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Abstract: This paper examines and provides a robust solution to the problem of yield and failure
curvatures of reinforced concrete (RC) cross-sections, taking into account cracking. At the same
time, it calculates the corresponding necessary reinforcement or the moment of resistance in both
yield and failure limit states. Computationally, the problem of determining the actual curvatures is
reduced to the bending design problem of the cross-section in the yield and failure limit states. This
study shows the researcher and the designer how to systematically calculate the strains for different
concrete and steel grades and for standard or random cross-sections. This complex process is quite
necessary to determine the respective curvatures. The main concept is presented with an emphasis
on the “solution regions” as well as the critical cases of the “asymptotic regions”, both in yield and
failure limit states. Our wide-ranging research on RC element design under biaxial bending with
axial force for both yield and failure limit states has been completed and validated via sophisticated
algorithms and is available for publication.
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1. Introduction

The yield and failure curvatures, as well as the respective stiffnesses, depend on
cross-section geometry, the amount and distribution of reinforcement, the reinforcement
material properties, the concrete material properties, and the axial forces. The large relative
displacements of the column heads in relation to their bases, and therefore those displace-
ments of the associated diaphragms, significantly increase the characteristic periods of the
building, thus resulting in low seismic accelerations. This fact is very important for the
structural robustness of the building, especially when checking the resistance of an existing
building structure to an earthquake.

Many researchers dealt with the specific problem in the past. Chen and Hsu [1] developed
a semi-empirical formula for the curvature ductility of doubly reinforced beam sections, which,
via performance-based design, takes into account the effect of reinforcement ratios as well as
the reinforcement and concrete strengths. Hernandez-Montes et al. [2] related the curvature
ductility capacity of cross-sections designed with optimal reinforcement to those with symmetric
reinforcement, for both unconfined and confined concrete cases, under varying axial loads,
gross section area, and concrete strength. Chandrasekaran et al. [3] developed a closed form
solution to estimate the curvature ductility of RC elements under service loads, considering
the nonlinear characteristics of constitutive materials and the reinforcement ratios as required
by Eurocodes. Arslan and Cihanli [4] produced a formula predicting the curvature ductility of
reinforced high-strength concrete beams based on the parametric study of experimental results
to evaluate the effects of various structural parameters. Lee [5] provided a prediction formula
for the curvature ductility factor of doubly reinforced beam sections, taking into account the
concrete strength, the tensile yield strength of steel, and the compressive ultimate strength of
steel. Laterza et al. [6] performed an efficiency study of codal detailing rules for reinforcement
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design of primary columns and beams within the critical regions by comparing the codal design
results to the measured curvature ductility. By examining the effects of spectral acceleration and
a strong column factor, Zhou et al. [7] provided an empirical model in the form of a quantitative
relationship between the curvature ductility demands of columns and the global displacement
ductility demands of frame structures. Baji and Ronagh [8] developed a probabilistic method
used to calculate curvature ductility by means of the central limit theorem, considering the
specific behavior of the moment redistribution factor with respect to curvature ductility and
plastic hinge length. Research on biaxial bending by Breccolotti et al. [9] produced a formula
for the curvature ductility of reinforced short columns of varying section geometry, neutral
axis direction, reinforcement ratios, and axial forces. Kollerathu [10] proposed an equation to
evaluate and compare the curvature ductilities of reinforced masonry and RC walls, as a result
of diagrams of flexural strength versus curvature. Recently, Foroughi and Yuksel [11] developed
a predictive formula for the curvature ductility of doubly-reinforced beams by performing a
numerical parametric study.

Finding the actual curvatures, both in yield and failure states, requires the calculation
of concrete strain and steel strain under axial force and bending moment (or equivalently,
reinforcement), an extremely complex computational problem with a wide range of so-
lutions. Calculation tables were also used in the past, but they were available in failure
states only and usually for specific materials. Nowadays, due to the variety of available
materials and the demand for checking the actual strength and possibly retrofitting existing
buildings, the design in limit states also becomes imperative. This is the reason for our
extensive research to find a robust theoretical solution to the bending design problem, both
in yield and failure limit states, a part of which is presented in this article.

