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Abstract: Currently, human society is in the era of the digital economy, driven by a new wave of
digital technology revolution. Against this backdrop, China actively draws on global development
concepts, accelerating the advancement of new infrastructure construction. This initiative aims to
stabilize current economic demands while laying a material foundation for long-term development.
Therefore, the efficient implementation of this new infrastructure has become a pressing issue for
China, as unlocking its empowering role in the national economy is of paramount importance. This
study, based on balanced panel data from China’s initial smart city pilot projects from 2008 to 2018,
employs both two-way fixed effects and mediation effect models to empirically examine the impact
of new infrastructure construction on urban innovation quality, considering endogeneity issues. The
research findings reveal that new infrastructure construction enhances urban innovation quality by
expediting industrial structural upgrades and enhancing total factor productivity. Furthermore, due
to variations in geographical location and population density, there is heterogeneity in the impact of
new infrastructure on urban innovation quality, with investments in new infrastructure exerting a
more pronounced positive effect in cities with high population density.

Keywords: new infrastructure construction; industrial structural upgrading; urban innovation
quality; smart cities

1. Introduction

At the 20th National Congress of the Communist Party of China in October 2022, it was
proposed to accelerate the development of the digital economy [1]. The construction of new
infrastructure serves as the cornerstone of the digital economy, providing critical support for
its development and gradually ascending to the national strategic level. Guided by the new
development concept and propelled by technological innovation, this infrastructure system,
built on information networks, caters to the needs of high-quality development, offering
services for digital transformation, intelligent upgrades, and integrated innovation [2].
The construction of new infrastructure holds significant implications for guiding cities
to enhance their innovative capabilities and advancing the construction of an innovative
nation. Therefore, can new infrastructure influence the quality of innovation in urban
environments? What are the key mechanisms through which new infrastructure impacts the
quality of urban innovation? What are the potential challenges and obstacles to maximizing
the positive impact of infrastructure on urban innovation quality? Can policy makers,
urban planners, and stakeholders draw lessons from this study to make informed decisions
regarding infrastructure investment and innovation initiatives?

New infrastructure construction is a technology-driven basic measure. By implement-
ing bottom-up technology promotion, innovation platform mobilization and industrial
integration, it can effectively promote the integration and development of digital economy
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and industry, thus accelerating the transformation of intelligent manufacturing [3,4]. The
existing literature predominantly focuses on the unilateral impact of certain types of new
infrastructure construction on technological innovation in urban development, primarily
centered around high-speed railways, widespread internet access, and their significant
influence on green urban development through technological innovation [5], resource
optimization [6], and industrial structure enhancement [7,8]. Moreover, new infrastruc-
ture construction, supported by digitization and intelligence, contributes to enhancing
governance efficiency in government [7], economic systems [8], social governance sys-
tems [9,10], energy systems [11], and public health safety systems [12], unveiling new
urban spatial organizational trends and enhancing urban development quality in areas
like urban transportation [13], industrial development, intelligence, and environmental
protection [14].

Smart cities integrate new technologies such as artificial intelligence, Internet, big data,
and Internet of Things [4], and enhance the connectivity and intelligence of infrastructure
components such as transportation and information transmission, as well as public services
such as medical care and education, thus improving the welfare of all members of society.
It can be seen that the artificial intelligence, Internet, and big data involved in the smart
city pilot project are highly coincident with the content of new infrastructure construction.
At the same time, the construction of new infrastructure improves its efficiency and sus-
tainability through intelligent means, thus contributing to the development of smart cities.
Therefore, the smart city pilot is also regarded as an exploration of and attempt at new
infrastructure construction.

Most scholars explore innovation quality from two main perspectives: the first category
of the literature extensively discusses the connotation of innovation quality, defining
it as the essence of all innovation outcomes [15]. Innovation quality manifests in the
efficiency and returns of input–output for innovations [16]. Regarding the innovation
process, innovation quality serves as a standard for evaluating innovation value, reflecting
the entire process of innovation value generation. From the perspectives of innovation
value generation, diffusion, and transformation, innovation quality is divided into quality
in innovation generation, diffusion, and transformation [17]. The second category of the
literature primarily investigates the factors influencing innovation quality. Tan et al. explore
the advantages of foreign direct investment (FDI) in promoting technological innovation
for enterprises, with results indicating that regional FDI innovation quality significantly
impacts local enterprise innovation quality [18]. To achieve peak carbon emissions and
carbon neutrality, the Chinese government has enacted various regulations to curb carbon
emissions. Studies show that a reasonable utilization of market-based emission reduction
regulations can significantly achieve Porter effects, enhancing innovation quality [19].
Based on a matching perspective, Li et al. establish an analysis framework encompassing
external search strategies, organizational improvisation, and structural flexibility. Results
demonstrate that market information search has a positive impact on innovation quality
and speed [20].

The theoretical background of new infrastructure and urban innovation quality lies
in the interaction and promotion between digital transformation and intelligent develop-
ment. The construction of new infrastructure promotes the digital transformation and
intelligent development of the city, and provides more convenient and efficient conditions
for innovation. The application of digital and intelligent technology has improved the
operation efficiency and service quality of the city, and promoted innovative activities in
various fields. At the same time, digital transformation also provides rich data resources
and analysis tools for urban innovation, and provides more possibilities for the discovery
and application of innovation.

The marginal contributions of this paper are as follows: firstly, on the research topic,
we attach importance to the improvement of regional innovation quality, construct a quasi-
natural experiment with the pilot policy of smart city, demonstrate the improvement
effect of new infrastructure construction on China’s urban innovation quality, and shift
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the innovation effect of this policy from quantitative growth to quality improvement,
which provides new empirical evidence for the research fields related to new infrastructure
construction and innovation quality. Secondly, in terms of regional heterogeneity, on
the basis of confirming the effectiveness of new infrastructure construction in improving
the quality of urban innovation, we expand and analyze the heterogeneity effect, which
provides more sufficient theoretical support for further implementing the pilot policy of
smart cities and improving the quality of urban innovation.

