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Abstract: To improve the accuracy of concrete crack measurement with a machine vision method in
structural health monitoring and in technical status evaluation, a subpixel crack measurement method
based on the partial area effect was proposed. (1) First, a pixelwise crack image segmentation method
was established through a multi-step process of multi-threshold fusion and morphology operation,
and a novel pixel degree crack width calculation method was developed with the extraction of the
middle points, the center line and its normal, and the intersection of the center line normal and
crack edges. (2) Then, a subpixel algorithm based on the partial area effect was introduced to locate
vertical, horizontal, and oblique cracks in subpixel crack edges, and the subpixel crack width could
be calculated along the crack center line pixelwise. (3) Finally, the proposed method was verified by
indoor concrete beam crack measurement tests with a digital microscope, and the results show that
the maximum relative errors of the subpixel width of the horizontal, vertical, and oblique straight
cracks measured by the proposed method were 3.06%, 8.97%, and 5.16%, respectively. The absolute
error of the crack length was less than 0.30 mm, and the measurement accuracy could reach 0.01 pixels.
The subpixel crack measurement method provides a novel possible solution for structural health
monitoring.

Keywords: concrete surface crack; parameter measurements; partial area effect; subpixel location

1. Introduction

Cracks in substantial concrete structures, including in-service bridges, tunnels, and
dams, can pose a danger to the operational safety of the structures, and it is essential to
conduct regular inspections and evaluations of cracks, along with long-term monitoring of
their condition, to ensure that structures remain in optimal technical condition. The method
of periodic inspection is mainly manual visual inspection, which is often not precise enough
and prone to produce inconsistent results [1,2]. Long-term status monitoring is costly and
time consuming, and it can only monitor changes in crack width. Moreover, the number
of monitoring points is limited, making it suitable only for the status monitoring of a few
specific cracks [3]. To enhance the safety status of structures and improve the efficiency
of structural health monitoring, researchers have presently achieved automated physical
inspections of structures [4]. Furthermore, these are capable of the automatic detection and
segmentation of structures with damage [5].

In recent years, machine vision crack recognition methods based on deep learning
have made great progress (black-box techniques) [6]. There are many networks applied in
crack recognition, including residual networks (ResNet) [7], fully convolutional networks
(FCN) [8], and convolutional neural networks (CNN) [9]. Dais used deep learning to iden-
tify cracks in masonry walls [10]. Zhang used the BC MobileNet network model to identify
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cracks in bridges [11]. And Wu used a U-net network model to identify road cracks [12]. Li
proposed a convolutional neural network and naive Bayesian data fusion method, which
solves the problems of inefficiency and low accuracy of traditional visual feature-based
defect detection methods [13]. Wang utilized a ResNet to enhance measurement accuracy
and crack recognition [14]. Ali studied the application of a convolutional neural network in
crack detection, and the limitations of machine vision techniques (white-box techniques)
and machine learning in crack recognition were discussed [15]. Deep learning and tradi-
tional image process methods can be combined to solve crack detection problems (grey-box
techniques) [16]. Despite the success of deep learning techniques in concrete crack detection,
the decision-making process of deep learning is characterized by its lack of interpretability.
The accuracy of the results produced by deep learning techniques depends on the network
used and requires large datasets for training, along with significant computational power.

The traditional image process method has the advantages of high interpretability and
efficiency and does not demand a large dataset and computational power. Therefore, there is
still a place for the development of the image process method. Researchers have established
a variety of concrete crack image segmentation methods to extract cracks and calculate
crack length and width. Tang used a bilateral filtering and image adaptive chunking
method to achieve the detection of cracks in tunnels [17]. Sun proposed an improved
seed fill algorithm and designed a concrete surface crack image recognition system that
calculates the number of crack bars and their length and width [18]. Han combined deep
learning with digital image technology and used the improved edge gradient method to
locate and calculate the maximum width of the pixel crack [19]. Liu proposed an improved
crack detection algorithm based on structural analysis, specifically targeting images of
crack defects in underground tunnels [20]; addressing the challenges encountered in
traditional pipeline crack detection, Altabey developed an image processing-based method
for detecting pipeline cracks in complex environments [21]. Pantoja-Rosero proposed a
novel algorithm to calculate displacement maps in tangential and normal directions in a
crack skeleton from a binary image by a Euclidean transformation model and non-linear
least squares-based optimization method [22]. However, the measurement precision of
the traditional image process method is at a pixel level, which may result in significant
errors in high-precision measurement conditions—for example, measuring minute cracks
variations changed with time.

