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Abstract: Building Information Modelling (BIM) revolutionizes the construction industry by digitally
simulating real-world entities through a defined and shared semantic structure. However, graphical
information included in BIM models often contains more detailed data compared to the corresponding
semantic or computable data. This inconsistency creates an asymmetry, where valuable details present
in the graphical renderings are absent from the semantic description of the model. Such an issue limits
the accuracy and comprehensiveness of BIM models, constraining their full utilization for efficient
decision-making and collaboration in the construction process. To tackle this challenge, this paper
presents a novel approach that utilizes Machine Learning (ML) to mediate the disparity between
graphical and semantic information. The proposed methodology operates by automatically extracting
relevant details from graphical information and transforming them into semantically meaningful
and computable data. A comprehensive empirical evaluation shows that the presented approach
effectively bridges the gap between graphical and computable information with an accuracy of over
80% on average, unlocking the potential for a more accurate representation of information within
BIM models and enhancing decision-making and collaboration/utility in construction processes.
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1. Introduction

In the rapidly evolving digital era, the construction industry is experiencing a signif-
icant shift towards model-centric and data-driven workflows [1,2]. The digitalization of
the construction industry offers remarkable benefits, including informed decision-making,
enhanced safety and accuracy, improved integration and communication, cost reduction,
increased transparency, and better prediction and control throughout the building lifecy-
cle [3,4]. In this transformation, Building Information Modeling (BIM) emerges as a key
component in supporting essential functions for construction project teams and in building
advanced digital twins and data analytics pipelines [5–7]. The concept of BIM, as defined by
researchers over time, has advanced with the expansion of its applications. It can be defined
as ‘an advanced evolution of computer-aided design to provide a comprehensive, multi-
dimensional view of building data across its lifecycle’. However, developing a singular,
universally acknowledged definition of BIM is challenging due to its evolving nature and
diverse applications in the field [8]. Furthermore, the semantic correctness of BIM data is
essential, highlighting both research initiatives and practical applications by ensuring that
the digital representation faithfully mirrors the physical aspects of construction projects.
This reliability is essential for the effective utilization of BIM, enabling more informed
decision-making and innovation in construction methodologies [9].

BIM embeds 2D or 3D graphical representations of the construction and exploits se-
mantic information to facilitate all the stages and “dimensions” of the construction process
including time (4D), cost (5D), facility management (6D), sustainability (7D), and safety
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(8D) [7,10,11]. However, despite its potential, the adoption of BIM in the European Union
(EU) remains moderate. According to the European Construction Sector Observatory
(ECSO) just under a third (29%) of construction firms make use of 3D BIM and just 6% im-
plement BIM 4D, calling for an acceleration of BIM market adoption [12]. To address this,
several EU countries have mandated BIM requirements for public procurement projects,
with Denmark, Sweden, Finland, Italy, Lithuania, and Germany leading the way. Open
BIM standards have been established in Italy, the Netherlands, and Austria. Italy has
implemented a progressive adoption strategy, making BIM mandatory for complex projects
of increasing value over time. This strategy culminates in 2025, when BIM will be expanded
to encompass all projects, regardless of complexity [12].

BIM uses a shared semantic structure to simulate real objects digitally. It represents
components geometrically and includes computable data for automated construction pro-
cessing and simulation [13]. The completeness, accuracy, and consistency of semantic
parameters are crucial for obtaining effective simulation of the construction model and
meaningful data analytics [14]. In terms of completeness, BIM authoring tools often allow
objects to be modelled without the definition of attributes related to the geometrical rep-
resentation (e.g., length, height, number of openings in a window). Graphical details can
be created in components without specifying semantic parameters like door openings or
beam shapes, leading to information asymmetry between graphics and semantics. This
lack of semantic data impedes computational analysis of BIM models, as machines strug-
gle to interpret the complex structures behind graphical representations [15]. Moreover,
challenges regarding precision and uniformity are also noteworthy. BIM authoring tools
currently offer a basic and limited range of semantic parameters. This limitation becomes
evident when one considers the complexity and detail present in graphical representations,
particularly for historic buildings, which often surpass the simple categories of parameters
that BIM authoring tools can integrate [16]. Consequently, many objects in a BIM model are
inaccurately labeled or placed under a broad semantic category (e.g., “mass” or “generic
object”). While accurate object categorization at the project level may be achieved through
the analysis of graphical representations, ensuring clarity for users, this approach falls
short when information must be directly utilized by machines, such as in analytics or
simulations [17].