The subsequent sections of this paper are organized as follows: Section 2 clearly
lists the specific objectives of the study. Section 3 introduces the theoretical model and
assumptions serving as the foundation of this research. In Section 4, the model is established,
and detailed explanations of the variables are provided. Moving to Section 5, empirical tests
are conducted, and the obtained results are analyzed, studying the impact of mediating
effects. Finally, Section 6, the conclusion, summarizes the research findings, and Section 7,
future work, presents policy recommendations based on the research impact.

2. Objectives

Although research results indicate that “new infrastructure” significantly enhances
green productivity, technological upgrades, and digital transformation, its impact on urban
innovation quality lacks exploration. As a natural extension of the existing literature, this
paper aims to explore the influence of China’s new infrastructure construction in the context
of high-quality development on innovation quality. This paper primarily encompasses the
following aspects:

(1) Utilizing balanced panel data from China’s first batch of smart city pilot cities from
2008 to 2018, in conjunction with patent application numbers from patent databases
and data from provincial statistical yearbooks, conducting a difference-in-differences
study on smart city pilots, aiming to provide valuable insights into the transformative
potential of new infrastructure in shaping urban innovation.

(2) Employing instrumental variable methods and conducting a series of robustness tests
to reinforce the credibility and robustness of our conclusions.

(3) Delving into the research to explore heterogeneity changes arising from geographical
location and population density.

3. Hypothesis

As the new wave of technological revolution and industrial transformation continues
to advance, the distinctive characteristics of new infrastructure, including strong permeabil-
ity and high integrative capacity, have accelerated the deep integration between emerging
technologies and the real economy, offering a viable pathway for urban innovation de-
velopment. The fusion of new infrastructure with traditional industries can improve the
input combination of different production factors within the real economy, reducing the
probability of factor mismatches [21] and facilitating the efficient allocation and utiliza-
tion of resources. This, in turn, maximizes the impetus for innovative entrepreneurial
activities. Moreover, the rapid development of new infrastructure has led to an increased
demand for high-skilled, composite talents engaged in digital technology development
and application [22], resulting in a surge of technology talent influx and fostering the
accumulation of regional technological human capital. As high-quality human capital
integrates into the innovation process, it effectively enhances the operational efficiency of
enterprise economic activities, encouraging the production and provision of more diverse
and higher-quality, innovative products and services. This consequently drives the upgrade
of regional innovation. Based on these premises, this paper posits the following hypotheses:

Hypothesis 1. New infrastructure construction contributes to the enhancement of urban innovation quality.

New infrastructure, through the introduction of new technologies, automation, and
digital tools, enhances productivity and quality, thus providing stronger competitiveness
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in the market. Furthermore, upgrading industrial technology and efficiency assists in
optimizing the urban industrial structure [23]. This implies that cities can better adapt to
market demands and be more competitive. With the reduction in traditional industries,
cities release resources originally used to support these industries, such as land, labor,
and capital. These resources can be reallocated to support innovative activities, thereby
driving the development of emerging industries. Simultaneously, the optimization of
industrial structure and technological upgrades contribute to improving a city’s innova-
tion environment, propelling more innovative resources and demand-driven activities,
thereby enhancing the innovation quality of cities. Consequently, industrial upgrading
and optimization play a positive role in the urban innovation ecosystem, enhancing urban
innovation quality and global competitiveness. Based on these premises, this paper posits
the following hypothesis:

Hypothesis 2. New infrastructure construction accelerates industrial structural upgrading,
fostering urban innovation quality.

New infrastructure construction signifies a comprehensive upgrade to urban infras-
tructure. More significantly, it paves the way for an entirely new approach to enhancing
overall productivity. Through the utilization of digitalization, smart technology, and data
integration, new infrastructure not only optimizes resource allocation but also significantly
enhances production efficiency. This transformation establishes a broader and more robust
foundation for elevating urban innovation quality. It injects greater vigor and support into
innovation by providing cities with a more extensive and solid groundwork for progress.
Based on these premises, this paper posits the following hypothesis:

Hypothesis 3. New infrastructure construction enhances urban innovation quality by elevating
total factor productivity.

Furthermore, the pioneering role of new infrastructure may also be affected by specific
characteristics of individual cities [24], such as urban location and geographical positioning.
On the one hand, the eastern regions have a higher level of economic development, but
their industrial systems are often more mature. The compatibility of new infrastructure
construction with the local industrial advantages remains dubious. The central and western
regions are often lagging in infrastructure, but possess clear development space, and opti-
mizing industrial structure adjustment may have lower costs. Therefore, they might have a
“starting advantage” in constructing new infrastructure. On the other hand, population
density, as a significant factor influencing urban characteristics and development, provides
a rich theoretical basis for studying urban heterogeneity. From an economic perspective,
cities with high population densities typically host more economic activities and market
opportunities, fostering innovation and economic growth. The scale of a city is closely
related to innovation; larger cities possess more resources and opportunities, attracting
talents and innovative institutions, thereby influencing the quality of innovation within
a city. Regions with higher population densities tend to facilitate social interactions and
information dissemination, fostering knowledge collisions and innovative activities across
various domains. Hence, population density stands as a crucial factor worth considering
when assessing urban heterogeneity, especially concerning the quality of urban innovation.
Examining innovation performance across different population densities aids in under-
standing the formation and impact of innovation disparities among different cities. This
paper presents the following hypothesis:

Hypothesis 4. Different geographical locations and population densities may lead to heterogeneous
results in the impact of new infrastructure construction on urban innovation quality.
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4. Research Methodology
4.1. Double-Difference Model

The specific model construction is as follows:

Techit = α0 + α1treati × postt + ∑ α2Xt + δi + µt + εit (1)

Here, in the equation, ‘Tech’ represents the quality of urban innovation, ‘treat’ stands
for the virtual variable of smart city pilot areas, ‘post’ denotes the time variable at the start
of the pilot, ‘X’ encompasses all control variables, δ represents individual fixed effects at the
city level for smart city pilot areas, µ represents the fixed effects of the years when smart
city pilots were initiated, and ε symbolizes the random disturbance term.