High-precision crack measurement is in urgent demand by infrastructure inspection
and health monitoring services; China’s Technical Specification for Digital Image Inspection
of Engineering Structures requires a minimum width measurement of 0.1 mm for digital
image methods [23]. For highway bridges, the standard is even finer at 0.01 mm. These
high-precision measurement requirements pose significant challenges for the selection of
machine vision equipment, as well as data transmission and storage. The pixel parameter
calculation method is inadequate for practical engineering requirements. Consequently, a
subpixel-based location method has attracted extensive attention from researchers. Chen
used a cubic polynomial fitting image edge to achieve subpixel localization [24], and
Luo suggested an enhanced gray-moment subpixel edge detection algorithm, yielding a
measurement accuracy of approximately 0.06~0.08 pixels [25]. Trujillo proposed a subpixel
edge positioning approach that is based on the partial area effect and can eventually
compute the subpixel coordinates, inclination, and curvature of the edges [26]. Subpixel
location algorithms are promising in infrastructure crack width and length calculation,
but they have not attracted enough attention from researchers and are not employed in
high-precision crack measurement and crack parameter extraction.

In this paper, we present a novel white-box approach focused on enhancing the preci-
sion of crack measurements in concrete structures. Different from the crack segmentation
method in the current literature, our approach incorporates a subpixel algorithm based on
the partial area effect, and it significantly improves the precision of crack detection. This
method is distinct in its ability to accurately locate both pixel and subpixel crack edges, an
advancement over traditional pixel-based techniques.
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The measurement of cracks on concrete structure surface proposed in this paper
mainly includes the following parts: 1⃝ Acquisition of crack images using a civil camera;
2⃝ Identification of crack images using grayscale threshold, area threshold and morphologi-

cal operations; 3⃝ Acquisition of crack edges and crack center lines by a 4-neighbourhood
convolution kernel; 4⃝ Calculation the crack precise width and length by subpixel algorithm
of the partial area effect. As stated above, our approach is a process composed of crack
image capture, identification, feature extraction and parameter calculation. The overall
framework of crack image identification is shown in Figure 1.
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Figure 1. Crack measurement process.

2. Pixelwise Crack Image Segmentation and Parameters Extraction

In this section, we propose a multi-threshold segmentation method that integrates
grayscale, area, and connection thresholds. This method is designed to denoise concrete
crack images and detect cracks at the pixel level.

Common segmentation approaches, such as those based on thresholds, gradients,
and regions, are considered standard. Our method advances these by combining multiple
thresholds to enhance the precision and accuracy of crack segmentation in concrete structures.

2.1. Pixel Image Segmentation with Multi-Threshold Fusion
2.1.1. Grayscale Threshold Segmentation of Images

Grayscale threshold segmentation can separate crack areas in an image from the image
background. A reasonable grayscale threshold T is the foundation for maximizing crack
extraction and ensuring accurate results. When using a grayscale threshold for image
crack segmentation, pixels smaller than grayscale threshold T are identified as cracks
and assigned a value of 1; pixels greater than or equal to the grayscale threshold T are
recognized as background and assigned a value of 0, i.e.,

I(x, y) =

{
1, F(x, y) < T
0, F(x, y) ≥ T

(1)

where F(x, y) represents the grayscale value of any pixel in the original image, and I(x, y)
represents the grayscale value of the pixel after grayscale threshold segmentation.