2. Column Limit States
2.1. Column in Yield Limit State

Figure 1 presents an exaggerated model of a column in the yield limit state. Flexural cracks
are perpendicular to the axis of the bar, while shear cracks have an inclination of 45° to 60° to
the axis of the bar. Here, ¢ is the displacement due to shear, which is linear and does not affect
the curvature, and J; is the displacement due to crack causing bending at the yield limit state.

Figure 1. Column in yield limit state (not to scale).
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Considering a differential length ds of the column at the side of its cross-section, the
inner fiber compresses and shortens by ds-e., while the outer fiber stretches and expands
by ds-es1. Then, the resulted differential central angle df is as follows:

d0 = ds-(ec +¢€51)/d and df = ds/R 1)
Equation (1) yields the following:
ds/R = ds-(ec +€51)/d = @y =1/R = (ec +€51)/d ()

where ¢y represents the actual yield curvature [12].
Note that in the yield state, it must be e, < e¢ and &1 < Eyds where the yield strain for
at least one of the two materials, either ¢, of the concrete or ¢41 of the steel, has been reached.

2.2. Column in the Failure Limit State

The physical behavior of a column functioning in a failure limit state is represented
in Figure 2 through the only possible observational method, which is the experimental
one. The experiment, which was part of the “Anti-Seismic Thoraces” tests, took place
in 1998 in the NTUA’s Reinforced Concrete Laboratory under the auspices of Professor
Theodosios Tassios. It is evident that the column failure takes place in relatively small
regions at the ends, while the rest of the column is in a yield state (marginal yielding with
cracking) [12,13].

Figure 2. The way to create a plastic joint at the two ends of a node due to strong alternating tension
(Tests of “Anti-Seismic Thoraces”—Reinforced Concrete Laboratory, NTUA).

Figure 3 presents an exaggerated model of a column in the failure limit state. Flexural
and shear cracks are apparent at the critical end regions of the column, while along the rest
of the body, they remain similar to the yield limit state case.
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Figure 3. Column in the failure limit state with plastic joints at both ends (not to scale).

The failure curvatures ¢, are calculated in exactly the same way as the yield limit
state, as follows:

¢uj=1/R; = (ec+e€s1)/d, j =1,2 (1 = head, 2 = base) (3)

When the reinforcement of the head and base is the same, as is generally the case,
then ¢,,1 = @u,2 = ¢,. Note again that in the failure state, it must be ¢, < e,p and &51 < g4,
where the failure strain of at least one of the two materials, either €. of the concrete or €51 of
the steel, has been reached.

2.3. Example: Calculation of Limit State Curvatures

Let us consider a fixed—fixed support column of height & = 3.0 m under axial force
N; = —800 kN (see Figure 1). The cross-section is 400 mm x 400 mm, f = 30 MPa, 7. = 1.50,
fyk =500 MPa, s = 1.15, &5, = 20%o0, and K = 1.0 with d; = d, = 50 mm. The applied
reinforcement is 4020 + 414 (=1860 mm?, p = 1.16%). It is considered that 50% of the total
reinforcements are placed at the corners, while the rest are distributed along the sides (see
Figure 4).

——
B
o
o

——

400

4@20)

Figure 4. Column cross-section with its reinforcement and corresponding model for bending design.
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Required: the yield curvatures ¢ = 1/R and the moments of resistance Mg, at the
limit state:

(1) Yield limity.
(2) Failure limit u.

2.3.1. Calculation of Yield Curvature

The uniaxial bending design of the cross-section yields x = 187.5 mm, Mg, = 185 kN-m,
g =2.0%0, and &51 = 1.734%o0. Hence, Equation (2) provides the yield curvature as follows:

@y = (2.0+1.734) x 1072/(0.40 — 0.05) = 10.67 x 10°>/m — R, = 94 m

The respective elastic curvature (without cracks) at the base of the column is provided
by the relation as follows:
¢e =1/R = MRgq,/(E-I)

According to Eurocode 2 [14], §3.1.2(3), it is fom = fox + 8 = 38 MPa and E = 22 X
(fom/10)03 x 10% = 32.8 GPa, so E-[ =32.8 x (0.4 x 0.43/12) =70.0 x 10 kN-m?. Substituting,
we get:

pe = 185/ (70.0 x 103) —264x1073/m — R, =379 m

Therefore, it is:
@y/ @e = 10.67 x 1073/2.64 x 107> =4.04,

which is very important for determining the effective stiffness of a column according to
Eurocode 8 [15], §4.3.1(6, 7).