4.2. Mediation Model

To test the five hypotheses proposed earlier, we employ a mediation analysis model.
Firstly, we introduce an intermediary variable, denoted as M, representing the upgrading
of industrial structure and overall productivity. D stands for the construction of new
infrastructure, while q represents urban innovation quality in this context. The mediation
effect examination is reflected in the regression model as follows:

Herein, ‘c’ signifies the total effect of new infrastructure construction ‘D’ on the urban
innovation quality ‘q’. Coefficient ‘a’ illustrates the impact of ‘D’ on the industrial structure
and savings rate ‘M’. ‘b’ quantifies the effect of ‘M’ on ‘q’ after controlling for the influence of
‘D’, while ‘c1

′ represents the direct effect of ‘D’ on ‘q’ after controlling for the impact of ‘M’.
From the above model, it is evident that a unit change in the independent variable

results in: a change in ‘c1
′ units in the dependent variable due to the direct effect; an

alteration of ‘a’ units in the mediator ‘M’ due to the indirect effect; and consequently, a
modification of ‘ab’ units in the dependent variable due to the influence passing through
the mediator ‘M’.

The examination of the mediation effect entails assessing whether the product of
coefficients ‘ab’ significantly differs from zero, thus testing the hypothesis H0: ab = 0. If the
product ‘ab’ significantly differs from zero, it indicates that the impact of new infrastructure
construction ‘D’ on the urban innovation quality ‘q’ is transmitted through the mediator
‘M’. Otherwise, no mediation effect exists.

q = cD + e1 (2)

M = aD + e2 (3)

q = c1D + bM + e3 (4)

c = c1 + ab (5)

4.3. Variable Selection
4.3.1. Dependent Variable

The focal variable in this study is urban innovation quality (tech), gauged through
four primary methods: the patent citation count method [25]; classification based on the
first four digits of the IPC code [26]; the duration of patent annual fee payments [27];
patent authorization rate and duration [28]. Patent types encompass inventions, utility
models, and design patents. Among these, invention patents denote higher technological
complexity and research investment, signifying the highest patent quality. Greater pro-
portions of design and utility model patents suggest a more pronounced “patent bubble”,
correlating with lower regional innovation quality. Additionally, policies incentivizing
patent applications often create an “innovation facade”, where quantity does not correlate
with improved patent quality. Consequently, using patent application metrics tends to
overstate city innovation levels, failing to precisely reflect urban innovation quality. Hence,
this study adopts the ratio of authorized invention patents to total authorized patents as an
indicator of urban innovation quality.
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4.3.2. Independent Variable

Policy variables stem from the initial list of smart city pilot projects, designating
cities like Shijiazhuang and Taiyuan as experimental groups for smart city development.
Cities not part of the pilot program are assigned 0, while pilot cities are assigned 1. The
time variable for policy implementation is set as follows: 0 before the smart city pilot
and 1 during and after implementation. The key explanatory variable in this study is the
interaction between policy variables and policy implementation time. Cities in various
pilot program batches receive a value of 1 during and after the pilot policy implementation;
otherwise, they receive 0.

4.3.3. Mediating Variables

Upgrading industrial structure: numerous studies suggest that the rapid development
of the tertiary industry signifies an important aspect of upgrading the industrial structure.
This study utilizes the industrial structure hierarchy coefficient to illustrate the level of
industrial structure upgrade among provinces. The calculation involves assigning different
weights to the primary, secondary, and tertiary industries to represent the level of industrial
structure. The formula is as follows:

upgrade =
3

∑
i=1

qi × i = q1 × 1 + q2 × 2 + q3 × 3 (6)

where qi represents the output proportion of the ith industry.
Total factor productivity (TFP): Total factor productivity measures the efficiency of

a city in utilizing all production factors (such as labor, capital, technology, etc.). The
calculation formula is as follows:

T =
P

W×C × L × E
(7)

Here, P represents the total output value, W stands for labor input, C represents capital
input, L signifies land input, and E denotes energy input.

4.3.4. Control Variables

To control for other factors impacting urban innovation quality, the selected control
variables are as follows:

Economic scale (gdp): logarithm of a city’s gross domestic product serves as the metric.
Degree of openness (fdi): ratio of the actual foreign investment utilized in a year to a

city’s GDP for that year.
Technological subsidies (sci): proportion of technological expenditures in a city’s GDP.
Cultural level (cult): logarithm of the regional per capita public library book collection.
Human capital (hr): ratio of the number of undergraduate and above students to the

total population of the city.