The grayscale threshold T is crucial for the accuracy of crack segmentation. If the
grayscale threshold T is set too large, it will cause background pixels to be mistakenly
recognized as cracks, resulting in oversegmentation. Conversely, if the grayscale threshold
T is set too small, it will cause the crack pixels to be mistakenly recognized as background,
resulting in undersegmentation. Common methods for grayscale threshold segmentation
include the iterative method, the Otsu method, and the self-set threshold method.

The iterative method is a method for iteratively calculating the grayscale threshold
of images, suitable for crack images with bimodal histograms. It starts with an initial
threshold T0, set as the average of the image’s maximum and minimum grayscale values,
and an allowable error t0. 1⃝ The image is then segmented into background (F1) and crack
(F2) regions using T0. 2⃝ The mean grayscales for F1 (µ1) and F2 (µ2) can be calculated,
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and a new threshold T1 can be calculated as the average of µ1 and µ2. 3⃝ If the absolute
difference between T1 and T0 is less than t0, the process stops and T0 is set as the final
threshold for image segmentation. Otherwise, T1 is assigned to T0, and the above steps are
repeated until the absolute difference between T1 and T0 is less than t0. The workflow is
shown in Figure 2.
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The Otsu method aims to find a grayscale threshold T that maximizes the variance be-
tween cracks and background regions, thereby achieving optimal image segmentation [27].
The self-set threshold method is a subjective selection method based on experience. It in-
volves manually selecting a suitable grayscale threshold T for image segmentation through
understanding and judgment of the image.

To compare the effectiveness of different methods, concrete crack images were seg-
mented using the iterative method, the Otsu method, and the self-set threshold method for
comparison, as shown in Figure 3. The self-set threshold method had grayscale thresholds
T of 64 and 128, respectively. This method necessitates manually setting the grayscale
threshold T for every crack image, which is inefficient. In contrast, the iterative method and
the Otsu method do not require manual adjustment of the grayscale threshold T, making
them more efficient and effective.
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(T = 64). (c) The self-set threshold method (T = 128). (d) The Otsu method. (e) The iterative method.

The threshold calculation results and time consumption of the iterative method and
the Otsu method are shown in Table 1. The results indicate that the grayscale thresholds ob-
tained by the iterative method and the Otsu method are very close, with a difference of only
0.09; However, in terms of computational efficiency, the iterative method is superior to the
Otsu method (73 ms faster than the Otsu method for every 1000 executions). Therefore, this
paper adopts the iterative method for calculating and determining the grayscale threshold.
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Table 1. Iterative and Otsu method threshold calculation results.

Segmentation Method Grayscale Threshold Execution 1000 times/ms

Iterative method 77.91 290
Otsu method 78 363

2.1.2. Area Threshold Denoise

The binary image obtained by using a grayscale threshold for image segmentation
contains noise caused by poor lighting, concrete surface stains, aggregates, etc. There are
two types of crack image noise, one is low reflection coefficient noise in the concrete area,
and the other is high reflection coefficient noise in the crack area, as shown in Figure 4.
To improve the accuracy of crack identification, these noises need to be removed. If the
set of connected pixels in an image is a connected domain G1, . . ., GN, then the area of
the corresponding connected domain is A1, . . ., AN, measured in the number of pixels.
There are mainly two connectivity validation algorithms: 4-neighbourhood algorithm
and 8-neighbourhood algorithm. The 4-neighbourhood algorithm searches horizontally
and vertically, as shown in Figure 5a, while the 8-neighbourhood algorithm searches
horizontally, vertically and obliquely, as shown in Figure 5b. For crack exterior noise, as
shown in Figure 4a, the 8-neighbourhood algorithm will consider the crack edge noise
and the crack as the same set of pixels, so this type of noise cannot be removed using the
8-neighbourhood algorithm. In contrast, the 4-neighbourhood algorithm can distinguish
between this type of noise and cracks, and can effectively remove it. σA of the connected
domain area is used as the area threshold Tarea [28]. Any connected domain with an area
less than this threshold is considered noise, i.e.,

