
Citation: Qu, J.; Liu, X.; Bai, Y.; Wang,

W.; Li, Y.; Pu, J.; Zhou, C. A Novel

Dual Self-Centering Friction Damper

for Seismic Responses Control of Steel

Frame. Buildings 2024, 14, 407.

https://doi.org/10.3390/

buildings14020407

Academic Editor: Hiroshi Tagawa

Received: 3 January 2024

Revised: 23 January 2024

Accepted: 31 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A Novel Dual Self-Centering Friction Damper for Seismic
Responses Control of Steel Frame
Juntong Qu †, Xinyue Liu †, Yuxiang Bai *, Wenbin Wang, Yuheng Li, Junxiang Pu and Chunlei Zhou

School of Architecture and Planning, Yunnan University, Kunming 650504, China; 15808654138@163.com (J.Q.);
18487091835@163.com (X.L.)
* Correspondence: byx@mail.ynu.edu.cn
† These authors contributed equally to this work.

Abstract: Due to their weight, the seismic response control of buildings needs a large-scale damper.
To reduce the consumption of shape memory alloys (SMAs), this study proposed a dual self-centering
pattern accomplished by the coil springs and SMA, which could drive the energy dissipation device
to recenter. Combined with the friction energy dissipation device (FD), the dual self-centering
friction damper (D-SCFD) was designed, and the motivation and parameters were described. The
mechanical properties of D-SCFD, including the simplified D-SCFD mechanical model, theoretical
index calculations of recentering, and energy dissipation performance, were then investigated. The
seismic response mitigation of the steel frame adopting the D-SCFDs under consecutive strong
earthquakes was finally analyzed. The results showed that a decrease in the consumption of SMA by
the dual self-centering pattern was feasible, especially in the case of low demand for the recentering
performance. Reducing the D-SCFD’s recentering performance hardly affected the steel frame’s
residual inter-story drift ratios when the residual deformation rate was less than 50%, which can help
strengthen the controls on the steel frame’s peak seismic responses. It is recommended to utilize the
D-SCFD with not too high a recentering performance to mitigate the seismic response of the structure.

Keywords: dual self-centering; shape memory alloy; D-SCFD; seismic response mitigation

1. Introduction

Passive energy dissipation devices can provide additional stiffness and damping for
buildings, which improves the safety of buildings by reducing earthquake responses [1,2].
Engineers choose displacement-dependent dampers because of their consistent mechanical
performance and inexpensive production costs [3]. Therefore, displacement-dependent
dampers have been widely used in the construction and seismic strengthening of buildings
located in earthquake-prone areas, such as buckling restrained braces (BRBs), friction
energy dissipation devices (FDs), metallic yielding dampers (MYDs), etc. [4–6]. Traditional
displacement-dependent dampers, on the other hand, run the risk of causing higher post-
earthquake residual deformations of buildings, which can easily raise the economic cost and
technological problems of post-earthquake rehabilitation [7]. In this regard, many scholars
have developed a series of self-centering dampers to improve the recentering performance
of dampers and reduce the post-earthquake residual deformations of buildings [8].

In past research, a kind of self-centering damper simultaneously composed of pre-
stressed tendons and energy dissipation devices has been designed. The prestressed
tendons, which mainly include steel strands, basalt fiber tendons, aramid fiber bundles,
etc. [9–16]. During the unloading process, the prestressed tendons drive energy dissipation
devices to recenter. The self-centering dampers with prestressed tendons often have signifi-
cant demands for prestressing force to obtain the appropriate recentering effect. However,
the demands for high prestressing force will increase the difficulties of manufacturing
the dampers and cause a series of problems, such as tension, anchorage, relaxation of
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the prestressed tendons, etc. In addition, it will lead to excessive elastic deformations of
prestressed tendons, and the maximum deformations of dampers will be limited. Con-
currently, there is significant worry over another type of self-centering damper. These
dampers use mechanisms that compress disc springs or ring springs to drive them to
recenter. Research about its mechanical behavior and the performance of shock absorption
has been carried out. Xu and Fan et al. [17–19] combined the pre-pressed disc springs
and FD into a self-centering energy dissipation brace, conducted the experiments, and
established an axial force formula. Filiatrault et al. [20] proposed a self-centering friction
energy dissipation device for reducing the earthquake responses of buildings based on the
friction hysteresis of ring springs and conducted prototype tests of dampers to observe their
practical mechanical behavior. Khoo et al. [21,22] used ring springs to reduce the residual
deformations of sliding hinge joints and conducted prototype tests of self-centering joints.

A shape memory alloy (SMA) has the good performance of self-centering and energy
dissipation simultaneously, and its plastic deformation caused by external loads will
rapidly dissipate after unloading [23]. Under cyclic load, SMA can also disperse the
input energy, which is suitable for the advancement of self-centering energy dissipation
devices. Qian et al. [24] proposed a self-centering damper-based SMA wire and investigated
how the pre-strain of SMA affects the hysteretic performance of the damper through
tests. Shi et al. [25–28] developed a self-centering energy dissipation brace based on
SMA cables and proved that its hysteretic performance and mitigation for structural
seismic responses were, respectively, researched through mechanical experiments and finite
element analysis. The FD can effectively dissipate the energy input from an earthquake
and protect the components of buildings [29]. Thus, the means of developing self-centering
dampers by combining SMA with FD has attracted much attention. Li et al. [30] proposed
a self-centering FD by connecting the SMA rods in parallel with the FD, and then the
corresponding mechanical tests and parameter analysis were conducted. Chen and Qiu
et al. [31,32] developed a self-centering variable FD in which the SMA elements provided
the pre-tightening force for variable FD and drove the damper to recenter simultaneously.
Zheng et al. [33,34] proposed a self-centering isolator with SMA to mitigate the seismic
response of bridges.