4.4. Data Sources

Data primarily originate from the “China Urban Statistical Yearbook”, “Science and
Technology Statistical Yearbook”, and various provincial and municipal statistical bulletins.
Table 1 illustrates the descriptive statistical analysis of all variables. The table reveals
varying overall levels of the variables from 2008 to 2018: the mean of the dependent
variable, urban innovation quality, stands at 0.1107 with a standard deviation of 0.0746.
This suggests that, while the average level of urban innovation quality in the sample is not
particularly high, there exists a certain level of variability or fluctuation. The mean of the
explanatory variable ‘treated×time’ is 0.1520, with a relatively high standard deviation
of 0.3591, indicating a wider distribution of this variable within the sample, potentially
signaling significant differences. Among the mediating variables, the industrial structure
upgrading index shows a mean of 227.16 with a standard deviation of 14.475, reflecting
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a relatively narrow distribution around the mean value. Regarding the control variables,
there are considerable differences between the maximum and minimum values of variables
related to openness to foreign trade, technological subsidies, cultural levels, and human
capital. These results indicate noticeable disparities in urbanization and education levels
across different regions.

Table 1. Basic statistical description of the related variables.

Variables Sample Average Sd Min Max

tech 3420 0.1107 0.0746 0.0000 0.4686
treated×time 3420 0.1520 0.3591 0.0000 1.0000

upgrade 3420 227.16 14.475 183.12 283.20
Total factor productivity 3420 7.7873 1.8534 −0.3833 13.306

lngdp 3420 7.1863 0.9653 4.3280 10.5494
fdi 3420 1.6758 1.8034 0.0000 17.8338
sci 3420 0.2496 0.2368 0.0128 4.2646

lncult 3420 −7.8424 0.8779 −10.9563 −3.8294
hr 3420 1.7982 2.3383 0.0051 14.6375

5. Finding

The empirical results are segmented into four sections: baseline regression results;
robustness of pilot policy effects; heterogeneity analysis; examination of the mediating
mechanism of smart city pilot policy effects on industrial structure upgrade; and total
factor productivity.

5.1. Baseline Regression Results

This study analyzes the relationship between the national smart city pilot policy
as an exogenous shock and the urban innovation quality. Table 2 presents the baseline
regression outcomes. Models (1) to (6), while controlling for both city and year fixed effects,
progressively introduce five control variables. The policy coefficient slightly decreases from
0.0143 to 0.0137 as the control variables are added but remains significant. This suggests
that the implementation of smart city pilot policies significantly and positively influences
urban innovation quality, verifying Hypothesis 1.

Table 2. Benchmark regression.

(1) (2) (3) (4) (5) (6)

treated×time
0.0143 *** 0.0140 *** 0.0139 *** 0.0140 *** 0.0138 *** 0.0137 *
(0.00391) (0.00391) (0.00391) (0.00390) (0.00391) (0.00798)

lngdp −0.00869 −0.00897 −0.0134 * −0.0133 * −0.0136
(0.00698) (0.00700) (0.00710) (0.00710) (0.0131)

fdi
0.000441 0.000240 0.000235 0.000268

(0.000844) (0.000844) (0.000844) (0.00151)

sci
0.0224 *** 0.0223 *** 0.0221 *
(0.00623) (0.00623) (0.0120)

lncult
0.00267 0.00266

(0.00264) (0.00401)

hr
0.000986
(0.00373)

_cons 0.0918 *** 0.161 *** 0.162 *** 0.189 *** 0.210 *** 0.210 **
(0.00280) (0.0475) (0.0476) (0.0480) (0.0524) (0.0934)

Time/city effect YES YES YES YES YES YES
R2 0.134 0.138 0.138 0.141 0.142 0.142

Observations 3420 3420 3420 3420 3420 3420

(Note: Standard errors are shown in parentheses; *, **, *** indicate significance at the 10%, 5%, and 1% levels).
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The estimation results of control variables indicate consistent positive effects of the
degree of openness, technological subsidies, cultural level, and human capital on enhancing
urban innovation capability. Although the economic scale remains insignificant across mul-
tiple regressions, its inclusion as a control variable captures the differences between smart
city policy pilots and new infrastructure construction, enhancing the accuracy of empirical
analysis results. The negative impact of economic scale on urban innovation quality might
stem from uneven resource allocation due to excessively large-scale economies, leading
to insufficient investment in innovation activities, as well as the limitation of innovation
development and quality due to restricted freedom and creative thinking under large-scale
economic activities [29,30].

5.2. Robustness Checks
5.2.1. Parallel Trends Test

An essential premise for the quasi-natural experiment is that the experimental and
control groups exhibit parallel trends before policy implementation. To ensure the robust-
ness of the Double Difference Model (DID) conclusions, this study employs an event study
method to evaluate parallel trends [31]:

DTit = _cons +
m

∑
t=n

αtDt + ∑ αjCVs + λ + γ + θ + κit (8)

where DT represents the annual dummy variable before and after policy implementation
(DT = treated×time), signifying whether the experimental and control groups exhibit
parallel trends before the implementation of the smart city pilot policy.

The results of the parallel trends test, depicted in Figure 1, show that in the four years
preceding the smart city pilot policy, the coefficient fluctuates around 0. However, after
policy implementation, the coefficient gradually exhibits significant variation. This indicates
that before the smart city pilot policy, both the experimental and control groups had similar
trends in innovation quality. Yet, post-policy implementation, there is a divergence in
innovation quality trends between the experimental and control groups.
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From a dynamic perspective, the coefficient becomes significantly positive from year
T+1 and maintains this positive impact for a considerable time, suggesting that the policy
incentive effect of smart city pilot policies on urban innovation quality has a certain long-
term nature. These results indicate that to some extent, this model satisfies the assumption
of parallel trends, further affirming that new infrastructure construction significantly
promotes the improvement of urban innovation quality. As time progresses, the policy
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effect of the initial batch of smart city pilot cities begins to diminish, indicating that smart
city policies exhibit temporal effects. Hence, implementing policies in different phases is
advantageous for the development of urban innovation quality.