However, BIM models sometimes contain incomplete, inaccurate, and insufficient
data that impact project outcomes. Instead, the industry needs BIM tools that can more
efficiently adapt to continuously evolving digital workflows, suggesting a gap in the
current toolset’s flexibility and adaptability [6,18–20]. Yet, the interpretation of images and
unstructured data to identify and categorize architectural components and their spatial
configurations remains a significant challenge, while the construction sector’s advancement
emphasizes the need for intelligent management and sustainable decision-making in
complex projects [21]. Despite the transformative potential of BIM, as reported by [22],
today’s BIM practices often have a gap between graphical information and computable
information that highlights the need for semantic enrichment in BIM, to ensure a more
comprehensive and accurate representation of building data. Moreover, they noted that
the automation level and accuracy of existing methods need to be further improved. The
gap between the detailed graphical representations and the comparatively semantic data
challenges the effectiveness of BIM, limiting its utility in complex decision-making processes
and multidisciplinary collaborations [23].

The integration of ML, and specifically image recognition technologies, presents a
promising chance to overcome the aforementioned limitations. Leveraging ML and com-
puter vision techniques, these images can be employed to autonomously generate 3D
as-built models, track construction progress on-site, and evaluate damages for maintenance
needs [24,25]. Specifically, ML significantly boosts precision and automation in enriching
BIM semantics, thereby streamlining decision-making processes and enhancing collabo-
rative efficiency [26]. Accordingly, Ref. [27] highlighted the potential of methods based
on ML and provided a systematic review and meta-analyses of related. They pointed out
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several research gaps in this field of research including the limited focus on extracting
semantic information about building components using drawings and other textual and
graphical representations.

To address these gaps, this research work provides a methodological approach to
enhance the semantic richness of BIM systems using image recognition [28]. The approach
proposes the use of ML techniques to translate graphical information into computable
information that can be used in data analytics processes. The image recognition task is based
on deep Convolutional Neural Networks (ConvNets) because of their high performance in
handling image inputs [29]. Our approach works with BIM models exported as Industry
Foundation Classes (IFC) files. A database complements these IFC models to store images
that correspond to the elements defined in the IFC file. A trained ConvNet is utilized to
analyze these images and extract relevant semantic information that was not originally
included in the IFC model. Such semantic parameters are then used to enrich the original
IFC model which can be exploited for more accurate simulations or data analytics processes.

In this direction, this research aims to mediate the discrepancy between the detailed
graphical content and the limited semantic information in BIM models. This strategy not
only extends the semantic depth of BIM systems but also significantly supports their ana-
lytical and simulation capabilities. By effectively converting visual details into computable
semantic information, this methodology promises to elevate the precision and utility of
BIM in the construction sector, driving more informed decision-making and enhancing
collaborative efforts.

This study drives the field of digital construction management forward by coupling
the power of ML to improve BIM. It facilitates a digital transformation in managing
and executing construction projects, thereby addressing key challenges in the field. By
embedding advanced algorithms capable of interpreting complex graphical data and
enriching semantic content, this approach drives digital construction management toward
data-driven insights and machine-enhanced decision-making. Consequently, this leads to
exceptional levels of project efficiency, sustainability, and stakeholder engagement.

This work is structured as in Section 2 the background highlights the current challenges
and benefits of the BIM model’s semantic representation and the motivations of this research.
The proposed framework and the methodology are described in Section 3. Section 4 presents
the prototype system based on a convolutional neural network developed using Python.
Finally, Sections 5 and 6 contain the implications, limitations, possible future research,
and conclusions.

2. Literature Review
2.1. Open Challenges in the Semantic Representation of Building Information Models

Semantic enrichment aims to decode and integrate implicit building semantics into
models, enabling their versatile application across various tasks with reduced need for
modifications [30]. Semantic representation in BIM captures data meaning for intelligent
processing. This enables computers to understand and analyze data, facilitating advanced
decision-making [31,32]. Technical accuracy in BIM tools is crucial for effective seman-
tic representation. Addressing issues in semantic accuracy also requires considering its
functional, informational aspects and potential future applications.