In February 2023, earthquakes with a magnitude of 7.8 and 7.6 occurred in southeast
Turkey successively, just nine hours apart [35]. Multiple aftershocks are frequently felt
in response to a mainshock, and mainshock–aftershock sequences (MS-AS) can cause
structural damage to accumulate and quickly put the structure in a more risky state. For that
reason, lots of scholars have considered MS-AS when investigating the seismic performance
of structures. Lu et al. [36] proposed a method for the seismic damage prediction of regional
buildings that took into account MS-AS. Raghunandan et al. [37] analyzed the aftershock
vulnerability of reinforced concrete (RC) frames and found that the collapse resistance
capacities of buildings would decrease with the strength of MS increasing. Wen et al. [38]
proposed MS-AS damage spectra at soft soil sites. Yu et al. [39] found that the AS reduced
the collapse resistance capacity through the MS-AS vulnerability analysis of inelastic single-
degree-of-freedom systems. Zhou et al. [40] established a seismic demand model for RC
structures and the corresponding formula for estimation of earthquake fragilities, which
showed that the MS-AS would improve the exceedance probability of buildings.

To achieve the recentering effect, the traditional self-centering damper-based SMAs
need a large consumption of SMA, which leads to a high cost. Thus, this study sug-
gested using coil springs and SMA in a dual self-centering (D-SC) drive mode with a low
cost. A novel dual self-centering friction damper (D-SCFD) design was put into practice.
Through small-scale mechanical testing, the impacts of pre-tightening force and loading
displacement amplitudes on D-SCFD’s energy dissipation and recentering performance
were examined. The parameter study was conducted using the simplified mechanical
model of D-SCFD as well as existing index formulas for energy dissipation performance
and recentering. Lastly, the seismic response control impacts of D-SCFD with variable
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recentering performance on SF under MS-AS were examined using a multi-story steel
frame (SF) as the analytical object.

2. Design of D-SCFD
2.1. Configuration of D-SCFD

The main functional elements of D-SCFD are coil springs, SMA rods, and FD with two
sliding surfaces. The D-SC was formed after the connection of coil springs in parallel with
SMA rods. The components of the D-SCFD were as follows: an internal panel, asbestos
friction sheets, external panels with coil spring anchor plates, high-strength bolts, high-
strength nuts, SMA rods, coil springs, guide bars, and a connection block for connecting
the two external panels. The configuration of the D-SCFD is shown in Figure 1.
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Figure 1. Configuration of D-SCFD: (a) planform and (b) side view.

During the assembly process of the FD, two asbestos friction sheets were, respectively,
fixed on the upper and lower surfaces of the internal panel and kept sliding with the
external panels. Screw holes were saved on both sides of the external panels, and the
friction sheets were pre-tightened using high-strength bolts. For the D-SC, the two ends
of the guide bars had reserved holes for the anchorages of the SMA rods and the coil
springs. After the two guide bars, respectively, passed through the corresponding slots
reserved at both ends of the three panels, the two guide bars were connected by SMA rods.
The two ends of the SMA rods were anchored to the guide bars by high-strength nuts.
Each guide bar was attached to the matching anchor plate on the external panels by two
pairs of coil springs. High-strength nuts were also used to secure the ends of coil springs.
Finally, the connection block was welded to one end of the external panels to complete the
D-SCFD system.

2.2. Working Principle of D-SCFD

In the process of the reciprocating motion of the D-SCFD, the SMA rods were always
alternately in two states of tension and recentering. Meanwhile, the coil springs on one
side were alternately in two states of compression and recentering. The axial force response
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of D-SC inhibited the deformation of D-SCFD during loading. In the unloading process,
the restoring force of D-SC was composed of the elastic force of coil springs and the
transformation stress of SMA rods, which drove the D-SCFD to recenter by overcoming the
frictional force generated by the FD.

The working principle of D-SCFD is shown in Figure 2. When the external excitation
caused the tensile deformation of the damper, the relative displacement between the
internal panel and the external panels occurred. It also caused sliding friction between the
friction sheets and the external panels, dissipating the energy intake from seismic excitation.
The internal panel simultaneously pushed the guide bar on one side while the guide bar on
the other side was stationary relative to the external panels, stretching the SMA rods and
compressing the coil springs on one side. When the D-SCFD was compressed, the guide
bar on one side remained motionless in relation to the external panels, while that on the
other was pushed by the internal panel. It compressed the coil springs on the other side
while stretching the SMA rods. The force for the recentering of the damper was provided
by coil springs and SMA rods, reducing the consumption of SMA rods.
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3. Test
3.1. Tensile Test of SMA

According to the literature [32], the mechanical properties of SMA tend to be stable
after cyclic tensile loading. Therefore, before the test of D-SCFD, the SMA rod with a
diameter of 4 mm was trained 20 times under equal-amplitude cyclic tensile loading, which
made the mechanical properties of the SMA rod stable. The contents of nickel and titanium
in the SMA rod were 50.1% and 49.9%, respectively. Meanwhile, the transformation stress
and strain of SMA rods were obtained by the cyclic tensile test under variable amplitude
loading. The loading rate of the tensile tests was set to 5 mm/min, and the ambient
temperature was 15 ◦C. The parameters of the tensile test conditions are shown in Table 1,
and the corresponding loading equipment is shown in Figure 3.
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Table 1. Tensile test conditions of the SMA rod.

No. Section Area of SMA
(mm2)

Loading Rate
(mm/min)

Number of
Loading Cycles

Strain Amplitude
(%)

1 12.57 5 20 5
2 12.57 5 1 3 5 7

Buildings 2024, 14, x FOR PEER REVIEW 5 of 23 
 

 

temperature was 15 °C. The parameters of the tensile test conditions are shown in Table 1, 
and the corresponding loading equipment is shown in Figure 3. 