I(x, y)Gi
=

{
0, Ai < Tarea = σA
1, Ai ≥ Tarea = σA

(2)
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Figure 4. Binary image noise. (a) Crack surface noise; (b) 8-neighborhood connectivity noise removal;
(c) 4-neighborhood connectivity noise removal.
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To eliminate internal noise in cracks, it is imperative to invert the binary image and
subsequently eliminate the noise using Equation (2).

In the grayscale thresholding stage, the grayscale threshold should be set slightly
higher so that the retained parts are slightly larger than the crack area, to prevent crack
pixels from being filtered out. Furthermore, in the area size thresholding segmentation stage,
the area threshold is determined by 4-neighborhood connectivity, effectively identifying
and excluding regions that do not belong to the crack. This method ensures that the final
segmented image predominantly contains actual crack features.

Though the above steps, we have established a multi-step, multi-threshold fusional
infrastructure crack segmentation method, and pixel crack image map can be obtained.

2.2. Crack Parameter Extraction

After segmenting the crack images using the multi-threshold fusion algorithm, it is
necessary to perform a quantitative calculation of the crack length, width, and other relevant
parameters for structure status evaluation and integrity assessment. In this section a crack
parameter calculation was proposed that involved three steps, first used 4-neighbourhood
convolution method to detect the crack edges, then the crack center line were generated by
crack edges. At last, the crack width could be calculated by crack edges and perpendicular
line of the center line, and the crack length could be calculated by the smallest outer
rectangle of the center line.

2.2.1. Crack Edge Extraction Based On4-Neighbourhood Convolution

In the concrete crack binary image, the crack pixels are ones and concrete are all
zeros, as a result, all internal crack pixels are all in four connectivity with crack pixels,
but the boundary crack pixels do not satisfy this condition. So only pixels whose 4-
neighbourhood convolution value is five are considered as internal crack pixels, or non-
edge pixels, otherwise are classified as boundary crack pixels, also call crack edges. In view
of this property, a new crack edge extraction was proposed based on 4-neighbourhood
convolution. Figure 6 shows the convolutional kernel used, and Table 2 is the detailed
illustration of the crack’s edges extraction steps.
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The crack edge detection method proposed is different from the Canny edge detection
algorithm [29] in the efficiency and the selection of threshold, where there is no need to set
the threshold manually by iterative thresholding method and the standard deviation of all
connected domain areas in proposed method, while two threshold value need manually
selection. Moreover, the proposed method enhanced the computation efficiency of crack
detection than the Canny method, as shown in Table 3.
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Table 2. Crack edge extraction process.

Step Image

1. Importing crack images.
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Edge Extraction Method Execution 1000 times/ms

Canny edge detection algorithm 170
4-neighborhood convolution 227

2.2.2. Crack Center Line Extraction

After extracting the crack edges, the skeleton line needs to be extracted to calculate
crack length. Zhang proposed an iterative skeleton line extraction method to refine the
crack to a 1-pixel thickness line through iterations of two local conditional judgments
each iteration [30]; however, the algorithm led to the decreases in the crack length with an
increased number of iterations, which made the measured crack length shorter than the
actual crack length, as shown in Figure 7.

To avoid such errors in crack length and width measure, the center line instead of
the skeleton line was proposed to extract straight cracks precision parameter, and straight
cracks could be three types of cracks, vertical, horizontal and oblique cracks, based on the
direction of crack extension and inclination [31]. For simplicity, take straight vertical cracks
as an example, there are only two edge pixel points in each row of the image crack region in
ideal conditions, as shown in Figure 8a, and the centroid of the crack in each row could be
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calculated using the corresponding two crack edge points extracted. In nonideal conditions,
there are more than two edge pixel points in each row of the image crack region, also
shown Figure 8a, the two nearest pixel points in each edge are selected to determine the
centroid of the row. In this way, the center line of straight vertical crack could be detected
by connecting all center points in each row, as shown in Figure 8b.
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Figure 8. Center line extraction model based on image row direction. (a) Crack image edge situation.
(b) Crack center line.