2.3.2. Calculation of Failure Curvature

The uniaxial bending design of the cross-section yields x = 156.1 mm, Mg, = 219 kN-m,
g = 3.5%0, and &51 = 4.35%0. Hence, from Equation (3), the failure curvature is as follows:

@u = (35+4.35) x 1072/(0.40 — 0.05) = 22.42 x 102 /m — R, = 45m

Similarly to the yield state case, the elastic curvature is as follows:
pe =219/ (70.0 X 103) —313x10°3/m — R, =320 m
Therefore, it is:
Qu/ @y = 2242 x 1072/10.67 x 107> = 2.10 and ¢,/ @, = 22.42 x 107/3.13 x 10> = 7.16.

3. Equilibrium of Internal and External Forces

The following relations are derived from Figure 5:
x=de/(ec+e)ec=¢esx/(d—x),es =¢ec-(d—x)/x,65p =€c(x —dp)/x 4)
krp =ace foqgb, Fe = kp-x-a,zc = xx (5)
Fs1 = As1:051, Fsp = Asp-02 (6)

There are two basic equations balancing the internal forces with the external forces of
a cross-section under uniaxial bending with axial force (see Figure 5):

(a) Equilibrium equation of the forces Fs1, F, and Fsp with the axial force Ny

Fsl_Fc_FSZZNd (7)
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(b) Equilibrium equation of the moments of the forces F. and Fs; with the bending
moment My in the cross-section center and the moment of axial force Ny

My — Nyzg1 = For(d — z¢) + Fsp-(d — da) 8)
[a] &
/&>
8_\'{#'
.E\ﬁ

Figure 5. External and internal forces in a cross-section under uniaxial bending with axial force.
Using the Relations (4)-(6), Equations (7) and (8) transform into:
As1°01 = As2-0s2 + Fc + Ny 9)

My =F.(d—zc) + Ax-05p-(d — dp) + Ny-zs1 (10)

If p1 = As1/Ac and pp = Asp/Ac, 50 p2/p1 = Asa/As1 and Asy = As1-02/p1, then
Equations (9) and (10) can be written as follows:

Ag = (F.+Ng)/ (031 - 2'%2) (11)

M, = FC-(d — ZC) + Asl-%ﬂ’sz-(d — dz) + Nj-zg (12)

It is emphasized that the axial force N; always has a given value, independent of the
above relations.

The system of Equations (11) and (12) has three unknown variables in the correspond-
ing problem, that is, €, &, and Asq or M. Therefore, the system solution requires additional
conditions to be set, as follows:

e  First condition: the reinforcement ratio py/p; is provided.
e  Second condition: either ¢ or &5 should be in the limit state.

These two conditions, under certain assumptions, can replace the third equation.
Nevertheless, the solution is rather difficult, especially in the failure state, due to numerous
and complex combinations. The difficulty could be removed by using the trial solution
method. However, this process would require the determination of the solution boundaries,
which is also a quite complex problem.

4. Solution Regions in the Yield Limit State

The regions comprising possible solutions in the yield limit state are presented in
Figure 6.

Let p2/p1 be the ratio of the compressive to the tensile reinforcement. For any given
value of the ratio pp/p1, there is a characteristic case having compression zone depth x(;
(see Figure 6), where the denominator of Equation (11) becomes zero. That is

051 052

02 —_— 02 —— 02
051 — —0sp =0 = Esoe¢51 — —Esep =0 — 51 = —~-€g
01 P1 P1
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Taking into account Equation (4), the above relation can be written as

€s1 €52

—
ec-(d —x01)/x01 = &'ﬁc'(xm —dy)/x01 — X1 = (d + pz.d2> / (1 + pz) (13)
P1 01 01

Thus, at location 01, corresponding to compression zone depth xg; provided by
Equation (13), both tensile reinforcement As; and bending moment M; will be infinite
(see Equations (11) and (12)). Let us name this location existing in the yield limit state
“Asymptotic Location”.

‘ o £
2 °
: f
h :
IR Wi o
Iﬂi{. i £
X =L -.

Figure 6. Permissible strain distributions in the yield limit state.