5.2.2. Robustness Checks

Before conducting robustness checks, considering that each pilot city may adjust its
policies regarding smart cities, this study examines the influence of smart city pilot policies
on urban innovation quality by considering the intensity of innovation policies as a control
variable. It investigates the effects of different levels of implementation intensity on urban
innovation capability.

As indicated in Table 3, coefficients at Q40, Q60, and Q80 are all significant. Addition-
ally, as the implementation intensity increases, there is a slight growth in the regression
coefficient for the policy variable. This demonstrates that the enhancement in the inten-
sity of innovation policies positively impacts urban innovation quality, reaffirming the
conclusion that increased intensity of innovation policies correlates with improved urban
innovation quality. This finding adds robustness to the assessment of smart city pilot policy
effects on urban innovation quality.

Table 3. Panel data quantile.

Q20 Q40 Q60 Q80

treated×time
0.00453 0.00970 *** 0.0106 *** 0.0110 *

(0.00311) (0.00251) (0.00344) (0.00662)
Control YES YES YES YES

Double fixed YES YES YES YES

_cons 0.465 *** 0.531 *** 0.560 *** 0.542 ***
(0.0684) (0.0553) (0.0757) (0.146)

N 3420 3420 3420 3420
(Note: Standard errors are shown in parentheses; *, *** indicate significance at the 10% and 1% levels).

The next step involves conducting robustness checks.

(1) Outlier exclusion: To mitigate the influence of outliers on the model results, this study
conducts a 1% level truncation of the dependent variable and re-estimates the model.
Table 4, Column (1), indicates that after removing outliers, the estimated coefficients
remain statistically significant at the 1% level, aligning with the baseline regression results.

(2) Dependent variable replacement: Upon replacing the dependent variable with log-
arithmically transformed patents per ten thousand people and the number of au-
thorized patents, the estimation results remain significantly positive at the 1% level.
This suggests that the implementation of smart city pilot policies continues to have a
robust positive effect on improving urban innovation quality in pilot regions.

(3) Control of province–time joint fixed effects: The baseline regression initially controlled
for time and city fixed effects. However, the provinces involved in the first batch
of smart city pilots may enact various policies to promote urban innovation and
entrepreneurship activities across different years. Additionally, these provinces might
have varying levels of emphasis on innovation in different years, potentially affecting
the innovation quality of pilot cities. Thus, this study includes province–time joint
fixed effects in the baseline regression model. As shown in Table 4, Column (3), the
regression results remain significantly positive at the 1% level. This reaffirms that the
establishment of smart city pilot policies significantly enhances the innovation quality
of pilot cities, validating the robustness of the baseline regression results.

(4) Excluding other policy interference: During the study period, the “Broadband China”
pilot policy established in 2014 is closely related to this study [32]. Therefore, this
study incorporates the “Broadband China” policy implementation variable. Results
in Table 4, Column (5), demonstrate that the coefficient for the policy variable remains
significantly positive at the 1% level. This indicates that smart cities significantly
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contribute to promoting the development of urban innovation quality, reinforcing the
robustness of this study’s conclusions.

Table 4. The robustness test.

Exclusion of Outliers Replacement by the Explanatory Variable Combined Effect Other Policies Are
Excluded

Trapped Tail 1%
ln (the Number of

Patents per Ten
Thousand People)

Number of Patents
Logarithm

Provincial × Time
Interaction Item

Is Added
Broadband China

treated×time
0.0139 *** 0.110 *** 0.0550 *** 0.0134 *** 0.0130 ***
(0.00379) (0.0161) (0.0331) (0.00390) (0.00393)

Control YES YES YES YES YES
Double fixed YES YES YES YES YES

combined effect NO NO NO YES NO

_cons 0.200 *** −0.464 ** 0.500 4.286 *** 0.221 ***
(0.0520) (0.215) (0.444) (1.035) (0.0526)

R2 0.144 0.566 0.812 0.146 0.143

N 3420 3420 3420 3420 3420

(Note: Standard errors are shown in parentheses; **, *** indicate significance at the 5% and 1% levels).

5.2.3. Placebo Test

In the baseline model and controlling for several variables that could potentially
impact urban innovation quality, this study acknowledges the possibility of omitting
essential explanatory variables. Failure to identify these variables might imply that the
policy incentive effect of smart city pilots on urban innovation quality might not actually
exist due to omitted variables, thus causing incomplete outcomes. To indirectly verify the
issue of omitted variables, a placebo test through random sampling is conducted.

Initially, during the implementation of the smart city pilot construction policy, 20 cities
were randomly selected from the data set as the treatment group and the rest as the control
group. An interaction term (processing time) is constructed from this sample. Subsequently,
this interaction term is included in the regression model. After repeating the above steps
500 times, the regression estimation coefficients are plotted as a kernel density map, as shown
in Figure 2. The results show that the estimation coefficient is centered on zero and obeys
normal distribution. In addition, most t values of the estimation coefficients exceed 0.1. This
shows that the possibility that the baseline regression estimation results are influenced by
unobservable factors is low, thus proving the robustness of the research results. Most scattered
points in Figure 3 are located above the dotted line, that is, they are not significant at a level of
10% significance, which also illustrates the above research conclusions.
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5.3. Heterogeneity Analysis

(1) Population density heterogeneity: Differences in population density may lead to vary-
ing levels of new infrastructure stock [33]. Therefore, this study divides the research
sample into cities with high and low population density using policy variables for
separate validation. Table 5 reveals that the impact coefficients of new infrastructure
construction on cities with both high and low population density are statistically
significant and positive. This implies that new infrastructure development promotes
the advancement of urban innovation quality. Notably, the coefficients for cities
with high population density exhibit higher significance, indicating that investing
in new infrastructure construction in these areas has a more pronounced positive
effect on urban innovation quality and is more conducive to enhancing overall urban
innovation levels.