It should be noted that the proposed center line extraction model can only be applied
to straight cracks, and curved, intersected cracks are not taken into consideration to avoid
complex geometric properties and relations. For the crack extended along horizontal
direction, its center line could also be extracted after a after a 90◦ rotation transformation,
as shown in Figure 9.
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For straight cracks, the curvature is small and local curve length could be neglected,
so the crack length could be approximately characterized by the diagonal length of the
smallest outer rectangle of the crack center line. Assuming that the coordinates of the
two endpoints of the crack center line are (x0, y0) and (xn, yn), the length and width of
the smallest outer rectangle of the crack center line are|y0 − yn|, |x0 − xn|, respectively.

Therefore, the length of the crack is l =
√
(yn − y0)

2 + (xn − x0)
2, and the schematic

diagram of crack length calculation is shown in Figure 10.
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3. Subpixel Crack Width Calculation

Accurate measurement of cracks is critical for assessing the structural integrity, and
the application of traditional pixel-level crack detection methods is restricted due to its
limited measurement precision, leading to potential inaccuracies threat in quantifying fine
cracks through structure health monitoring. Otherwise, precision measurement with a
high spatial resolution will increase the cost in image device, capture, transmission and
storage. To address this problem, a subpixel algorithm based on the partial area effect is
introduced to improve crack measurement precision over conventional pixel-level crack
detection without significant cost in economy and time consumption.
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3.1. Subpixel Edge Localization with the Partial Area Effect

Subpixel edge location algorithms can improve the measurement accuracy by subdi-
viding a pixel into aa much finer measurement unit with the help of the local gray gradient
matrix, and can satisfy the requirement of Technical Specification for Digital Image Inspection of
Engineering Structures and highway bridge structural health monitoring. So subpixel edge
location attract the wide attention of researchers, literature review indicate that current sub-
pixel edge algorithms were based on interpolation [24], moment methods [25], and partial
area effect methods [26]. Partial area effect methods can efficiently extract edge position,
orientation and curvature, and work well even for crack images with noisy and blurred
edges from complex environments. So, in this section, the partial area effect algorithm
proposed by Trujillo in 2013 is introduced in crack edge location, and the key steps are
briefly described as follows.

(1) Suppose the edge is a straight line expressed as y = a + bx, and the slope is between 0
and 1. For any pixel point on the crack edge, a 3 × 5 local pixel neighborhood can be
taken, as shown in Figure 11.
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(2) Assuming that the gray value of pixel is F(x, y), SL, SM and SR are the sum of the
gray values of the left, middle and right columns in the 3 × 5 pixels neighborhood,
respectively, i.e., 

SL =
j+2
∑

n = j−2
Fi−1,n

SM =
j+2
∑

n = j−2
Fi,n

SR =
j+2
∑

n = j−2
Fi+1,n

(3)

In concrete crack images, the gray value of concrete area and crack area are denoted as
A and B, and can be estimated by pixels in the two corner regions of the 3 × 5 neighborhood,
i.e., {

A = 1
3 (Fi,j+2 + Fi+1,j+2 + Fi+1,j+1)

B = 1
3 (Fi−1,j−1 + Fi−1,j−2 + Fi,j−2)

(4)

And the edge straight line coefficient is:{
a = 2SM−5(A+B)

2(A−B)

b = SR−SL
2(A−B)

(5)



Buildings 2024, 14, 151 11 of 17

The subpixel location of (0, a) can be obtained by calculation of the coefficients a
and b according to Equation (5). For a detailed description of the method, please refer to
literature [26].