 
Figure 3. Loading equipment of the SMA rod. 

Table 1. Tensile test conditions of the SMA rod. 

No. 
Section Area of SMA 

(mm2) 
Loading Rate 

(mm/min) 
Number of Loading 

Cycles 
Strain Amplitude 

(%) 
1 12.57 5 20 5 
2 12.57 5 1 3  5  7 

As shown in Figure 4, the constitutive curves from the results of the tensile test re-
vealed that the residual strain of the SMA rod reached 1.98% after the first tension. In the 
subsequent cyclic tensile test under equal amplitude loading, the residual strain became 
small, indicating that the SMA rod had a good capacity for self-centering. With the in-
crease in the number of loading cycles, the SMA stress gradually decreased and tended to 
be stable. The maximum stresses of SMA rods in the 14th and 20th tensile tests were 452.38 
MPa and 446.46 MPa, respectively. The relative difference between both was only 1.33%, 
and the amplitude of the fluctuations was small. The stress of the SMA rod increased lin-
early with the strain increases in the cyclic tensile test under varying amplitude loadings, 
and subsequently, the stress increased at a slower rate when the martensitic transfor-
mation occurred. In the unloading process, the SMA rod with a different initial strain had 
stress–strain curves with three different kinds of slopes, and the descent rate of stress was 
lowest during the reverse martensitic transformation of SMA. The stress–strain curves 
from the tensile tests showed that the SMA rod had good superelastic properties, and the 
mechanical properties after tensile training were less affected by the loading times. The 
transformation stress and strain of SMA with the maximum tensile strain of 7% are shown 
in Table 2. 

Figure 3. Loading equipment of the SMA rod.

As shown in Figure 4, the constitutive curves from the results of the tensile test
revealed that the residual strain of the SMA rod reached 1.98% after the first tension. In the
subsequent cyclic tensile test under equal amplitude loading, the residual strain became
small, indicating that the SMA rod had a good capacity for self-centering. With the increase
in the number of loading cycles, the SMA stress gradually decreased and tended to be stable.
The maximum stresses of SMA rods in the 14th and 20th tensile tests were 452.38 MPa
and 446.46 MPa, respectively. The relative difference between both was only 1.33%, and
the amplitude of the fluctuations was small. The stress of the SMA rod increased linearly
with the strain increases in the cyclic tensile test under varying amplitude loadings, and
subsequently, the stress increased at a slower rate when the martensitic transformation
occurred. In the unloading process, the SMA rod with a different initial strain had stress–
strain curves with three different kinds of slopes, and the descent rate of stress was lowest
during the reverse martensitic transformation of SMA. The stress–strain curves from the
tensile tests showed that the SMA rod had good superelastic properties, and the mechanical
properties after tensile training were less affected by the loading times. The transformation
stress and strain of SMA with the maximum tensile strain of 7% are shown in Table 2.

Table 2. Transformation stress and strain of the SMA rod.

σMs
(MPa)

εMs
(%)

σMf
(MPa)

εMf
(%)

σAs
(MPa)

εAs
(%)

σAf
(MPa)

εAf
(%)

454.19 1.82 609.89 6.97 271.78 5.29 116.08 0.47
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Figure 4. Stress–strain curves from the tensile test of the SMA rod: (a) under equal amplitude loading
and (b) under variable amplitude loading.

3.2. Mechanical Test of D-SCFD

To study the effects of the loading displacement amplitude and FD’s pre-tightening
force on the mechanical properties of D-SCFD, a small-scale specimen with the maximum
permissible deformation of 21 mm was fabricated according to the configuration described
earlier, and the mechanical tests of FD and D-SCFD were conducted under low-reversed
cyclic loading. The material of the friction sheets was composed of asbestos and brass wires
in FD. The SMA rods after tensile training were installed in D-SCFD, whose working length
was 300 mm. For the coil springs, the diameter of the spring wire was 8 mm, the outer
diameter was 50 mm, and the axial stiffness was 145 N/mm. The material of the coil springs
was Mn-Cr Alloy (Mn 1.02%, Cr 0.29%). The tensile strength of the high-strength bolts and
nuts was 1200 MPa, and the diameter of the screw was 10 mm. The rest of D-SCFD adopted
the steel with a yield strength of 235 MPa. The specimen, test conditions, and test device
are shown in Figure 5, Table 3, and Figure 6, respectively. The ambient temperature was
15 ◦C.
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Figure 5. Specimen of D-SCFD.

Table 3. Test conditions of D-SCFD.

No. ID of
Specimen

Section Area
of SMA
(mm2)

Loading Rate
(mm/min)

Loading
Displacement

Amplitude
(mm)

Pre-Tightening
Force of FD (kN)

1 FD 0 5 9 15 21 7
2 D-SCFD 25.13 5 9 15 21 3 5 7

The hysteretic curves of FD with a pre-tightening force of 7 kN are shown in Figure 7.
The axial force generated by FD was stable, and the hysteretic curves under different
loading displacement amplitudes were rectangular in shape. The areas of hysteretic curves
increased with the increase in the axial deformation of FD. According to the results from the
tests of FD and the configuration with two sliding surfaces, the coefficient of sliding friction
was 0.50, which was denoted by µ. As shown in Figure 8, the shapes of the hysteretic
curves of D-SCFD were similar to those of the stress–strain curves of SMA, both of which
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are “flag-shape”. The axial force of D-SCFD fluctuated slightly at the start of the martensitic
transformation of SMA rods during loading and became stable gradually with the increase
in the axial deformation. The areas of the hysteretic curves of D-SCFD also increased
while the pre-tightening force of FD increased, and they were positively correlated with
the axial deformation. After the pre-tightening force of FD was magnified, the horizontal
coordinates of hysteretic curves with an axial force of 0 kN increased during unloading,
indicating that the residual deformation of D-SCFD increased. The hysteretic curves from
the test of D-SCFD reflected that the performance of energy dissipation could be improved
by magnifying the axial force responses of FD, but the performance of recentering would
be adversely affected.
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Figure 7. Hysteretic curves of FD.

