask with a polygon surrounding it, as shown in Figure 38b, so that its start point and end
point toward the diagonal orientation can be computed. Hence, the instance segmentation
model can make the diagonal instances generated in the 3D model correctly but they would
be failure cases if the object detection model is chosen. Although the instance segmentation
model seems more robust, there is a trade-off between prediction accuracy and annotation
efforts. When annotating the instances for the instance segmentation task, a polygon needs
to be drawn carefully, matching the boundary of the instance, which needs more time
and patience in comparison to drawing a rectangle by giving two points for the object
detection task. To gain a sense of how labeling the instance segmentation task is more
time-consuming, the annotation procedure of Figure 39 is timed for the object detection task
and instance segmentation task separately. The result shows that it took twice as long to do
instance segmentation annotation as it did to do object detection annotation. Accordingly,
the proposed recommendation is that the choice between object detection and instance
segmentation should consider time constraints and the number of irregular instances in
the inference floor plan. If the floor plan mostly consists of regular shape instances, as
shown in Figure 40a, the object detection model should be considered to save time and
labor. If there are many irregularly shaped instances, as shown in Figure 40b, it is suitable
for implementing instance segmentation tasks for digital reconstruction.

Buildings 2023, 13, x FOR PEER REVIEW 23 of 28

(a) (b) (c)

Figure 37. Object detection on diagonal instances inference result (red circles). (a) Original floor

plan; (b) neural network output visualization; (c) 3D model reconstruction.

(a) (b) (c)

Figure 38. Instance segmentation on diagonal instances inference result (red circles). (a) Original

floor plan; (b) neural network output visualization; (c) 3D model reconstruction.

Figure 39. Image of comparing annotation time.

(a) (b)

Figure 37. Object detection on diagonal instances inference result (red circles). (a) Original floor plan;
(b) neural network output visualization; (c) 3D model reconstruction.

Buildings 2023, 13, 2336 22 of 27

Buildings 2023, 13, x FOR PEER REVIEW 23 of 28

(a) (b) (c)

Figure 37. Object detection on diagonal instances inference result (red circles). (a) Original floor

plan; (b) neural network output visualization; (c) 3D model reconstruction.

(a) (b) (c)

Figure 38. Instance segmentation on diagonal instances inference result (red circles). (a) Original

floor plan; (b) neural network output visualization; (c) 3D model reconstruction.

Figure 39. Image of comparing annotation time.

(a) (b)

Figure 38. Instance segmentation on diagonal instances inference result (red circles). (a) Original
floor plan; (b) neural network output visualization; (c) 3D model reconstruction.

Figure 39. Image of comparing annotation time.

Buildings 2023, 13, x FOR PEER REVIEW 23 of 28

(a) (b) (c)

Figure 37. Object detection on diagonal instances inference result (red circles). (a) Original floor

plan; (b) neural network output visualization; (c) 3D model reconstruction.

(a) (b) (c)

Figure 38. Instance segmentation on diagonal instances inference result (red circles). (a) Original

floor plan; (b) neural network output visualization; (c) 3D model reconstruction.

Figure 39. Image of comparing annotation time.

(a) (b)

Figure 40. Floor plan examples: (a) Floor plan contains mostly horizontal and vertical instances;
(b) floor plan contains some diagonal instances.

4.5. Alternative 3D Modeling Software

Instead of commercial 3D modeling software, such as Revit 2022, some users prefer to
use open-source modeling software, such as Blender 3.6, due to its relative accessibility and

Buildings 2023, 13, 2336 23 of 27

flexibility. To explore the capabilities of interoperability for Blender 3.6, the wall detection
output from our previous work is utilized [24] in an attempt to create a 3D wall model.
The neural network output is aggregated in a CSV file, as shown in Figure 41, and the
coordinate system transformation and merging of adjacent wall instances post-process are
conducted. However, the location and class representation of a 3D object in Blender 3.6 is
different from Revit 2022. First, an instance in Revit 2022 is localized by giving its start
point and end point, as shown in Figure 16, but the location of an instance is defined by
giving its center point coordinates, length, width, and height for Blender 3.6, as shown
in Figure 42. Secondly, the function is used to specify the instance class in Revit 2022, as
discussed in Section 4, but the class of an instance is set by providing its IFC class. Thus,
a CSV file is generated containing the IFC class, center point coordinates, length, width,
and height for each instance, as shown in Figure 43. Finally, a script is written to read the
information in a CSV file based on Blender 3.6 Python API and reconstruct the digital wall
model in Blender 3.6, as shown in Figure 44.