(3) Repeat the above two steps to find the subpixel coordinates for each crack edge pixels.

3.2. Subpixel Width Calculation of Crack

For pixel-level crack edge detection, the crack width could be calculated along the
skeleton line by the crack width calculation method of the skeleton line [32], but for subpixel
crack computation, the accuracy of the skeleton line and pixel-level crack edge location
is not enough and improvements are demanded on the basis of center line and subpixel
edge location. Similarly, the subpixel crack width computation model of each pixel on the
crack center line could be established, as shown in Figure 12; for any point P on the crack
center line, a certain number of center line points forward and backward in row along the
center line were taken out to fit a polynomial curve. The degree of the polynomial and the
number of points on the crack center line determined as appropriate, by trial and error,
5 points above and under point P, were selected to fit a quadratic polynomial y = ax2 + bx +
c by least square method, as shown in Figure 12.
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In this way, the crack center line can be divided into segmented quadratic polynomials,
and the perpendicular line can also be obtained on each point along the crack. For the point
P, the normal slope of its corresponding quadratic polynomial can be calculated as:

kNp = − 1
kp

(6)

The intersections of the normal line of quadratic polynomial on point P and two crack
edge pixel points are Pl and Pr, the corresponding subpixel edge point are indicated as Fl
(xl, yl) and Fr (xr, yr), and xl, yl, xr, and yr are the subpixel coordinates, respectively. The
subpixel crack width can be calculated as follows.

W =

√
(xl − xr)

2 + (yl − yr)
2 (7)

Repeating the above steps could yield pixel-by-pixel subpixel crack width calculation
along the center line, as shown in Figure 13.
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4. Concrete Crack Parameter Measurement and Verification
4.1. Overview of the Crack Identification Experiment on Concrete Specimens

To verify the accuracy of the proposed subpixel crack width method, a static loading
experiment of 160 mm × 40 mm × 40 mm concrete specimens was carried out indoors, and
the concrete specimens surface cracks were orthogonally photographed by a Nikon D810
camera (Nikon, Tokyo, Japan). At the same time, the crack parameters were measured
by a 50~1600× magnification digital microscope to verify the measurement results from
proposed crack length and width calculation methods. To eliminate the influence of unfa-
vorable complex illumination, two LED lights were employed for auxiliary illumination,
and the test site was arranged, as shown in Figure 14.
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Figure 14. Concrete test crack measurement.

The maximum magnification of the high-precision digital microscope used in the test
was 1600 times, and the parameters of the Nikon D810 camera and the digital microscope
are shown in Table 4.

Table 4. Basic parameters of experiment devices.

Device Name Parameter Specification

Nikon D810 camera

Shutter 1/8000~30 s
Resolution 4800 × 3200

Focus Range 18~300 mm
Available Image Format JPG/PNG

Digital microscope

Resolution 1920 × 1080
Focus Range 15~40 mm

Available Image Format JPG/BMP
Microscopic Magnification 50~1600 times
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4.2. Experiment Result Calculation and Analysis

In the experiment, orthogonal photography was used for crack image acquisition and
the camera was calibrated using the scale factor method. For a target of size D (mm), the
pixel size in the image space is d (pixel) and the scale factor s is calculated as:

s = d/D (8)

Horizontal crack, vertical crack and oblique crack images are selected, and the scale
factors of horizontal, vertical and oblique cracks are 0.007 mm/pixel, 0.009 mm/pixel and
0.006 mm/pixel, respectively, as calculated from Equation (8). At the same time, the scale
factors of a high-precision digital microscope are 0.00696 mm/pixel, 0.00822 mm/pixel and
0.00597 mm/pixel, respectively. And ten points on the center line are chosen on each crack,
as shown in Figure 15.
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Crack width values of ten points, as shown in Figure 15, in horizontal, vertical and
oblique cracks are measured using a digital microscope and the subpixel calculation method
proposed, as shown in Tables 5–7, respectively. Crack length values of cracks in different
directions measured by a microscope and calculated by the proposed method are shown in
Table 8.