The mechanical property parameters, such as dissipated energy, secant stiffness,
equivalent viscous damping, and the rate of residual deformation, denoted by W, K,
ξeq, and Rdr, respectively, were used to measure the performance of D-SCFD in this study.
The mechanical property parameters of D-SCFD are shown in Figure 9. The ξeq of D-SCFD
fluctuated with the increase in axial deformation, the maximum variation of which only
reached 2.37%. Thus, the ξeq of D-SCFD was less affected by the loading displacement
amplitude. The relative increment of W was close to that of the strain energy, which was
caused by the increase in the axial deformation of D-SCFD. That was the main reason why
the ξeq of D-SCFD was less affected by the loading displacement amplitude. Wherein, the
strain energy of D-SCFD is KD2/2, and D denotes the axial deformation of D-SCFD. The ξeq
of D-SCFD increased with the magnification of the pre-tightening force of FD, indicating
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that the relative increment of W caused by magnifying the pre-tightening force of FD was
greater than that of strain energy.
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Figure 8. Hysteretic curves of D-SCFD: (a) pre-tightening force of FD is 3 kN, (b) pre-tightening force
of FD is 5 kN, and (c) pre-tightening force of FD is 7 kN.
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Figure 9. Mechanical property parameters of D-SCFD: (a) dissipated energy, (b) secant stiffness,
(c) equivalent viscous damping, and (d) rate of residual deformation.
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The Rdr of D-SCFD increased after magnifying the pre-tightening force of FD, and
the maximum value of Rdr reached 49.35%. The slope of each force–deformation curve of
D-SCFD decreased with the increase in axial deformation when SMA underwent reverse
martensitic transformation. This indicates that the amplification of Rdr was positively
correlated with the axial deformation. The experimental results of D-SCFD showed that
the performance of energy dissipation was less affected by the axial deformation after the
martensitic transformation of SMA happened but more affected by the pre-tightening force
of FD. Meanwhile, the recentering performance of D-SCFD was negatively correlated with
the pre-tightening force of FD, whose reduction caused by magnifying the pre-tightening
force of FD became more obvious with the increase in axial deformation.

4. Simplified Mechanical Model and Parameter Analysis
4.1. Verification of Simplified Mechanical Model

A simplified mechanical model of D-SCFD was established to analyze the influence of
coil springs, SMA rods, and FD on the performance of recentering and energy dissipation.
In the model, the relations of restoring force provided by those elements could be acquired,
which meet the requirements related to different performance objectives of recentering.
Meanwhile, the accuracy of the simplified mechanical model was verified according to the
experimental results. The simplified analysis model is shown in Figure 10. D-SCFD was
generated in parallel by coil springs, SMAs, and FD, and the axial force response was the
sum of that provided by each element.
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Referring to the previous study [41], the axial force of SMA rods is calculated by
a piecewise linear algorithm here. In addition, we ignored the difference in the elastic
modulus between the austenitic and martensitic phases of SMA rods. Compared with the
SMA mechanical model proposed by Brinson and Auricchio [42,43], the suggested model
in this study needs a lower computational cost. The convenient calculations of Rdr and
ξeq can be derived from this model, too. The axial force of D-SCFD can be calculated by
the following:

FD-SCFD = kCSu + Pµsgn(
du
dt

) + FSMA (1)

where FD-SCFD is the axial force response of D-SCFD; kCS denotes the total stiffness of the
coil springs; u is the axial deformation of D-SCFD; t denotes the time; P and µ are the
pre-tightening force and sliding friction coefficient of FD, respectively; sgn(x) is a symbolic
function that returns either 1 or −1, depending on the positivity or negativity of x; FSMA is
the axial force of the SMA rods, and the value can be derived from the following:

FSMA = ε(u
du
dt

)FL
SMA + ε(−u

du
dt

)FU
SMA (2)
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where ε(x) is a step function and returns 0, 1/2, or 1 according to the relationship between
x and 0; FL

SMA and FU
SMA are the axial force responses of SMA rods during loading and

unloading, respectively, which can be calculated by the following:

FL
SMA =

{
kSMA,1u, |u| ⩽ uMs

sgn(u)[kSMA,2(|u| − uMs) + FMs], uMs < |u| ⩽ uMf
(3)

FU
SMA =


kSMA,1u, |u| ⩽ uAf

sgn(u)[kSMA,2(|u| − uAf) + FAf], uAf < |u| ⩽ u′
AS

sgn(u)[kSMA,1(|u| − uS
UL) + FS

UL], u′
AS < |u| ⩽ uS

UL

(4)

where kSMA,1 and kSMA,2 denote the linear stiffness of SMA rods before and after martensitic
transformation, respectively; uMs and FMs are the axial deformation and force of SMA rods
at the start of martensitic transformation, respectively. uMf denotes the axial deformation of
SMA rods at the end of martensitic transformation. uAf and FAf are the axial deformation
and force at the end of the reverse martensitic transformation of SMA rods, respectively.
uS

UL and FS
UL are the axial deformation and force of SMA rods at the beginning of unloading,

respectively, which can be calculated by way of FL
SMA. u′

AS represents the axial deformation
of SMA rods at the point of where reverse martensitic transformation begins, whose
calculation is given as below:

u′
As =

FAf − FS
UL − kSMA,2uAf + kSMA,1uS

UL
kSMA,1 − kSMA,2

(5)