Buildings 2023, 13, x FOR PEER REVIEW 24 of 28

Figure 40. Floor plan examples: (a) Floor plan contains mostly horizontal and vertical instances; (b)

floor plan contains some diagonal instances.

4.5. Alternative 3D Modeling Software

Instead of commercial 3D modeling software, such as Revit 2022, some users prefer

to use open-source modeling software, such as Blender 3.6, due to its relative accessibility

and flexibility. To explore the capabilities of interoperability for Blender 3.6, the wall de-

tection output from our previous work is utilized [24] in an attempt to create a 3D wall

model. The neural network output is aggregated in a CSV file, as shown in Figure 41, and

the coordinate system transformation and merging of adjacent wall instances post-process

are conducted. However, the location and class representation of a 3D object in Blender

3.6 is different from Revit 2022. First, an instance in Revit 2022 is localized by giving its

start point and end point, as shown in Figure 16, but the location of an instance is defined

by giving its center point coordinates, length, width, and height for Blender 3.6, as shown

in Figure 42. Secondly, the function is used to specify the instance class in Revit 2022, as

discussed in Section 4, but the class of an instance is set by providing its IFC class. Thus,

a CSV file is generated containing the IFC class, center point coordinates, length, width,

and height for each instance, as shown in Figure 43. Finally, a script is written to read the

information in a CSV file based on Blender 3.6 Python API and reconstruct the digital wall

model in Blender 3.6, as shown in Figure 44.

Figure 41. Neural network output assembled in CSV file.

Figure 42. Blender 3.6 user interface: Instance defined by IFC class, location, and dimensions in

Blender 3.6.

Figure 41. Neural network output assembled in CSV file.

Buildings 2023, 13, x FOR PEER REVIEW 24 of 28

Figure 40. Floor plan examples: (a) Floor plan contains mostly horizontal and vertical instances; (b)

floor plan contains some diagonal instances.

4.5. Alternative 3D Modeling Software

Instead of commercial 3D modeling software, such as Revit 2022, some users prefer

to use open-source modeling software, such as Blender 3.6, due to its relative accessibility

and flexibility. To explore the capabilities of interoperability for Blender 3.6, the wall de-

tection output from our previous work is utilized [24] in an attempt to create a 3D wall

model. The neural network output is aggregated in a CSV file, as shown in Figure 41, and

the coordinate system transformation and merging of adjacent wall instances post-process

are conducted. However, the location and class representation of a 3D object in Blender

3.6 is different from Revit 2022. First, an instance in Revit 2022 is localized by giving its

start point and end point, as shown in Figure 16, but the location of an instance is defined

by giving its center point coordinates, length, width, and height for Blender 3.6, as shown

in Figure 42. Secondly, the function is used to specify the instance class in Revit 2022, as

discussed in Section 4, but the class of an instance is set by providing its IFC class. Thus,

a CSV file is generated containing the IFC class, center point coordinates, length, width,

and height for each instance, as shown in Figure 43. Finally, a script is written to read the

information in a CSV file based on Blender 3.6 Python API and reconstruct the digital wall

model in Blender 3.6, as shown in Figure 44.

Figure 41. Neural network output assembled in CSV file.

Figure 42. Blender 3.6 user interface: Instance defined by IFC class, location, and dimensions in

Blender 3.6.
Figure 42. Blender 3.6 user interface: Instance defined by IFC class, location, and dimensions in
Blender 3.6.

Buildings 2023, 13, 2336 24 of 27Buildings 2023, 13, x FOR PEER REVIEW 25 of 28

Figure 43. CSV file for 3D reconstruction in Blender 3.6.

Figure 44. Three levels of wall instances reconstruction in Blender 3.6.

4.6. Limitations

In summary, a few of the pipeline’s critical limitations are as follows:

 The post-processing pipeline for object detection and instance segmentation outputs

cannot accommodate all conditions, such as an isolation door without a host wall.