The semantic representation of building information models lies in the identification
of objects’ categories and the definition of the relationship among those objects [33]. To
tackle this problem, some recent work highlight the importance of ontology and semantic
web technology in the context of BIM, addressing the need for a more robust system of
shared conceptualization that allows for interoperability, linking BIM objects, and logical
inference [5,34]. Semantic representation in BIM using ontologies like ifcOWL, enables
efficient data assimilation, information updates, and meaningful connections with other
domains by adding explicit meaning to building information [35]. However, although
semantic web technologies allow for a rigorous definition of BIM object semantics and for
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the automated understanding of building properties and characteristics [36], they strongly
rely on the correctness and completeness of the information stored in the ontology [37].

Both the technical capabilities of BIM authoring tools and the expertise of the users
managing these tools play a critical role in determining the semantic quality of BIM
object representations [38]. Objects not on the embedded list are assigned to a generic
category and personalized for semantic identification, but can’t have custom semantic
relations. In contrast, flexible BIM platforms like FreeCAD, highlighted for their open-
source nature, allow free modification and customization, enabling collaborative workflows
and diverse architectural and engineering tasks [39]. Open-source platforms enhance
semantic enrichment in BIM through customizable and extensible data structures, allowing
users to define, modify, and customize the attributes and relationships of BIM objects to
suit specific project needs [40]. Comparatively, commercial BIM which is robust but less
flexible, open-source solutions support specific project needs better [41]. Accordingly, this
research work aligns with this paradigm shift, as it explores methods to further enhance
the semantic capabilities of BIM models, contributing to the broader goal of advancing BIM
technology for more efficient and collaborative construction processes.

Challenges in capturing the semantics of structures are particularly pronounced with
existing buildings, especially for the historical ones. There has been a growing interest
in the application of BIM for the maintenance of such historical buildings [42–45]. In
this context, notable experimentation on historical buildings includes the “Albergo dei
Poveri” in Geneva [46], the “S. Maria di Collemmagio” Basilica in L’Aquila [47], Sondrio’s
“Masegra” Castle [48] and the Milan Dome [49]. These studies bring to light the complexities
of semantically representing historical elements within a BIM framework. For instance, the
intricate features of the spire of Milan’s Dome necessitated the incorporation of a 3D model
with an external database and a photographic catalog [50].

However, the geometric model itself lacks inherent object classifications and defined
rule-based relationships among objects, with all related information being coordinated
through external means. Further investigations reveal that commercial BIM applica-
tions fall short when it comes to modeling existing structures, particularly those his-
torical [51]. This shortfall is linked to the intricate geometry of certain elements and the
challenge—or at times, the outright impossibility—of accurately semantically representing
objects within a BIM context. Additionally, the scenario with historical buildings calls
for tailor-made solutions, prompting the advancement of specialized Level of Develop-
ment (LOD) standards [52] and dedicated methods for managing aggregated informational
sources [53]. Still, addressing the constraints presented by proprietary BIM authoring tools
is a pressing challenge.

2.2. Automated Image-Based Semantic Enrichment of BIM Objects

To manage the lack of complete, consistent, and accurate semantic descriptions of
BIM objects, multiple approaches in the literature highlight the potential of extracting
important information from images [35,54,55]. Images often contain more detail than BIM’s
semantic attributes, creating an information asymmetry. Due to machine unreadability, this
image-embedded data can’t be used for simulations or analytics. Researchers enhanced the
information models through the use of images, employing a variety of techniques ranging
from rule-based and model-based solutions to data-driven methodologies. Recently, ML
and neural networks have emerged as leading strategies for classifying objects within
images and extracting pertinent information. Although such ML-based approaches may
initially require more extensive training and may yield average accuracy results when
compared to other methodologies, they offer distinctive advantages [15]. For instance, they
can effectively manage complex, unstructured data, potentially identifying nuanced details
that could be missed by rule-based systems [25,36]. Further, they can analyze visual data to
detect features and relationships not explicitly delineated in the model, but implied within
the visual representation, leading to a significant increase in the semantic richness of the
extracted data [56].
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In this direction, Ref. [57] Proposed a method for enhancing BIM models using se-
mantic data from unknown-pose images, effectively increasing semantic coverage through
accurate 3D integration. Similarly, Ref. [58] employed deep learning for the classification
of building types using images extracted from BIM models. Their classification strategy
yielded promising accuracy results, especially when using pre-trained neural networks on
real-world images, such as ResNet.