When the axial deformation of D-SCFD reaches the maximum permissible value, the
rate of residual deformation and equivalent viscous damping derived from the simplified
mechanical model are expressed as below:

Rdr =



β

α+
σMsεMf
σMfεMs

, FFD ⩽ FCS
εAf
εMf

+ FMf
σAf
σMf

β+
(σMf−σMs)εAf
σMf(εMf−εMs)

− σAf
σMf

α+
(σMf−σMs)εMf
σMf(εMf−εMs)

,
FCS

εAf
εMf

+ FMf
σAf
σMf

< FFD &
FFD ⩽ FCS

εAs
εMf

+ FMf
σAs
σMf

β+
σMsεMf
σMfεMs

−1

α+
σMsεMf
σMfεMs

, FCS
εAs
εMf

+ FMf
σAs
σMf

< FFD

(6)

ξeq =
2( εMf−εMs

εMf
)[ σMs−σAf

σMf
− (σMf−σMs)(εMs−εAf)

σMf(εMf−εMs)
] + 4β

2π(1 + α + β)
(7)

where α denotes the ratio of the axial force of the coil springs to that of SMA rods when the
axial deformation of D-SCFD reaches the maximum permissible value; β is the ratio of the
axial force of FD to that of SMA rods in the same situation. FCS represents the maximum
axial force of the coil springs.

Combined with the tensile test results of SMA, the hysteretic curves of D-SCFD
were predicted using the simplified mechanical model outlined here. The comparison of
hysteretic curves between the predicted and experimental results is shown in Figure 11. The
main parameters of the simplified mechanical model are listed in Table 4. The axial force
responses with the double lines computed by the simplified model during loading fit well
with the test findings. In the unloading, there were small differences in FD-SCFD between
the predicted and experimental values. The simplified model ignored the distinction of
elastic modulus between the austenitic and martensitic phases of SMA and did not consider
that the stress–strain curves had the characteristics of “smooth transition” at the start of
reverse martensitic transformation. That was the main reason behind the prediction of
FD-SCFD deviating from the experimental results during unloading.
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Figure 11. Comparison of hysteretic curves between the predicted and experimental results: (a) pre-
tightening force of FD is 3 kN, (b) pre-tightening force of FD is 5 kN, and (c) pre-tightening force of
FD is 7 kN.

Table 4. Parameters of the mechanical model.

uMs
(mm)

FMs
(N)

uMf
(mm)

FMf
(N)

uAf
(mm)

FAf
(N) kSMA,1(N/mm) kSMA,2

(N/mm)

5.47 11,409.18 21.00 15,328.21 1.40 2915.95 2085.77 251.84

The maximum difference in FD-SCFD between the predicted and the experimental val-
ues was only 2.93 kN, which is acceptable. When the axial deformation of D-SCFD reached
the maximum permissible value, a comparative analysis of the theoretical and experimental
values of Rdr and ξeq was conducted, as presented in Table 5. The corresponding maximum
absolute error was only 10.27% and 0.81%, respectively. Therefore, the calculation methods
of Rdr and ξeq derived from the simplified mechanical model can describe the recentering
and energy dissipation performance of D-SCFD.

Table 5. Comparison of theoretical and experimental values of Rdr and ξeq.

Pre-Tightening
Force of FD

(kN)

Theoretical Rdr
(%)

Experimental
Rdr
(%)

Absolute Error
of Rdr

(%)

Theoretical ξeq
(%)

Experimental
ξeq
(%)

Absolute Error
of ξeq

(%)

3 6.03 15.63 9.6 15.03 15.84 0.81
5 21.48 30.35 8.87 18.72 19.36 0.64
7 39.08 49.35 10.27 21.89 22.35 0.46

4.2. Parameter Analysis

The methods introduced earlier were used to calculate the Rdr and ξeq with different
α and β. The α was used to describe the ratio of axial force provided by coil springs and
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SMA rods. The β measured the ratio of axial force provided by the FD and SMA rods.
While the total force of the damper is constant, the consumption of SMA can decrease
with an increase in α and β. Based on that, the variation trends of recentering and energy
dissipation performance of D-SCFD were further analyzed, which are shown in Figure 12.
The value of α ranged from 0 to 100%. When the α was 0, the variation trend of Rdr had
three different growth rates with the increase in β. This also indicated that continuing to
magnify the FFD would result in a significant increase in Rdr in the absence of coil springs,
especially in the case where the FFD exceeded FAf. After increasing α, the growth rate of
Rdr relative to β gradually decreased, which indicated that coil springs could improve
the recentering performance of D-SCFD. ξeq rose with the increase in β, and the growth
rate decreased gradually. However, magnifying α led to a decrease in ξeq, the amplitude
of which decreased gradually. The variation trends of Rdr and ξeq appeared, suggesting
that improving the recentering performance will bring about a decrease in the energy
dissipation performance, both of which are contradictory. Therefore, the proportion of
restoring forces provided by coil springs, SMA, and FD is critical, as it is a requirement for
D-SCFD to work optimally in terms of both recentering and energy dissipation.
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Firstly, the relationship between α and β was determined by the calculation method
of Rdr, which can achieve three different performance targets for recentering. Then, the
influence of the corresponding α and β on the energy dissipation performance of D-SCFD
was analyzed. When the Rdr was 10%, 30%, and 50%, the relationship between α and β
satisfied the equation as below:

β =


α
10 + 0.2016, Rdr = 10%
3α
10 + 0.2707, Rdr = 30%
5α
10 + 0.3398, Rdr = 50%

(8)

Combining the relation equation and calculation method of ξeq, the curves of ξeq with
different targets of recentering performance of D-SCFD are shown in Figure 13. The ξeq
of D-SCFD decreased with the increase in α and a reduction in ξeq gradually rose with
the decrease in Rdr. When Rdr was 10%, 30%, and 50%, respectively, the corresponding
maximum reduction in ξeq was 6.87%, 3.97%, and 1.83%, respectively. Therefore, when the
high recentering performance target is taken, it is inappropriate to choose a larger ratio of
axial force of coil springs to that of SMA, which can avoid a sharp decline in the energy
dissipation performance of the D-SCFD. As the recentering performance target decreases,
that ratio can be magnified appropriately, reducing the consumption of SMAs.
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Figure 13. Variation trends of ξeq with different performance of recentering: (a) influence of α and
(b) influence of β.