Table 5. Horizontal crack widths obtained by different methods.

Point Number 1 2 3 4 5 6 7 8 9 10

A: Measured values/mm 0.237 0.237 0.251 0.278 0.320 0.341 0.334 0.383 0.341 0.327
B: Pixel values/mm 0.222 0.229 0.244 0.266 0.318 0.340 0.340 0.370 0.347 0.347

C: Subpixel values/mm 0.232 0.232 0.249 0.280 0.322 0.341 0.338 0.373 0.342 0.337
|A–B|/A: Relative error/% 6.33% 3.38% 2.79% 4.32% 0.63% 0.29% 1.80% 3.39% 1.76% 6.12%
|A–C|/A: Relative error/% 2.11% 2.11% 0.80% 0.72% 0.63% 0.00% 1.20% 2.61% 0.29% 3.06%

Table 6. Vertical crack widths obtained by different methods.

Point Number 1 2 3 4 5 6 7 8 9 10

A: Measured values/mm 0.123 0.156 0.123 0.156 0.148 0.206 0.156 0.189 0.140 0.280
B: Pixel values/mm 0.122 0.148 0.122 0.139 0.139 0.200 0.165 0.191 0.139 0.286

C Subpixel values/mm 0.125 0.152 0.123 0.142 0.141 0.207 0.166 0.192 0.140 0.279
|A–B|/A: Relative error/% 0.81% 5.13% 0.81% 10.90% 6.08% 2.91% 5.77% 1.06% 0.71% 2.14%
|A–C|/A: Relative error/% 1.63% 2.56% 0.00% 8.97% 4.73% 0.49% 6.41% 1.59% 0.00% 0.36%
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Table 7. Oblique crack widths obtained by different methods.

Point Number 1 2 3 4 5 6 7 8 9 10

A: Measured values/mm 0.149 0.167 0.143 0.275 0.173 0.215 0.231 0.227 0.155 0.157
B: Pixel values/mm 0.155 0.162 0.136 0.285 0.168 0.214 0.226 0.214 0.142 0.168

C: Subpixel values/mm 0.149 0.163 0.146 0.278 0.171 0.215 0.232 0.230 0.163 0.160
|A–B|/A: Relative error/% 4.03% 2.99% 4.90% 3.64% 2.89% 0.47% 2.16% 5.73% 8.39% 7.01%
|A–C|/A: Relative error/% 0.00% 2.40% 2.10% 1.09% 1.16% 0.00% 0.43% 1.32% 5.16% 1.91%

Table 8. Crack lengths of cracks in different directions.

Crack Type Horizontal Crack Vertical Crack Oblique Crack

A: Measured values/mm 4.093 2.457 1.851
B: Subpixel values/mm 4.375 2.578 1.973

|A–B|: Absolute error/mm 0.282 0.121 0.122
|A–B|/A: Relative error/% 6.89% 4.92% 6.59%

Tables 5–7 indicate that the minimum relative errors of the pixel-level measurement of
horizontal, vertical, and oblique cracks are 0.29%, 0.71%, and 0.47%, respectively, while the
maximum relative errors reach 6.33%, 10.90%, and 8.39%. For subpixel measurements, the
minimum relative error is zero, indicating a perfect match between measured and calcu-
lated values, and the maximum relative errors are 3.06%, 8.97%, and 5.16%, respectively.
The average pixel measurement error of three images is 3.64%, whereas the subpixel mea-
surement average error is 1.86%, with a reduction of 1.78% in measurement error. Results
showed that the methodology presented in this paper performed better than pixel-level
measurements and had high accuracy in different types of straight crack width measure-
ments. Table 8 illustrates the different measurement results of crack lengths of horizontal,
vertical and oblique cracks, compared with that using the smallest outer rectangle sug-
gested in this paper, and the results are roughly consistent with the computed values of
other methods. The absolute measurement error is less than 0.30 mm and the maximum
relative error is 6.89%, which also affirmed the practicality and remarkable accuracy of the
proposed methods.