(2) Heterogeneity in urban location: Acknowledging differences in resource endowment
and economic foundations across regions, both new infrastructure construction lev-
els and urban innovation quality might exhibit locational heterogeneity [34]. This
research divides the sample into eastern, central, and western regions, exploring the
impact of new infrastructure construction on urban innovation quality under regional
heterogeneity. Table 5 reveals that new infrastructure construction significantly and
positively affects urban innovation quality in the eastern and central regions, with a
more distinct impact observed in the central region compared to the eastern region.
However, in the western region, the investment in new infrastructure construction
suppresses the development of urban innovation quality. This phenomenon might
be attributed to the already accumulated capital stock in the eastern and central re-
gions, facilitating the flow and aggregation of information and knowledge, thereby
demonstrating a positive impact on urban innovation quality [35]. One possible
reason for the negative impact of new infrastructure construction on urban innovation
quality in the western regions is that infrastructure development may be constrained
by factors such as resource allocation, technological capabilities, and economic de-
velopment. Given the relatively limited resource allocation in the western regions,
governments may prioritize investment in traditional infrastructure, such as roads
and water facilities, rather than innovative new infrastructure. This prioritization
could result in insufficient development of new infrastructure projects. Additionally,
lower technological capabilities and innovation capacities in the western regions
may pose challenges during the implementation and operation of new infrastructure
projects. Moreover, the lower level of economic development in these regions may
lead to issues such as inadequate funding and insufficient market demand, further
affecting the quality and effectiveness of new infrastructure construction.
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Table 5. Test of heterogeneity.

Remove the City Three Plates Level of Economic Development
Excluding Municipalities,

Provincial Capital and
Sub-Provincial Level

East Middle West High Population
Density Cities

Low Population
Density Cities

treated×time
0.0135 *** 0.0210 *** 0.0425 *** −0.0204 ** 0.0169 *** 0.0152 ***
(0.00392) (0.00511) (0.00605) (0.00885) (0.00616) (0.00489)

Control YES YES YES YES YES YES
Double fixed YES YES YES YES YES YES

combined effect NO NO NO NO NO NO

_cons 0.222 *** 0.0838 −0.00385 0.339 *** 0.0285 0.216 ***
(0.0527) (0.0668) (0.121) (0.110) (0.0860) (0.0648)

R2 0.143 0.198 0.297 0.134 0.255 0.142

N 3372 1440 960 1020 1356 2064

(Note: Standard errors are shown in parentheses; **, *** indicate significance at the 5% and 1% levels.).

These findings support the validity of Hypothesis 4.

5.4. Endogeneity Test

The double-difference method can mitigate endogeneity concerns by comparing treat-
ment and control groups. However, its efficacy relies on the assumption that the selection
of smart city pilot areas was random. If the treatment group exhibits notably superior
innovation capabilities or has immense potential for urban innovation, leading to a higher
likelihood of being selected as smart city pilots, bidirectional causality might reduce the
persuasiveness and precision of the research conclusions.

To address endogeneity concerns, it is crucial to identify an appropriate instrumental
variable to isolate the net effect of new infrastructure construction on urban innovation
quality. Therefore, this study selects average city wind speed as the instrumental variable
for smart city pilots [36].

Our choice of average urban wind speed as an instrumental variable is grounded in
its relevance and exogeneity within the context of this study. Prior research has indicated a
certain correlation between urban wind speed and the development of new infrastructure.
However, urban wind speed itself should not be influenced by the construction of new
infrastructure, thus possessing exogeneity. Furthermore, the direct association between
average urban wind speed and urban innovation quality is relatively weak, which helps
ensure that our instrumental variable does not confound the causal relationship we are
interested in studying. By ensuring that average urban wind speed meets the requirements
of exogeneity and relevance for instrumental variables, we can more accurately estimate the
impact of new infrastructure development on urban innovation quality, thereby enhancing
the internal validity and reliability of our study.

We utilized two-stage least squares (2SLS) regression analysis [37], and the results
are presented in Table 6. According to Table 6, the estimated coefficient of new infras-
tructure development on urban innovation quality is significantly positive at a 1% level.
The weak instrument test statistic, Cragg–Donald Wald F, has a value of 11.966, rejecting
the null hypothesis of weak identification. This implies that average urban wind speed is
unlikely to be influenced by endogeneity when explaining the impact of new infrastruc-
ture development on urban innovation quality. Additionally, the first-stage F-statistic of
16.38 exceeds 10, indicating the effectiveness and robustness of the instrumental variable.
Thus, even after considering endogeneity issues, the smart city pilot policy still significantly
promotes urban innovation quality, suggesting robustness of the baseline regression results.
Moreover, the estimated coefficient of the baseline regression, 0.0137, is notably smaller
than the estimated coefficient of the instrumental variable approach, 0.4302, indicating that
endogeneity issues in the model may underestimate the promotion effect of the smart city
pilot policy on urban innovation quality.
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Table 6. Regression of the instrumental variables.

Wind

Stage I Stage 2
Treated×Time Tech

IV
0.4302 ***
(0.0018)

Inter
0.0168 ***
(0.0040)

_cons −0.2337 *** 0.0304
(0.0382) (0.0372)

Kleibergen-Paap rk LM
Cragg-Donald Wald F

F statistic

0.000
11.966

>(16.38)

R2 0.9521 0.0639
(Note: Standard errors are shown in parentheses; *** indicate significance at the 1% levels).