 Reconstructing irregular shape instances from instance segmentation outputs is lim-

ited to diagonal instances.

 The parameters of reconstruction models generated from neural network outputs are

limited to length and width.

 This study is limited to the institutional building, which includes bookstore, library,

office, classroom, and auditorium.

4.7. Future Works

The limitations of this work identify several tasks for future studies. Performing some

actions during the preprocessing and post-processing phases should be considered. Dur-

ing the data collection phase, more 2D floorplan data should be augmented and various

object types and shapes of each class that are commonly used in the industry should be

investigated. Adding these diverse objects to the training set could optimize the generali-

zability of the models. Prior to inferring objects on the new floor plan, the floor plan

should be fed into another system that detects the boundary of the main viewport auto-

matically and the floor plan images should be cropped based on the boundary to avoid

detecting wrong instances on the title block. To reconstruct more precise single doors in

Revit 2022, all single doors should be annotated as the same class and post-processing on

predicted single door instances should be conducted to identify the side and hinge of the

door.

To optimize the detail of the 3D reconstruction, it is anticipated that the specific pa-

rameters of the shape can be obtained from neural network outputs. The specific param-

eters are determined by the class and shape of the objects. Take the wall objects as an

example, the current outputs of the neural network, bounding boxes, and masks contain

the location information of the instances. The length and width of each instance are further

computed but are limited to using length and width parameters to describe the shape of

Figure 43. CSV file for 3D reconstruction in Blender 3.6.

Buildings 2023, 13, x FOR PEER REVIEW 25 of 28

Figure 43. CSV file for 3D reconstruction in Blender 3.6.

Figure 44. Three levels of wall instances reconstruction in Blender 3.6.

4.6. Limitations

In summary, a few of the pipeline’s critical limitations are as follows:

 The post-processing pipeline for object detection and instance segmentation outputs

cannot accommodate all conditions, such as an isolation door without a host wall.

 Reconstructing irregular shape instances from instance segmentation outputs is lim-

ited to diagonal instances.

 The parameters of reconstruction models generated from neural network outputs are

limited to length and width.

 This study is limited to the institutional building, which includes bookstore, library,

office, classroom, and auditorium.

4.7. Future Works

The limitations of this work identify several tasks for future studies. Performing some

actions during the preprocessing and post-processing phases should be considered. Dur-

ing the data collection phase, more 2D floorplan data should be augmented and various

object types and shapes of each class that are commonly used in the industry should be

investigated. Adding these diverse objects to the training set could optimize the generali-

zability of the models. Prior to inferring objects on the new floor plan, the floor plan

should be fed into another system that detects the boundary of the main viewport auto-

matically and the floor plan images should be cropped based on the boundary to avoid

detecting wrong instances on the title block. To reconstruct more precise single doors in

Revit 2022, all single doors should be annotated as the same class and post-processing on

predicted single door instances should be conducted to identify the side and hinge of the

door.

To optimize the detail of the 3D reconstruction, it is anticipated that the specific pa-

rameters of the shape can be obtained from neural network outputs. The specific param-

eters are determined by the class and shape of the objects. Take the wall objects as an

example, the current outputs of the neural network, bounding boxes, and masks contain

the location information of the instances. The length and width of each instance are further

computed but are limited to using length and width parameters to describe the shape of

Figure 44. Three levels of wall instances reconstruction in Blender 3.6.

4.6. Limitations

In summary, a few of the pipeline’s critical limitations are as follows:

• The post-processing pipeline for object detection and instance segmentation outputs
cannot accommodate all conditions, such as an isolation door without a host wall.

• Reconstructing irregular shape instances from instance segmentation outputs is limited
to diagonal instances.

• The parameters of reconstruction models generated from neural network outputs are
limited to length and width.

• This study is limited to the institutional building, which includes bookstore, library,
office, classroom, and auditorium.