Moreover, Ref. [42] automated the recognition and classification of building anomalies
within BIM models using a deep learning-based prediction model. They reported accuracy
ranging between 50% and 75%, with the potential for improvement as the dataset is further
populated with images, Ref. [59] introduced an innovative workflow for the automatic
detailing process in BIM using parametric design, achieving a 47.4% error reduction in
classification and an 18.8% reduction in regression tasks.

The choice of ConvNets for our study is based on their proven ability to efficiently
process and classify large sets of images through deep learning. This approach allows for the
automatic extraction of increasingly abstract features from raw data, making it particularly
effective for complex image recognition tasks in construction contexts. It specializes in
complex object recognition and attribute identification, enriching BIM semantics. They
can identify similar objects within one image or different objects with similar features [29].
Hence, ConvNets can be used in the classification of objects but also the identification of
peculiar parameters such as the number of openings in windows or the type of a specific
door. Figure 1 graphically shows a representation of a ConvNet.
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2.3. Aim and Motivations of the Research

To better understand the challenges and benefits of ML-based image recognition for
semantic richness in building information models, Table 1 summarizes key findings from
previous studies and provides a comprehensive overview of the current state of research in
this area.

Table 1. Main Challenges/Benefits of Semantic Richness in BIM Using ML-Based Image Recognition.

Open Challenges

• Technical challenges in BIM’s semantic data interpretation [25,31].
• Dependence on ontology correctness and completeness [5].
• Quality reliance on current BIM software and operator judgment [38].
• Semantic representation difficulties in existing buildings [27,42].

Main Benefits
• Valuable details in images beyond BIM semantic attributes [35,54,55].
• ML’s ability to handle complex data and detect implicit features [22].
• Automatic detailing and error reduction in BIM [59].

Semantic information in BIM is largely confined to standard authoring tools, with
limited research showing effective extraction of valuable, non-standard semantic data
through object classification. To address this gap, leveraging ML and image recognition
to extract finer granular semantic information and enrich BIM models at a more detailed
level is used in this work. Thus, an approach using ML image recognition algorithms is
proposed to extract non-geometrical, computable information from the real world and
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other types of images and embed it into the corresponding BIM objects defined in building
information models.

The proposed methodology unlocks the potential for a more accurate and compre-
hensive representation of both geometrical and associated non-geometrical information
within BIM models. Thereby, it enhances decision-making, collaboration, and utility in
construction workflows. This integrated and semantically rich approach advances the
scope and application of BIM in the construction industry.

3. Methodology

In this section, the framework and methodology of the proposed system, and an image
recognition checking system designed to augment and refine the BIM model are described
(i.e., this work is retrieved from the methodological approach of a Ph.D. thesis [28]).

The four main methods for semantic enrichment include Semantic Web Technology,
Rule-Based Reasoning, ML, and Database-based semantic integration as mentioned in [22].
Among these, ML was chosen due to its unparalleled ability to automatically identify
patterns and insights from datasets. ML’s adaptive learning capability makes it particularly
suited for the semantic enrichment of BIM, as it can evolve with new data and continuously
improve the accuracy and relevance of the semantic annotations. This work uses ML
applications to bridge the gap between graphical and semantic representations in BIM,
enhancing data quality for analytics applications and addressing the challenges posed by
the evolving nature of linked building data and the limitations of current BIM authoring
tools. Unlike other technologies, ML can emulate human cognitive abilities to understand
context-based graphical information, making it exceptionally suited for enhancing the
semantic richness of BIM [25].

The proposed framework assumes the BIM model to be exported in IFC format. IFC
was selected due to its widely acknowledged status as a comprehensive data model used
in BIM. It provides an open and interoperable data format, ensuring our system can be
universally applicable across various software platforms [61].

The logical workload orchestrates the flow of operations and ensures an interplay
among the different involved components. It operates based on multiple user-defined
parameters to be extracted from images, enabling a systematic approach to identify and
address potential discrepancies within BIM.

The core component of the system is an image recognition engine, based on Convolu-
tional Neural Networks (ConvNets). The ConvNet is trained only once with real-world
images, and it is then used to predict semantic parameters for new, unseen images ex-
tracted from an input IFC model. The presented methodology efficiently manipulates
the IFC model to (i) extract relevant images, and (ii) enrich the model with the generated
semantic parameters. Thus, the outputs of our image recognition system are not only used
for checking the integrity and accuracy of the BIM but also for enriching it by filling in
possible gaps or rectifying inconsistencies between geometric and non-geometric data. By
integrating these components, our system presents a holistic solution, offering substantial
improvements in the construction and refinement of BIM models.