5. Solution Regions in the Failure Limit State

The regions comprising possible solutions in the failure limit state are presented in
Figure 7. Region 1, where the steel reaches its failure limit [A], and region 2, where the
concrete reaches its failure limit [B], are divided to subregions 1a, 1b and 2a, 2b respectively.
Along the boundaries 2" A and 1”B, both M; and Ay; tend to infinite values.

| ;
1
£« o O ; £,

Eud 8 0 &: &

Figure 7. Permissible strain distributions in the failure limit state.

For p»/p1 =1, the denominator of Equation (11) is written as do = 051 — 7).
By observing the strain distributions in Figure 7, the following conclusions can
be drawn:
(1) The boundary 1”B of the subregions 2a and 2b, has &1 = eyd — 051 = fyg and e = ecun.
Since it is usually &, > yd — Us2 :fyd, we have do =041 — 04 :fyd —fyd =0.
(2) To the left of location 1”B will continue to be do = 0 until the specific location 01 with
€1 = &s2-
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From the last of Equations (4), for &5, = €yd and & = ¢, the compression zone depth
at location 01 is as follows:

€yd = ecuz(Xo1 — da2)/xo1 — X1 = d2'£cu2/(£cu2 - ‘C—yd) (14)

Thus, for the subregion extended between locations 1”B and 01, corresponding to
compression zone depths xp; provided by Equation (14), both the bending moment M; and
the tensile reinforcement A;q will be infinite (see Equations (11) and (12)). Let us name this
region existing in the failure limit state for pp /p; = 1 “Asymptotic Region”. Notice that this
asymptotic region is independent of the concrete class.

6. Application: The “Typical Rectangular Section” in Limit States

Consider a structural element made of C30/37 concrete and B500 steel with a 300 mm
x 550 mm rectangular cross-section, as shown in Figure 8.

5l
>
5l

b —
‘(—1{2 O O O

le
™

P
D
e —>
[ ]
[ J
[
[

Figure 8. A typical rectangular section.

Provided:
b =300 mm, i = 550 mm, d; = 50 mm, d; = 50 mm,

fek =30 MPa, v, = 1.50, a¢c = 0.85, ecp = 2.0%0, €cup = 3.5%o,
fyk =500 MPa, vs=1.15, Eg = 200 GPa (for steel grades B500a,b,c)

Derived:
d=h—dy =500mm, zg1 =h/2 —d; =0225m

fod = fa/ ve = 20.0 MPa, kp = age-b-f.g = 0.85-0.30-20.0-10% = 5100 kN /m,
i = fuk/7vs = 500/1.15 = 434.78 MPa, &3 = f,q/ Es=434.78/(200 x 10%) = 2.174%o
Y Y Y Y

For e, = e.p =2%0, it is a = 0.6667 and k = 0.375, while for e, = €.,,2 = 3.5%o, it is &« = 0.8095
and x = 0.416.

For B500c steel grade, ¢,; = 20%. with K = 1.0 is used in the simplified stress—strain
diagram, while ¢,; = 67.5%o is used with K = 1.15 in the exact stress—strain diagram.

6.1. Yield Limit State

Using the regions for the yield limit state presented in Figure 6, we form Figure 9
for the “typical rectangular cross-section”, where the strain-based region boundaries and
the corresponding compression zones are clearly illustrated. We define the origin of the
compression zone as the outermost upper fiber of the cross-section, while x;; represents
the compression zone depth corresponding to the location ‘ij’. For practical representation
reasons, we consider the cross-section to lie horizontally.



Buildings 2024, 14, 826

9of 16

. o~ 10, o~ 70
0<e <2%o &, < 700 & Z 700

5

500 550 500
l 150
£,=2.174%o 0<e<2.174%o0 ¥ . =0
500<x <550
i
| | |
| | | |
'I It2 I|I2!I 01 2" ]‘2” lzliE
X, =10 X0 4239.6 X0%275.0 X2=500  x,.=%
pi— = = —
0 04792 0.55 10 110 %
1 d,=30 ) i i
o K & | d=50 |
" d=500 - - -
W h=550 o
Figure 9. Strain-based region boundaries and corresponding compression zones in the yield limit
state for the “typical rectangular section”.
6.1.1. Strain and Curvature Diagrams in the Yield Limit State
The diagrams of strain ¢, & and the corresponding yield curvatures ¢, are shown in
Figure 10. These values are independent of the axial force N; and the reinforcement ratio
p2/p1-
€, &(%o)
25
2174
20
1.5
1.0
0.5
X(m
: )
d
20
4.0 -
435 T ——l |
6.0
80 fit——t —2.0%
8.35~
100
Pa,y (10°/m) Qg £(10°/m)

Figure 10. Strain diagrams and corresponding yield curvatures for the “typical rectangular section”.