4.7. Future Works

The limitations of this work identify several tasks for future studies. Performing
some actions during the preprocessing and post-processing phases should be considered.
During the data collection phase, more 2D floorplan data should be augmented and
various object types and shapes of each class that are commonly used in the industry
should be investigated. Adding these diverse objects to the training set could optimize the
generalizability of the models. Prior to inferring objects on the new floor plan, the floor
plan should be fed into another system that detects the boundary of the main viewport
automatically and the floor plan images should be cropped based on the boundary to avoid
detecting wrong instances on the title block. To reconstruct more precise single doors in
Revit 2022, all single doors should be annotated as the same class and post-processing
on predicted single door instances should be conducted to identify the side and hinge
of the door.

To optimize the detail of the 3D reconstruction, it is anticipated that the specific
parameters of the shape can be obtained from neural network outputs. The specific

Buildings 2023, 13, 2336 25 of 27

parameters are determined by the class and shape of the objects. Take the wall objects as an
example, the current outputs of the neural network, bounding boxes, and masks contain
the location information of the instances. The length and width of each instance are further
computed but are limited to using length and width parameters to describe the shape of
each instance. For the new system, the shape of the wall would be identified to determine
the subsequent process. If the object is a regular shape, the current strategy is used to
reconstruct it and add the thickness and height values to the 3D models. The thickness
of each instance is extracted from width information and written to the Revit 2022 model
by Revit API 2022. To add height parameters, an OCR (Optical Character Recognition)
detection system could be trained on elevation plans. The system would read the text
of height values on elevation plans and input the height parameter of instances in Revit
2022. On the other hand, if the system detects a curved wall, it not only adds the thickness
and height values but also outputs the curvature of the wall. The curvature information
can link to the Revit 2022 model by Revit API 2022. In addition to architectural drawings
recognition, the analogous pipeline outlined in this research can be employed for structure
and MEP drawings recognition tasks. Investigating and comparing the performance in this
regard represents a valuable avenue for research.

5. Conclusions

This paper presents automated 3D Revit 2022 model reconstruction from 2D floor
plans. The reconstructed classes are single doors, double doors, columns, and walls. Object
detection and instance segmentation tasks are conducted and compared. The performance
metric of object detection and instance segmentation models indicate average precision of
all categories beyond 74% except for the single doors category. Combining left and right
single doors is suggested to optimize the performance drastically. Revit API 2022 is used
for communicating with neural network output after the post-processing step. From the
reconstruction of Revit 2022 models, some failure cases are raised from the neural network,
including the wrong detection on the title block, insufficient diversity of shapes and types
in the training set, and object detection on irregular shape instances. The optimization of
the post-processing steps is raised, including isolating the door in-stance without the host
wall, manipulating the location of the door on post-merging diagonal walls, and adding a
parameter of thickness to the model. For the comparison of object detection and instance
segmentation, the instance segmentation model performs more precise results on diagonal
instances but is more time-consuming during the labeling phase. The suggested decision
of choosing between these two models should consider project time and the number of
irregular shape instances in the floor plan.

In the future, the proposed recognition system is intended to expand more parameters,
such as the height and width of instances, and apply to structural and MEP drawings
automatic recognition. The reconstruction process and discussion in this study could be of
practical use and guidance for 2D to 3D digital transformation in the AEC industry.

Author Contributions: Conceptualization, C.W., M.G. and T.C.; methodology, C.W., M.G. and T.C.;
software, C.W.; validation, C.W., M.G. and T.C.; formal analysis, C.W.; investigation, C.W., M.G. and
T.C.; resources, C.W.; data curation, C.W.; writing—original draft preparation, C.W.; writing—review
and editing, C.W., M.G. and T.C.; visualization, C.W.; supervision, T.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Buildings 2023, 13, 2336 26 of 27

Appendix A

Buildings 2023, 13, x FOR PEER REVIEW 27 of 28

Figure A1. Detailed Object detection inference and post-process pipeline.

Figure A2. Instance Segmentation inference and post-process pipeline.

References

1. Ullah, K.; Lill, I.; Witt, E. An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. In Proceedings of

the 10th Nordic Conference on Construction Economics and Organization, Tallinn, Estonia, 7–8 May 2019; Lill, I., Witt, E., Eds.;

Emerald Reach Proceedings Series; Emerald Publishing Limited: Bingley, UK, 2019; Volume 2, pp. 297–303.