To further validate the high accuracy of the subpixel algorithm, the binary map of
the oblique crack edge is taken as an example; the subpixel coordinates, the pixel-level
coordinates and the coordinate error are shown in Table 9; and only rows 50 to 60 are listed
for simplicity. It can be seen that the measurement accuracy of subpixel coordinates can
reach 0.01~0.09 pixels—approximately 0.05 pixels higher than that of [25].

Table 9. Pixel coordinates, subpixel coordinates and the coordinate error of oblique crack edges.

Pixel Coordinates Subpixel Coordinates Coordinate Error

(50.0, 66.0) (50.0, 66.169) 0.169
(51.0, 67.0) (51.0, 67.016) 0.016
(52.0, 67.0) (52.0, 67.156) 0.156
(53.0, 67.0) (53.0, 67.178) 0.178
(54.0, 68.0) (54.0, 68.045) 0.045
(55.0, 68.0) (55.0, 68.194) 0.194
(56.0, 68.0) (56.0, 68.079) 0.079
(57.0, 69.0) (57.0, 69.195) 0.195
(58.0, 70.0) (58.0, 69.967) 0.033
(59.0, 70.0) (59.0, 70.231) 0.231
(60.0, 71.0) (60.0, 71.053) 0.053
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5. Conclusions and Envisions

This paper proposes a high-precision concrete crack measurement method through a
process of multi-threshold fusion, crack center line abstraction, and subpixel edge location
computation. And the main conclusions are as follows:

(1) This paper proposed a multi-step process and multi-threshold fusion and morphology
operation combined pixelwise crack image segmentation and the parameter extraction
algorithm. In the crack segmentation stage of the algorithm, a 4-neighbourhood
convolution-based edge extraction is developed to detect the crack and experiment
results show that the algorithm is very efficient. In the parameter extraction stage
of the algorithm, the crack center line detection method is developed and the center
line length is present as the crack length calculation method that can be applied both
pixelwise and at the subpixel level.

(2) Based on the principle of the photoelectricity of image capturing, a subpixel algorithm
based on the partial area effect is introduced to locate the subpixel edges of vertical,
horizontal, and oblique cracks, and a novel subpixel crack width calculation method
along the crack center line pixelwise is developed by extraction of middle points, the
center line and its normal, and the intersection of center line normal and crack edges.
With this method, the width of any point along the crack center line can be calculated.

(3) The proposed method is verified by an indoor concrete beam crack measurement
experiment with a digital microscope, and results show that the maximum relative
errors of the subpixel width of horizontal, vertical, and oblique straight cracks mea-
sured by the proposed method are 3.06%, 8.97% and 5.16%, respectively. The absolute
error of the crack length is less than 0.30 mm, and the measurement accuracy can
reach 0.01 pixels.

With the subpixel parameter calculation algorithm proposed, crack evolution moni-
toring in SHM can be easily achieved with precision, and it breaks through the limitation
of traditional pixelwise crack segmentation. However, in complex environments like low
light, severe surface dirt and stains, or great variation in crack width, it is difficult to select
the proper dataset image size to make sure crack images with bimodal histograms can be
obtained, which is prerequisite for iterative or Otsu threshold selection. Further research
should focus on illumination setup, and the fusion of the global and local threshold meth-
ods to make sure more precise threshold values can be chosen. Moreover, curved and
multi-branched cracks pose difficulties for the extraction of the center line geometrically.
Since the localized region of the crack is characterized by a bimodal histogram, our future
work will also focus on converting multi-branched cracks into single branches. Additionally,
when dealing with single-branch curved cracks, segmenting them into multiple straight
cracks will be necessary. These aspects will be the focus of the next phase of our research.
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