The compression zone depth is presented on the diagrams in millimeters up to a depth
of h = 550 mm, and thereafter in meters on a logarithmic scale. In practice, the values of Asq
and M; are required in each characteristic case of the cross-section with respect to x. These
values, as obtained from Equations (11) and (12), depend on both the reinforcement ratio
02/ p1 and the axial force Nj;.
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6.1.2. Asymptotic Location in Yield Limit State for p,/p; =1
For p»/p1 =1, Equation (13) yields:

Xo1 = (500 +1x 50)/(1 + 1) = 275 mm and (d — xm)/xm = 0.818.

Since the concrete reaches its critical value in this case (i.e., &; = &» = 2.0%o), Equation (4)
yield a tensile strain value for steel &51 = 2.0%0 x 0.818 = 1.636 %o . On the other hand,
for ec = ecp = 2%o, it is & = 0.6667 and x = 0.375 (see Section 6). Consequently, from
Equation (5) the compressive force F. received by the concrete is F, = kp-xp1-a = 5100 x
0.275 x 0.6667 = 935.0 kN.

6.1.3. Solution Nomogram in Yield Limit State for p,/p; =1

The method of reinforcement with As, = Asq (i-e., p2/p1 = 1) is used in cases where
significant axial forces are exerted mainly on columns and/or in cases of beams with special
anti-seismic requirements that entail high plasticity requirements [16].

Figure 11 presents a solution nomogram in the yield limit state for p,/p1 = 1, in the
form of paired diagrams (M;, As1) corresponding to different compression zone depths x
and axial forces Ny. The asymptotic location here stands for xg; = 275.0 mm, and therefore,
region Il is divided into two subregions (see Figure 9). For this case, it is &, = 2.0%0 and
F. =935.0 kN (see results in Section 6.1.2).

N,=-2000

-2R05

N

ey
£755 | | [vepoo] | teger

500 50 (mm)

N,=-2000

<2805

Figure 11. Paired diagrams (M, As1) corresponding to compression zone depths x and axial forces
Ny in yield limit state for the “typical rectangular section” and p,/p1 = 1.

At each position x, there is a specific pair (As1, M) calculated from Equations (11) and (12).
For example, for bending moment M, = 200 kN-m and axial force N;j = 0 kN, the steel
reaches the yield state first, so the required tensile reinforcement is As; = 1028 mm? (see
Figure 11). The respective compression zone depth is found to be x = 153.0 mm, resulting
in strains . = 0.958 %0 and &; = 2.174%o, clearly indicating that the steel has reached its yield
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point (see Figure 10). Then, Equation (2) provides the yield curvature (also presented in
Figure 10).

@y = (0.958 +2.174) x 1073/(0.55 — 0.05) = 6.26 x 10~%/m.

6.2. Failure Limit State

Using the regions for the failure limit state presented in Figure 7, we form Figure 12
for the “typical rectangular cross-section” where the strain-based region boundaries and
the corresponding compression zones are illustrated. In any algorithmic process adopted,
the region boundaries should be first determined, because the upper and lower bounds of
x and the corresponding values of the non-critical strain of the steel or concrete are needed.
In the case of an accurate stress—strain diagram of the steel, for example, for ¢,; = 67.5 %o
and K = 1.15, the region boundaries A2” and AB change significantly, but the calculation
process remains the same. Furthermore, such differences in reinforcement design values
are trivial in practice.

g o 2 &C
3.5% £,=3.5%0 2%0<¢&,<3.5%0

-

/
;/
; 2()%0 & 20%e 2.1 74’7}!:5 £.<20%o /:- £.<2.174%o = i
500<x <55 B2
/_/\ | | | l
\ T »X
A'z A2" AB 01 B "B I'B 1BZ32"
X, 0 \I.A X ,\'_OLi \_,fi Xp=d xl—”»l:h
I
.1 I 11
X =45!5 X =74.5 201 =132.0 X,y=308.4 X500 x,,=x32"=550
U $ $ » X
0 m)w 0_149 0,264 0.6168 10 110
d, =50, 1 B 0:
:« ‘ d =500 i ~:
e h=3550 -

Figure 12. Strain-based region boundaries and corresponding compression zones in the failure limit
state for the “typical rectangular section”.