2. Park, S.; Kim, H. 3DPlanNet: Generating 3D Models from 2D Floor Plan Images Using Ensemble Methods. Electronics 2021, 10,

2729.

3. Mishra, S.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Towards Robust Object Detection in Floor Plan Im-

ages: A Data Augmentation Approach. Appl. Sci. 2021, 11, 11174.

Figure A1. Detailed Object detection inference and post-process pipeline.

Buildings 2023, 13, x FOR PEER REVIEW 27 of 28

Figure A1. Detailed Object detection inference and post-process pipeline.

Figure A2. Instance Segmentation inference and post-process pipeline.

References

1. Ullah, K.; Lill, I.; Witt, E. An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. In Proceedings of

the 10th Nordic Conference on Construction Economics and Organization, Tallinn, Estonia, 7–8 May 2019; Lill, I., Witt, E., Eds.;

Emerald Reach Proceedings Series; Emerald Publishing Limited: Bingley, UK, 2019; Volume 2, pp. 297–303.

2. Park, S.; Kim, H. 3DPlanNet: Generating 3D Models from 2D Floor Plan Images Using Ensemble Methods. Electronics 2021, 10,

2729.

3. Mishra, S.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Towards Robust Object Detection in Floor Plan Im-

ages: A Data Augmentation Approach. Appl. Sci. 2021, 11, 11174.

Figure A2. Instance Segmentation inference and post-process pipeline.

References
1. Ullah, K.; Lill, I.; Witt, E. An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. In Proceedings of the

10th Nordic Conference on Construction Economics and Organization, Tallinn, Estonia, 7–8 May 2019; Lill, I., Witt, E., Eds.; Emerald
Reach Proceedings Series; Emerald Publishing Limited: Bingley, UK, 2019; Volume 2, pp. 297–303.

2. Park, S.; Kim, H. 3DPlanNet: Generating 3D Models from 2D Floor Plan Images Using Ensemble Methods. Electronics 2021,
10, 2729. [CrossRef]

https://doi.org/10.3390/electronics10222729

Buildings 2023, 13, 2336 27 of 27

3. Mishra, S.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Towards Robust Object Detection in Floor Plan Images:
A Data Augmentation Approach. Appl. Sci. 2021, 11, 11174. [CrossRef]

4. Zhao, Y.; Deng, X.; Lai, H. Reconstructing BIM from 2D structural drawings for existing buildings. Autom. Constr. 2021,
128, 103750. [CrossRef]

5. Dodge, S.; Xu, J.; Stenger, B. Parsing floor plan images. In Proceedings of the 2017 Fifteenth IAPR International Conference on
Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 358–361.

6. Kalervo, A.; Ylioinas, J.; Häikiö, M.; Karhu, A.; Kannala, J. CubiCasa5K: A Dataset and an Improved Multi-task Model for
Floorplan Image Analysis. arXiv 2019, arXiv:1904.01920.

7. Sandelin, F. Semantic and Instance Segmentation of Room Features in Floor Plans Using Mask R-CNN. Master’s Thesis, Uppsala
University, Uppsala, Sweden, 2019.

8. Umapathy, S.G.; Iliev, A.I. Segmentation of Floorplans and Heritage Sites: An Approach to Unbalanced Dataset. J. Digit. Present.
Preserv. Cult. Sci. Herit. 2022, 12, 205–216.

9. Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future
Directions. Computers 2023, 12, 91. [CrossRef]

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

11. Xiao, Y.; Chen, S.; Ikeda, Y.; Hotta, K. Automatic Recognition and Segmentation of Architectural Elements from 2D Drawings by
Convolutional Neural Network. In Proceedings of the 25th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA), Bangkok, Thailand, 5–6 August 2020; Volume 1, pp. 843–852.