5. Seismic Response Mitigation of Multi-Story SF
5.1. Overview of Structure Case

A five-story steel frame (SF) is selected as the case, which is located in Jiangsu Province,
China. The control effects of D-SCFD on the seismic responses of SF were obtained by
nonlinear time history analysis, considering the different recentering performances of
D-SCFD. The structural plane of SF is shown in Figure 14. The members of SF adopted
steel with a yield strength of 355 MPa, the design of which considered earthquake action
according to the Chinese code for seismic design of buildings (GB 50011-2010) [44]. Its
beams and columns will not yield after experiencing frequently occurred earthquakes (FOE).
According to the Chinese code for seismic design of buildings [44], the Sa(0.74 s, 4%) and
Sa(0.74 s, 5%) of the SF under FOE and maximum considered earthquake (MCE) are 0.19 g
and 0.91 g, respectively. Here, Sa(T1, ξ) denotes the spectral acceleration corresponding to
the first translational period of SF, and the letter g denotes the gravitational acceleration.
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5.2. Ground Motion Inputs

The previous studies [36–40] reflected that the MS-AS would lead to the accumulation
of structural damage and that the AS should be considered in the control of structural
seismic responses. Therefore, seven groups of MS-AS records were selected as the excitation,
and the directions of inputs were the same as those of the first translational vibration mode
of SF. The information about each ground motion is listed in Table 6. When compared
to Sa(T1, ξ), using the peak ground acceleration (PGA) to characterize the intensities of
ground motions readily makes structure responses more distinct [45]. Based on the Sa(0.74 s,
5%) being 0.91 g when SF experiences MCE, the accelerations of all ground motions were
adjusted accordingly. Meanwhile, time intervals of 20 s were added between the MS
and AS, and durations of 10 s were added to the ends of the AS to analyze the residual
deformations of the structure. The acceleration and response spectra curves are shown in
Figure 15 and Figure 16, respectively.
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Table 6. Information about ground motions.

No. Event

MS AS

StationEarthquake
Magnitude

(Mw)
Date

Earthquake
Magnitude

(Mw)
Date

GM1 Chalfant Valley 5.77 20 July 1986 6.19 21 July 1986 Bishop, Paradise
Lodge

GM2 Whittier
Narrows 5.99 1 October 1987 5.27 4 October 1987 Bell Gardens,

Jaboneria

GM3 Northridge 6.69 17 January 1994 5.28 20 March 1994 Arleta, Nordhoff
Fire Sta

GM4 Chi-Chi,
Taiwan 7.62 20 September

1999 6.20 20 September
1999 CHY024

GM5 L’Aquila, Italy 6.30 6 April 2009 5.60 7 April 2009 L’Aquila, Parking

GM6 Darfield, New
Zealand 7.00 3 September

2010 6.20 21 February 2011 Canterbury Aero
Club

GM7 Kahramanmaras,
Turkey 7.70 6 February 2023 7.60 6 February 2023 6203
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Figure 15. Acceleration of ground motions: (a) GM1, (b) GM2, (c) GM3, (d) GM4, (e) GM5, (f) GM6,
and (g) GM7.
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Figure 16. Response spectra of ground motions: (a) MS and (b) AS.

5.3. D-SCFD

To analyze the seismic response control effects of D-SCFD with different recentering
performances, D-SCFDs with Rdr values of 10%, 30%, and 50% were used to mitigate the
seismic responses of SF, respectively. The layout of the D-SCFDs on each floor is shown in
Figure 17.
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In addition to one damper at each corresponding plane position of the top two floors,
two dampers were set on each of the other floors. The α of D-SCFD was taken as 20%,
and the β corresponding to the three different recentering performances was obtained
earlier using the relation equation mentioned. The maximum axial forces of all D-SCFDs
were 500 kN, whose limits of deformation were 60 mm based on the maximum inter-story
drift responses of SF under the MCE. The main design parameters of D-SCFD are listed in
Table 7.

Table 7. Design parameters of D-SCFD.

No. ID of
Damper

Maximum
Axial Force

(kN)

Limits of
Deformations

(mm)

α
(%)

β
(%)

Theoretical
ξeq
(%)

Theoretical
Rdr
(%)

Section
Area of

SMA
(mm2)

Stiffness
of Coil
Springs

(kN/mm)

Pre-
Tightening

Force of
FD (kN)

1 D-SCFD-1 500.00 60.00 20.00 22.16 17.99 10.00 576.69 1.17 77.95
2 D-SCFD-2 500.00 60.00 20.00 33.07 21.24 30.00 535.61 1.09 108.00
3 D-SCFD-3 500.00 60.00 20.00 43.98 24.07 50.00 499.95 1.02 134.10

To simulate the D-SCFD, the three elements of linear, multi-linear elastic, and plastic
(wen) in SAP2000 were connected in parallel. The axial mechanical behavior of D-SCFD
was described in the numerical model. The results from the mechanical test of D-SCFD
were used to validate the method of simulation above. The parameters and hysteretic
curves for validation are presented in Table 8 and Figure 18, respectively. The difference in
hysteretic curves between the SAP2000 model and the test is small.
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Table 8. Parameters for validation.