6.2.1. Strain and Curvature Diagrams in the Failure Limit State

The diagrams of strain ¢, & and the corresponding failure curvatures ¢, state are
presented in Figure 13. For comparison reasons, the corresponding yield curvatures ¢,
are also shown. Notice that all values are independent of the axial force N; and the
reinforcement ratio pp/p1. The compression zone depth x is given in millimeters up to the
total depth of & = 550 mm, and from there on, in meters on a logarithmic scale. In practice,
the values of As; and M, are required at each characteristic location of the cross-section
with respect to x. These values, obtained from Equations (11) and (12), depend on both the
reinforcement ratio p, /p; and the axial force Nj;.
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Figure 13. Strain diagrams and corresponding curvatures in the failure limit state for the “typical
rectangular section”.

6.2.2. Asymptotic Region in Failure Limit State for p,/p; =1

Equation (14) gives xp; =50 x 3.5/(3.50 — 2.174) = 132.0 mm, while Equation (5) give
the force F. = 5100 x 0.132 x 0.8095 = 544.9 kN received by the concrete at the location 01.

Equation (4) give x;#g =500 x 3.5/(3.5 + 2.174) = 308.4 mm, while Equation (5) give the
force F, = 5100 x 0.3084 x 0.8095 = 1273.2 kN received by the concrete at the location 1”B.

Thus, Equation (11) maintains a zero denominator throughout the interval between
xo1 = 132.0 mm and x;»p = 308.4 mm.

6.2.3. Solution Nomogram in Failure Limit State for p,/p; =1

Figure 14 presents a solution nomogram for p,/p1 = 1, in the form of paired diagrams
(Mg, As1) corresponding to different compression zone depths x and axial forces N;. At each
position x, there is a specific pair (As1, Myy) calculated from Equations (11) and (12). The
diagram comprises the areas of dominant bending on the left and the areas of dominant
compression on the far right. A multiple solution area is also apparent in the middle,
theoretically extending to infinity. It should be pointed out that in our case, with py/p; =1,
there are two asymptotic boundary locations (in the sense of zeroing the denominator of
Equation (11)), that is, 01 and 1”B, as determined in Section 6.2.2. Consequently, region 2a
is divided into two subregions (AB, 01) and (01, 1”B) (see Figures 7 and 12).
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Figure 14. Paired diagrams (Mg, A1) corresponding to compression zones x and axial forces N in
the failure limits state for the “typical rectangular section” and p,/p1 = 1.

6.2.4. Indeterminacy or Multiple Solution Region in Failure Limit State

This region extends between the two asymptotic locations 01 and 1”B, corresponding
to compression zone depths x¢; = 132 mm and x;»z = 308.4 mm, respectively (see Figure 14).

By relating those to the respective forces, we can say that a cross-section is in the
indeterminacy region when stressed by axial forces of 544.9 kN < N; < 1273.2 kN (see
results in Section 6.2.2).

In this region, it is 051 = 0sp. Thus, Equation (11) gives indeterminacy Asq = oo for
F. # —N, and an infinite number of solutions for F. = —N,. For each Ny in the region,
there is a certain x that gives F. = —Nj;. This location has x = F. /& f.4-b-a, and the force
F. is exerted at the position z. = x-x (where & = 0.8095 and x = 0.416 because ¢ = € =
3.5%0—see values in Section 6). Furthermore, the tensile strain is €57 = €.-(d — x)/x, while
the forceis Fsp = Agp-0sp = A51~fyd.

Since F = —Ny, p2/p1=1,and 05y = 051 :fyd, Equation (12) yields:

Md:Asl'fyd'(d_dZ)_Nd'(d_Zc_Zsl) (15)

Notice that Equation (15) directly relates As1 to M. So, when M, is given in a problem,
Ags1 is uniquely calculated, while when Ay is given, M, is uniquely calculated.

Remark: In the multiple solution region, all pairs (My, As1) having the same Ny
correspond to the same x, implying the same strains &7 and €. and, hence, constant failure
curvatures @y.