12. Jang, H.; Yu, K.; Yang, J. Indoor reconstruction from floorplan images with a deep learning approach. ISPRS Int. J. Geo-Inf. 2020,
9, 65. [CrossRef]

13. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848.
[CrossRef] [PubMed]

14. Seo, J.; Park, H.; Choo, S. Inference of drawing elements and space usage on architectural drawings using semantic segmentation.
Appl. Sci. 2020, 10, 7347. [CrossRef]

15. Kippers, R.G.; Koeva, M.; Keulen, M.; Elberink, S.J. Automatic 3D building model generation using deep learning methods based
on CityJSON and 2D floor plans. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 49–54. [CrossRef]

16. Verykokou, S.; Ioannidis, C. An Overview on Image-Based and Scanner-Based 3D Modeling Technologies. Sensors 2023, 23, 596.
[CrossRef] [PubMed]

17. Lu, Q.; Chen, L.; Li, S.; Pitt, M. Semi-Automatic Geometric DFwiigital Twinning for Existing Buildings Based on Images and CAD
Drawings. Autom. Constr. 2020, 115, 103183. [CrossRef]

18. Yang, B.; Liu, B.; Zhu, D.; Zhang, B.; Wang, Z.; Lei, K. Semiautomatic Structural BIM-Model Generation Methodology Using CAD
Construction Drawings. J. Comput. Civ. Eng. 2020, 34, 1–17. [CrossRef]

19. Missing Elements When Importing IFC Model with User IFC Template in Revit. Autodesk. Available online: https://www.autodesk.
com/support/technical/article/caas/sfdcarticles/sfdcarticles/Missing-elements-when-importing-IFC-model-with-user-IFC-
template-in-Revit.html (accessed on 15 August 2023).

20. Some Room Objects are Missing after Import IFC File to Revit. Autodesk. Available online: https://www.autodesk.com/support/
technical/article/caas/sfdcarticles/sfdcarticles/Some-Room-objects-are-missing-after-import-IFC-file-to-Revit.html (accessed
on 15 August 2023).

21. Russell, B.; Torralba, A.; Murphy, K.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. J. Comput.
Vis. 2007, 77, 157–173. [CrossRef]

22. Huyen, C. Designing Machine Learning Systems; O’Reilly Media Inc.: Sebastopol, CA, USA, 2022.
23. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2; GitHub: San Francisco, CA, USA, 2019.
24. Wei, C.; Gupta, M.; Czerniawski, T. Automated Wall Detection in 2D CAD Drawings to Create Digital 3D Models. In Proceedings

of the 39th International Symposium on Automation and Robotics in Construction (ISARC), Bogota, Colombia, 12–15 July 2022;
pp. 152–158.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app112311174
https://doi.org/10.1016/j.autcon.2021.103750
https://doi.org/10.3390/computers12050091
https://doi.org/10.3390/ijgi9020065
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.3390/app10207347
https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-49-2021
https://doi.org/10.3390/s23020596
https://www.ncbi.nlm.nih.gov/pubmed/36679393
https://doi.org/10.1016/j.autcon.2020.103183
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000885
https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Missing-elements-when-importing-IFC-model-with-user-IFC-template-in-Revit.html
https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Missing-elements-when-importing-IFC-model-with-user-IFC-template-in-Revit.html
https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Missing-elements-when-importing-IFC-model-with-user-IFC-template-in-Revit.html
https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Some-Room-objects-are-missing-after-import-IFC-file-to-Revit.html
https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/Some-Room-objects-are-missing-after-import-IFC-file-to-Revit.html
https://doi.org/10.1007/s11263-007-0090-8

	Introduction
	Related Work
	Processing 2D Floor Plans Using Object Detection and Instance Segmentation
	Different Approaches for 3D Model Generation

	Methodology
	Data Creation
	Object Detection and Instance Segmentation Model Training
	Object Detection Inference and Post-Processing
	Post-Process 1: Coordination System Transformation
	Post-Process 2: Merging Adjacent Instances
	Post-Process 3: Pairing Door and Host Wall Instances

	Instance Segmentation Inference and Post-Processing
	Distinguish the Shape of the Instance
	3 Post-Processing Steps

	3D Model Reconstruction in Revit 2022

	Results and Discussion
	Quantitative Results of Object Detection and Instance Segmentation Classifiers
	Inference Results
	Observations and Failure Cases on Inference Results
	Neural Network Failure Cases
	Interoperability Failure Cases

	Comparison of Object Detection and Instance Segmentation Results
	Alternative 3D Modeling Software
	Limitations
	Future Works

	Conclusions
	Appendix A
	References