ID of Damper

Coil Springs FD SMA

Linear Plastic (Wen) Multi-Linear Elastic Plastic (Wen)

k
(kN/mm)

k1
(kN/mm)

Fy
(kN)

k2/k1
(%)

u1
(mm)

F1
(kN)

u2
(mm)

F2
(kN)

k1
(kN/mm)

Fy
(kN)

k2/k1
(%)

D-SCFD 0.29 7.00 7.00 0.00 5.46 7.77 21.00 11.68 3.64 3.64 0.00
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Figure 18. Comparison of hysteretic curves between the SAP2000 model and the test.

According to Table 7, the simulation parameters are presented in Table 9, which were
derived from the SMA phase transition stress and strain from the test. The hysteretic curves
simulated by SAP2000 are shown in Figure 19a. The simulation results of ξeq and Rdr had
small deviations from the theoretical values, and the maximum absolute errors were only
12.14% and 1.20%, respectively. The connection between the D-SCFD and the SF is shown
in Figure 19b. Compared with D-SCFD-1, the maximum SMAs’ axial force of D-SCFD-2
and D-SCFD-3 decreased by 7.12% and 13.31%, respectively, which is advantageous to
reduce the consumption of SMA.

Table 9. Simulation parameters of D-SCFD.

ID of Damper

Coil Springs FD SMA

Linear Plastic (Wen) Multi-Linear Elastic Plastic (Wen)

k
(kN/mm)

k1
(kN/mm)

Fy
(kN)

k2/k1
(%)

u1
(mm)

F1
(kN)

u2
(mm)

F2
(kN)

k1
(kN/mm)

Fy
(kN)

k2/k1
(%)

D-SCFD-1 1.17 77.95 77.95 0.00 15.67 176.19 60.00 265.98 5.47 85.72 0.00
D-SCFD-2 1.09 108.00 108.00 0.00 15.67 163.51 60.00 246.91 5.09 79.74 0.00
D-SCFD-3 1.02 134.10 134.10 0.00 15.67 152.75 60.00 230.59 4.74 74.31 0.00
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5.4. Mitigation of Seismic Responses

After the nonlinear time history analysis utilizing SAP2000, the peak inter-story drift
ratios (PIDRs) under each ground motion are shown in Figure 20. D-SCFDs reduced the
PIDRs of SF under the earthquake, whose safety was effectively improved. With different
D-SCFDs, the maximum inter-story drifts of SF were 43.60 mm, 51.69 mm, and 50.02 mm,
respectively, less than the limit of deformations. The average peak inter-story drift ratios
(APIDRs) and the control rates of those under seven ground motions are shown in Table 10.
Wherein, the APIDRs of the second and third floors were larger than the others. For the
control effects of APIDRs, the D-SCFD-3 was better than D-SCFD-2, and the D-SCFD-2
was better than D-SCFD-1. The control impacts of APIDRs revealed that lowering the
recentering performance of D-SCFDs was advantageous for improving the control effect of
the structure’s maximum lateral deformations, while Rdr did not surpass 50%.
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Figure 20. PIDRs of structure under different ground motions: (a) GM1, (b) GM2, (c) GM3, (d) GM4,
(e) GM5, (f) GM6, and (g) GM7.

Table 10. APIDRs and the corresponding control rates.

Number of
Story

SF SF with D-SCFD-1 SF with D-SCFD-2 SF with D-SCFD-3

APIDR
(%)

APIDR
(%)

Control Rate
of APIDR

(%)

APIDR
(%)

Control Rate
of APIDR

(%)

APIDR
(%)

Control Rate
of APIDR

(%)

1 0.980 0.813 17.04 0.775 20.92 0.774 21.02
2 1.296 1.084 16.36 1.028 20.68 0.987 23.84
3 1.257 0.973 22.59 0.919 26.89 0.881 29.91
4 0.941 0.773 17.85 0.737 21.68 0.709 24.65
5 0.461 0.365 20.82 0.347 24.73 0.330 28.42
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The average residual inter-story drift ratios (ARIDRs) of the SF are shown in Table 11.
D-SCFDs significantly reduced the ARIDRs of SF, which could reduce the post-seismic
recovery costs of the structure. The differences in the control effects of ARIDRs were tiny,
which were generated by the discrepancies in the recentering performances of D-SCFDs.
The maximum difference was only 0.008%, and its level was micro. Therefore, when the
Rdr was less than 50%, the objectives of recentering performances of D-SCFDs hardly
had obvious effects on the residual deformations of the structure after an earthquake.
The average peak floor accelerations (APFAs) under seven ground motions are shown in
Table 12. D-SCFDs reduced the floor acceleration responses, thereby reducing the inertial
forces caused by the earthquakes. Meanwhile, D-SCFD-3 had the best control effect on
APFAs, followed by D-SCFD-2, and the control effect of D-SCFD-1 was relatively minimal.
Differences in APFA mitigation resulted in previous variations in APIDR control rates, both
of which were primarily caused by the different recentering performances of D-SCFDs.
After minimizing the aims of recentering performances, the D-SCFDs had a larger value of
ξeq, which had better energy consumption performance and resulted in better APIDR and
APFA mitigation.

Table 11. ARIDRs and the corresponding control rates.

Number of
Story

SF SF with D-SCFD-1 SF with D-SCFD-2 SF with D-SCFD-3

ARIDR (%) ARIDR (%)
Control Rate

of ARIDR
(%)

ARIDR (%)
Control Rate

of ARIDR
(%)

ARIDR (%)
Control Rate

of ARIDR
(%)

1 0.027 0.013 51.85 0.010 62.96 0.009 66.67
2 0.054 0.025 53.70 0.020 62.96 0.017 68.52
3 0.048 0.021 56.25 0.017 64.58 0.017 64.58
4 0.021 0.012 42.86 0.010 52.38 0.009 57.14
5 0.005 0.004 20.00 0.004 20.00 0.006 −20.00

Table 12. APFAs and corresponding control rates.