Figure 2 shows the logical process of the proposed system. The process is logically
divided into two main parts, namely project, and analytics. These two sections are designed
to focus on distinct tasks and requirements inherent to their respective application domains.
In the former, the primary emphasis lies in identifying potential discrepancies between
geometric and non-geometric data. The purpose of this phase is to identify any conflicts or
inconsistencies and resolve them, ensuring a reliable and accurate project execution. In the
latter, the scope extends to incorporate both the previous objectives and additional tasks.
In addition to resolving inconsistencies between geometric and non-geometric information,
this phase strives to convert specific geometric attributes of objects into a format that can
be easily processed computationally. The transformed geometric data serves as a means
for conducting in-depth data analysis, enabling the extraction of meaningful insights and
fostering informed decision-making processes.
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The logical process of the proposed system unfolds across four defined stages:
(1) parameter definition and training of the image recognition engine, (2) image extraction
from a building information model (BIM), (3) model verification, and (4) model enrichment.

3.1. Semantic Parameters and Model Training

Initially, a set of user-defined semantic parameters are defined. This process is pre-
dominantly manual and demands domain-specific knowledge [62]. These parameters can
vary according to the requirements of the project and the data analytics task. For example,
the Level of Detail (LOD) of the objects, the context of the project, and the specific software
utilized to create the original model can all influence the selection of these parameters.

These user-defined parameters serve a pivotal role in training ConvNet. Concerning
this, we anticipate two likely scenarios. The first scenario involves the availability of a
pre-existing set of images of the building or objects relevant to the project. The second
scenario foresees the necessity to gather a new set of images explicitly for the development
of the approach. Regardless of the scenario, the defined parameters are instrumental. They
are either used to sift through and select the appropriate images from the available set
or to steer the process of new image collection. The nature of the selected parameters
can sometimes necessitate a manual labelling process for the images. For instance, while
it might be straightforward to find an image dataset with labelled doors and windows,
it becomes considerably more challenging to find one where windows with a varying
number of openings are specifically labelled. Despite this, the manual labour involved in
the labelling process only needs to be endured once for each unique set of parameters. This
is because the resultant image dataset, once defined and labelled, can be reused in future
applications, thus adding a valuable resource to the image recognition workflow. At the
end of the first stage, the ConvNet is trained using the selected images along with their
labels. The model is then deployed in a production environment (e.g., in the Cloud) to
serve requests from users.
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3.2. Image and Data Extraction from the Information Model

In the second stage, the approach reads the building information model in IFC format.
Each object in an IFC model carries a Globally Unique Identifier (GUID), a unique string
assigned to each component that allows for clear and precise identification within the
model. The framework of IFC permits the examination of every component within an IFC
model via the use of GUIDs. It encompasses relationships between objects, enabling the
retrieval of visuals that represent not just individual items but also objects situated within
their environment (for instance, a window set within its surrounding wall). The quantity
of related objects can be defined in the extraction procedure imposing the depth of the
query on relations. For example, a depth will retrieve a selected object X and the objects
Ys related to it, while a depth equal to two will retrieve the selected object X, the objects
Ys related to it, and the objects Zs that are related to at least one in Ys. This research is
centered on queries that do not exceed a single level of depth. In this stage, the approach
uses the previously defined parameters to select pertinent objects in the IFC model, extract
their GUIDs, extract their renders and export them as images (e.g., in .jpg format), and
store these data in an external database. In the database, the images are paired with the
GUID of their originating objects. This GUID-image pairing enables a direct link between
each object in the IFC model and its corresponding image stored in the database.

The criteria for image selection in the experiment were based on the specific require-
ment of identifying the number of openings in windows, leading to the collection and
labeling of images showcasing windows with two and three openings. The training dataset
comprised 90 images for each category, while the testing set included 25 images per cate-
gory, ensuring no overlap between the training and testing sets to maintain the integrity of
the evaluation process. The process involved utilizing a Python script specifically tailored
to autonomously identify and extract images of “IfcWindow” objects from an IFC model.
This script was instrumental in assembling the initial dataset, which incorporated a variety
of characteristics to assess potential impacts on the image recognition engine’s efficacy. It
should be noted that variations in color and orientation did not significantly impact the
recognition process and performance [28].