By conducting instrumental variable regression analysis, we have obtained the desired
results indicating that new infrastructure development significantly enhances urban inno-
vation quality. Therefore, we believe that average urban wind speed serves as an effective
and exogenous instrumental variable in our study.

5.5. Further Analysis
5.5.1. Mediation Analysis

Controlling for time and individual fixed effects, the regression results using industrial
structure upgrading as a mediator are presented in Models (1) to (2). In Model (1), prior
to adding control variables, the policy coefficient stands at 0.306. After incorporating
these variables, the coefficient significantly reduces to 0.0135 at a 1% significance level,
indicating that smart city pilot policies foster the development of urban innovation quality.
The mediation coefficient, at 0.000623 and significant at a 1% level, indicates a significant
mediation effect of industrial structure upgrading. This implies that new infrastructure
construction promotes urban innovation quality by enhancing urban industrial structure
upgrading, thus validating Hypothesis 2.

The regression results displayed in Models (3) to (4) in Table 7 show the regression
outcomes with total factor productivity acting as the mediating variable. Prior to incorpo-
rating control variables, the regression coefficient stands at −0.0193. Upon their inclusion,
as demonstrated in Model (4), the coefficient for the policy is 0.0138, while the coefficient
for the mediating variable is 0.00593, both significant at a 1% level. This suggests that
following the establishment of smart city trials, with the increase in total factor productivity,
there is a relative enhancement in regional innovation quality. Simultaneously, total factor
productivity positively moderates the impact of new infrastructure construction on urban
innovation quality: new infrastructure projects such as intelligent transportation and smart
energy introduce more automated and intelligent technologies. The application of these
technologies can enhance the efficiency of production processes and urban operations,
thereby freeing up more time and resources for innovative activities. The implementation
of new infrastructure not only enhances the efficiency of traditional infrastructure but
also fosters new industries and business models. These emerging industries often center
around innovation, bringing new innovative impetus to cities through the application and
breakthroughs in technology. Thus, Hypothesis 3 is confirmed.
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Table 7. Intermediary effect test.

Upgrade Industries Total Factor Productivity
(1) (2) (3) (4)

treated×time
0.306 0.0135 *** −0.0193 0.0138 ***

(0.250) (0.00391) (0.0367) (0.00391)

metavariable
0.000623 ** 0.00593 ***
(0.000280) (0.00191)

_cons 198.1 *** 0.0866 11.00 *** 0.145 **
(3.347) (0.0763) (0.491) (0.0564)

R2 0.806 0.143 0.769 0.144

N 3420 3420 3420 3420
(Note: Standard errors are shown in parentheses; **, *** indicate significance at the 5% and 1% levels).

5.5.2. Policy Implementation Effectiveness Test

The Ministry of Housing and Urban-Rural Development announced the second and
third batches of smart cities in May 2013 and 2014, respectively. However, this study
selected only the first batch of pilot cities as the experimental group. The rationale behind
this selection is twofold: Firstly, from the parallel trend chart, it is evident that the first
batch of smart city construction showed initial results in 2013 and 2014, possibly gaining
positive or negative experiences. The subsequent batches might have learned from these
experiences, potentially improving the effectiveness of smart city construction. Secondly,
the second and third batches of pilot cities had relatively shorter implementation periods
compared to the first batch, which could lead to biased estimation results due to incomplete
construction effects.

To validate the necessity of further promoting smart city pilots, a comparative re-
gression analysis was conducted separately for the second batch, the third batch, and
the combined second and third batch pilot cities. The marginal effect of multiple batches
of smart city pilots on innovation quality tends to decrease over time. In Table 8, it is
evident that the regression coefficients for these batches are not significant. Specifically,
the coefficient for the combined second and third batches is 0.00697 at a 5% significance
level, signifying that the phased implementation of pilot policies has an effect on innova-
tion quality in pilot cities but with diminishing impact. Furthermore, as depicted in the
previous parallel trend graph, the positive impact of smart city policies diminishes over
time, indicating that these policies have a certain timeliness.

Table 8. Three pilot cities are compared and returned.

Second Batch Third Batch
Three Batches

(Culling the First Batch) (Eliminate the First and
Second Batches)

treated×time
0.00750 −0.00770 0.00697 **
(0.0124) (0.00611) (0.00346)

Control YES YES YES

Double fixed YES YES YES

_cons 0.269 *** 0.264 *** 0.218 ***
(0.0593) (0.0601) (0.0524)

R2 0.137 0.134 0.139

N 2640 2580 3420
(Note: Standard errors are shown in parentheses; **, *** indicate significance at the 5% and 1% levels).

Several possible reasons account for this phenomenon:

(1) Diminished initial enthusiasm and drive: Initially, pilot cities usually invest consid-
erable resources and effort to expedite smart city construction. However, as time
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progresses, the novelty of the policy might wane, leading to a decline in enthusiasm
from officials and society, thereby reducing execution capabilities.

(2) Financial constraints: The construction of smart cities requires substantial funds
and resources. Over time, the government may face resource shortages and fiscal
constraints, making it challenging to sustain the initial investment levels, ultimately
affecting innovation quality.

(3) Technological and market changes: The tech industry is continuously evolving. New
technologies and market trends might render existing pilot policies and projects
outdated. The government may need to continually adjust policies to adapt to
changing environments.

(4) Management and execution issues: Government management and execution capa-
bilities might be affected. While there could be initial passion and drive, issues like
management rigidity could surface over time, reducing policy effectiveness.

(5) Social feedback and engagement: Smart city pilot policies might generate social
reactions and engagement. However, over time, societal resistance and protests might
arise, leading the government into political dilemmas, hindering policy progression.

(6) Learning curve: In the initial pilot phase, governments and relevant departments need
time to learn how to effectively implement smart city policies. Once the government
accumulates experience, execution efficiency might improve, but concurrently, policy
effectiveness might gradually decline.