Number of
Story

SF SF with D-SCFD-1 SF with D-SCFD-2 SF with D-SCFD-3

APFA
(m/s2)

APFA
(m/s2)

Control Rates of
APFA

(%)

APFA
(m/s2)

Control Rates of
APFA

(%)

APFA
(m/s2)

Control Rates of
APFA

(%)

1 12.03 10.31 14.30 10.03 16.63 9.82 18.37
2 14.28 11.40 20.17 10.85 24.02 10.59 25.84
3 12.35 11.87 3.89 11.37 7.94 10.94 11.42
4 15.86 14.39 9.27 13.88 12.48 13.58 14.38
5 24.09 19.52 18.97 18.71 22.33 18.01 25.24

6. Conclusions

In this study, a new dual self-centering damper (D-SCFD) was proposed, which
was generated by connecting coil springs, SMA rods, and a friction energy dissipation
device (FD) in parallel. While carrying out the mechanical tests of small-scale specimens,
a simplified mechanical model was established. The theoretical index calculations of the
performance of recentering and energy dissipation were derived and used to analyze the
influence of coil springs, SMA rods, and FD on the performance of D-SCFD. Eventually, the
seismic response control effects of D-SCFD on multi-story steel frames (SFs) were analyzed,
which experienced consecutive strong earthquakes. The main conclusions are as follows:

1. The recentering and energy dissipation performances of D-SCFD were contradictory.
It is necessary to define the reasonable relationship between the axial force provided
by coil springs, SMA, and FD, which can make the D-SCFD give play to the ideal
performance of recentering and energy dissipation.
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2. After magnifying the axial force response of FD, the energy dissipation performance of
D-SCFD increased, but the recentering performance decreased. Meanwhile, a reduction
in the recentering performance was positively correlated with the loading displacement
amplitude. After the martensitic transformation of SMA, the loading displacement
amplitude had little effect on the energy dissipation performance of D-SCFD.

3. The simplified mechanical model of D-SCFD, the theoretical index calculations of
the performance of recentering, and energy dissipation could accurately describe the
mechanical behaviors of D-SCFD. In the suggested model, the parameters are related
to the mechanical properties of each component, which is beneficial to its serviceability.
With the reduction in the recentering performance target and the increase in the axial
force ratio of the coil springs, the decrease in the energy dissipation performance of
D-SCFD would be slower.

4. When the recentering performance of D-SCFD is required to be high, it is not appro-
priate to excessively increase the axial force ratio of the coil springs to avoid a rapid
decline in the performance of energy dissipation. With the decrease in the recentering
performance target, the proportion of axial force provided by the coil springs can be
appropriately increased, thereby reducing the consumption of SMA.

5. The simulations of D-SCFD utilizing SAP2000 were close to the test. Adjusting the
Rdr to 50% from 10%, the section area of SMA decreased by 13.31% in D-SCFD with
a α of 20%. Simultaneously, the control rate of the average peak inter-story drift
ratio (APIDR) increased 7.48% in the story with the maximum APIDR. However,
the maximum variation of average residual inter-story drift ratios (ARIDRs) only
reached 0.008%. Therefore, when D-SCFD is used to mitigate seismic responses, the
performance of recentering can be appropriately reduced.

6. Compared to the existing self-centering damper-based SMA, the consumption of SMA
in D-SCFD was less, which avoided the expensive cost. In the future, the combination
of a dual self-centering pattern (D-SC) and other kinds of passive energy dissipation
devices could be promising.
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Nomenclature

SMA Shape memory alloy
FD Friction energy dissipation device
D-SCFD Dual self-centering friction damper
BRB Buckling restrained brace
MYD Metallic yielding damper
MS-AS Mainshock–aftershock sequence
RC Reinforced concrete
D-SC Dual self-centering
SF Steel frame
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W Dissipated energy
K Secant stiffness
ξeq Equivalent viscous damping
Rdr Rate of residual deformation
FD-SCFD Axial force response of D-SCFD
kCS Total stiffness of the coil springs
u Axial deformation of D-SCFD
t Time
P Pre-tightening force of FD
µ Sliding friction coefficient of FD
sgn(x) Symbolic function
FSMA Axial force of the SMA rods
ε(x) Step function
FL

SMA Axial force responses of SMA rods during loading
FU

SMA Axial force responses of SMA rods during unloading
kSMA,1 Linear stiffness of SMA rods before martensitic transformation
kSMA,2 Linear stiffness of SMA rods after martensitic transformation
uMs Axial deformation of SMA rods at the start of martensitic transformation
FMs Axial force of SMA rods at the start of martensitic transformation
uMf Axial deformation of SMA rods at the end of martensitic transformation
uAf Axial deformation of SMA rods at the end of the reverse martensitic transformation
FAf Axial force of SMA rods at the end of the reverse martensitic transformation
uS

UL Axial deformation of SMA rods at the beginning of unloading
FS

UL Axial force of SMA rods at the beginning of unloading
u′

AS Axial deformation of SMA rods at the beginning of the reverse martensitic transformation
α Ratio of the maximum axial force of the coil springs to that of SMA rods
β Ratio of the maximum axial force of FD to that of SMA rods
Sa(T1, ξ) Spectral acceleration corresponding to the first translational period of structure
PIDR Peak inter-story drift ratio
APIDR Average peak inter-story drift ratio
ARIDR Average residual inter-story drift ratio
APFA Average peak floor acceleration
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