6.2.5. Application in Failure Limit State for p,/p; =1 and Nj = —1000 kN

Ttis x = 1000/(0.85 x 20 x 10® x 0.30 x 0.8095) = 0.2422 m, z. =0.2422 x 0416 = 0.101 m, &5
=3.5 x (0.50 — 0.2422)/0.2422 = 3.73%o, &c = 3.5%o, and ¢, = (3.5 + 3.73) /0.50 = 14.46 %o /m.
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For As1 = Asp = 0 (When reinforcement is barely required), Equation (15) yields M; =0
+ 1000 x (0.50 — 0.101 — 0.225) = 174 kN-m. That is, for axial force N; = —1000 kN and
moment M; < 174 kN-m, no reinforcement is required.

For As1 = Asp = 7000 mm? (selection of maximum reinforcement value Ag; in Figure 14),
Equation (15) yields My = 7000 x 107¢ x 434.78 x 10 x (0.50 — 0.05) + 1000 x (0.50 —
0.101 — 0.225) = 1544 kN-m.

For M, = 800 kN-m, inverted Equation (15) yields As; = [800-1000 x (0.50 — 0.101 —
0.225)]/[434.78 x 10% x (0.50 — 0.05)] = 3.200 x 1073 m? = 3200 mm?. Hence, the solution
is determined as a pair (800, 3200) from the infinite number of pairs of specific solutions on
the line N; = —1000 kN.

7. Conclusions

e  The influence of cracking on the curvature of RC elements is significant in relation to
the corresponding elastic curvature, even in the yield state, so the corresponding yield
stiffness is significantly smaller than the elastic stiffness.

e  For specific flexural reinforcement, the yield curvature is much smaller than the failure
curvature, while the yield moment of resistance is of the same order of magnitude as
the failure moment of resistance.

e  During the bending design of a cross-section in the failure limit state, there is an
extended region of compressive axial forces where the curvature is practically constant
regardless of the acting moment. Then, for any given axial force, the necessary flexural
reinforcement is derived from the acting moment based on a first-order equation.

e Itis proposed that the design process should take place in the following order:

(a) Calculate reinforcement in the failure state.

(b)  Choose and apply reinforcement.

() Calculate failure curvatures ¢y, yield curvatures ¢y, and elastic curvatures g@e.
(d) Estimate curvature ductilities from the ratios ¢,/ ¢, and/or ¢,/ @e.

(e) Determine effective stiffness and resolve.
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Nomenclature
The following symbols are employed in this paper:
As total reinforcement

Aq tensile reinforcement
Agp compressive reinforcement

Kec long-term effects factor

b beam width

c ratio of compressive reinforcement to tensile reinforcement
d beam effective depth

dq tensile reinforcement cover

dy compressive reinforcement cover

E concrete modulus of elasticity

Es steel modulus of elasticity
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F. concrete compressive force

Fq tensile reinforcement force

Fy compressive reinforcement force

fek concrete compressive strength

fem concrete mean compressive strength
fyk steel yield strength

fed concrete design strength

fya steel design strength
h beam height

I cross-section moment of inertia
K strain hardening coefficient (ductility property)
ke concrete compressive force coefficient

M;  bending moment acting in the cross-section center
M,;  bending moment acting in the tensile reinforcement position

Ny axial force acting in the cross-section center

R, radius of elastic curvature

Ry radius of yield curvature

Ry radius of failure curvature

x compressive zone depth distance of the outermost upper fiber from the neutral axis
Xjj compressive zone depth corresponding to the “ij” location

X01 compressive zone depth corresponding to the asymptotic location

Ze distance of the outermost upper fiber from the concrete compression center
Ze1 distance of the tensile reinforcement position from the cross-section center
o distribution factor of concrete compressive force

Ye concrete safety factor

Vs steel safety factor

01 yield state displacement due to shear

Oy yield state displacement due to bending

& concrete strain

€ concrete yield strain

€ concrete ultimate strain

£ steel strain

€1 tensile reinforcement strain

£ compressive reinforcement strain

Esu steel ultimate strain

€ud steel design ultimate strain

K position factor of concrete compressive force

01 tensile reinforcement percentage

02 compressive reinforcement percentage

Os1 tensile reinforcement stress

Os compressive reinforcement stress

Qe elastic curvature

Py yield curvature

Qu failure curvature
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