6. Conclusions and Recommendations

This study employs the implementation of the first batch of pilot cities under the smart
city pilot policy as a quasi-natural experiment, utilizing balanced panel data from the first
batch of smart city pilots in China from 2008 to 2018. It employs both fixed effects and
mediation methods to empirically investigate the impact of new infrastructure construction
on urban innovation quality. The findings indicate that the smart city policy significantly
enhances the innovation quality of cities. By employing a difference-in-differences (DID)
approach for empirical analysis and conducting parallel trend tests, removing special
samples, and performing placebo tests on the replaced explanatory variables, the validity
of the research conclusions is confirmed. The examination results reveal that the first
batch of smart cities conforms to the attributes of quasi-natural experiments, and the
DID method effectively evaluates the impact of new infrastructure construction on urban
innovation quality.

Furthermore, through mechanism analysis, this study reveals that new infrastructure
construction can promote urban innovation quality by enhancing industrial structure up-
grading and increasing total factor productivity. Notably, the impact of new infrastructure
construction on urban innovation quality varies depending on the location and population
density of cities. In the central, eastern, and densely populated areas, the effects of smart
city policies are more pronounced, indicating the crucial role of geographical location
and population density in leveraging the advantages of new infrastructure construction.
These regions also exhibit certain potential for industrial transformation and develop-
ment. However, in the western regions, new infrastructure investments may hinder the
development of urban innovation quality, ultimately leading to difficulties in achieving
desired outcomes.

These research findings hold significant implications for urban development world-
wide. Countries globally face similar challenges in urbanization and innovation, making
the lessons and conclusions drawn from smart city construction invaluable for other na-
tions’ and regions’ urban development. By understanding the impact mechanisms of smart
city policies and regional differences, other countries can better formulate policy measures
tailored to their own circumstances, promoting the enhancement of urban innovation
capacity and development levels and fostering global urban sustainable development.

While this paper examines the relationship between new infrastructure construction
and urban innovation quality using the DID method, there is still room for further develop-
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ment. Although this study has yielded some meaningful findings regarding the impact of
new infrastructure construction on urban innovation quality, it is important to acknowl-
edge its limitations. Firstly, the study primarily focuses on analyzing the influence of
geographical location and population density on new infrastructure construction, without
considering other factors that may affect urban innovation quality, such as urban gover-
nance, industrial structure, innovation capacity, and environmental quality. This implies
that our study may not have fully captured all the factors influencing urban innovation
quality, potentially leading to incomplete and biased results. Secondly, the sample used
in this study consists of prefecture-level cities in China. Longitudinally, provincial and
county-level samples were not considered, and horizontally, the study of other countries
and regions was not sufficiently in-depth. Additionally, although the longitudinal time
series data used in this paper is substantial, there is still room for further exploration in the
use of methods. Therefore, future research could expand to other countries and regions,
conduct multi-scale comparative studies in the same research field, and utilize dynamic
panel analysis to establish long-term relationships between indicators.

7. Future Work

In the future, cities face numerous challenges and opportunities, including population
growth, resource constraints, environmental pollution, and more. New infrastructure
construction can provide cities with smarter, more efficient, and sustainable solutions,
helping them better tackle future challenges and seize opportunities. Therefore, researching
the impact of new infrastructure construction on urban innovation quality holds significant
guiding and strategic importance for the development of future cities. Based on these
research conclusions, the following policy insights were derived:

(1) Increase investment in new infrastructure: New infrastructure construction plays
a crucial role in fostering urban innovation quality. Leveraging new infrastructure
to support and propel urban innovation development can focus on initiatives like
high-speed broadband internet, data centers, and IoT facilities, which form a robust
foundation for digitized economies and technological innovations, thereby enhancing
urban innovative capabilities. Additionally, developing and applying smart city
solutions, such as intelligent transportation systems, smart energy management, and
urban planning, can improve efficiency, sustainability, quality of life, and create more
opportunities for innovation.

(2) Actively promote the formation of industrial clusters in specific innovation fields: To
expedite industrial structural upgrades and economic diversification, governments
can implement various measures, including improved financial support, policy adjust-
ments to meet new demands, enhanced management and execution mechanisms, en-
couraging social participation, strengthening supervision, and feedback mechanisms.
Moreover, fostering innovation and technological progress, establishing ecosystems
supporting startups, including incubators, venture capital, and entrepreneurial train-
ing, and providing tax incentives can maintain the momentum and vitality of smart
city construction.

(3) Prioritize investment in smart infrastructure projects that integrate advanced tech-
nologies and innovation-driven solutions: Focusing on such projects can effectively
enhance productivity and stimulate innovation activities within cities. Measures such
as elevating total factor productivity, nurturing talents, integrating cutting-edge tech-
nologies, and optimizing resource allocation can improve the efficiency and quality of
urban innovation activities. Additionally, periodic evaluation and adjustment of regu-
latory frameworks are crucial. These frameworks should possess sufficient flexibility
to adapt to evolving technologies, ensuring alignment with urban innovation goals
while safeguarding public interests.

(4) Implement differentiated new infrastructure policy arrangements and distinct target
orientations: For resource-rich western regions, encouraging investments in green and
sustainable infrastructure, such as clean and renewable energy facilities and intelligent
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transportation systems, can reduce urban carbon footprints, elevate environmental
quality, and create innovative opportunities. In contrast, in the relatively developed
eastern and central regions, the government can encourage the establishment of
research and innovation hubs, offering venues and resources to facilitate technological
innovation and industrial upgrades. These centers can serve as hubs for cooperation
and knowledge sharing across different industries.
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