3.3. Semantic Information Validation

Once the images are extracted, they are passed to the image recognition engine, and
the ConvNet trained in the first stage is used to recognize and label these images. This
stage aids in verifying the original IFC model by spotting potential discrepancies between
geometric and non-geometric information. The output of this stage is a textual report file
where such inconsistencies or missing values are reported. It must be highlighted that
the definition of the requirements and consequently of the parameters to check and/or
to introduce is still a manual activity. In fact, the same information can be defined with
different names and/or different meanings in the model due to the variety of standards
and requirements that can be employed in each project [63]. Hence, the definition of
the well-defined definition procedure remains a critical point that needs to be performed
manually by expert users with domain-based and project-based knowledge.

Inconsistencies between geometric and non-geometric information, such as the differ-
ence between names and dimensions in an object, emphasize the challenges in maintaining
model accuracy and integrity [64]. It must be highlighted that enriching the model can
provide structured information usable for cross-checking activities. Respectively, by under-
standing the number of openings in a window, the supply chain management processes
could be enhanced, including ordering and control, among other potential applications.
This highlights the importance of detailed and accurate modeling in improving operational
efficiency and application.

3.4. Semantic Enrichment of BIM Objects

The fourth and final stage of the process is centered around model enrichment. Upon
successful image recognition, the semantic descriptions extracted from images can be used
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to enhance the existing IFC model. This process of data enrichment is not only about
appending the newly discovered information but also includes the verification and possible
correction of the existing data. This enrichment process often reveals inconsistencies
between the graphical representation and the non-geometric attributes of a given object. For
example, ConvNet might identify a certain object in an image as a double-paned window,
while the corresponding object in the IFC model is labeled as a single-paned window. Such
an inconsistency indicates an error in the IFC model, which is then corrected using the
information obtained from the image recognition. The enriched IFC model thus stands as
a more complete and accurate representation of the actual building. It not only captures
the geometric features but also carries a richer set of non-geometric attributes, providing a
more detailed and precise informational resource for any downstream applications [65].
This enriched model also paves the way for more sophisticated data analysis and fosters an
enhanced understanding of the building, its components, and their interrelations.

4. Results
4.1. Development of Prototype

A prototype was developed using Python programming language to test the proposed
methodology. Python was selected for several compelling reasons. Firstly, it simplifies the
development and testing process through its ability to run code directly without compiling
it into an executable. It also boasts specialized libraries for crafting ConvNets (e.g., Keras
Packages [66]) and offers clear syntax which facilitates the future sharing and extension
of the work. The training images used in the prototype have been labelled and selected
manually from available web image repositories.

While the initial parameter definition and selection of images for the dataset involve
manual processes, steps have been taken to ensure diversity and minimize bias. The
manual selection was guided by detailed parameters such as LOD and project context,
ensuring a varied image range. This initial dataset, once created, supports future automated
applications, thereby minimizing bias over time [67].

4.2. Descriptive Case

An illustrative example was developed to explore the effective applicability of the
proposed process. It aimed to identify a particular characteristic within window objects in
BIM; specifically to discern between windows with two openings versus those with three.
The experimental process unfolded as detailed below:

(i) Before initiating the training of the image recognition system, it was essential to define
and organize image collections based on pre-determined criteria. The experiment
focused on the number of window openings. Thus, sets of images representing win-
dows with two and three openings were compiled and labeled accordingly, collecting
90 images for each type for the training set. Moreover, a separate set of 25 images per
type was gathered for testing, ensuring no overlap with the training set.

(ii) Next, the assembled images were employed in the training set and the testing set of
the ConvNet, imposing it to the set requirements. This step was crucial for assessing
the ConvNet’s efficiency and its capacity to adapt to specific parameters. Therefore,
multiple tests were conducted to ascertain the parameter mix that would ensure
higher system performance.

(iii) Once the training and validation phases were complete, the refined image recognition
system was ready for application, tasked with identifying images derived from build-
ing information models. These images, which could be automatically generated and
saved in an external database, might depict a lone object or that object in its situational
context. For this study, both single windows and windows within their walls were
used for validation. Moreover, the images could capture various perspectives and
be in black and white or color. The experiment thus involved testing different image
combinations to evaluate how these variations influenced recognition accuracy.
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4.2.1. ConvNet Training and Validation, Results Evaluation, and Definition of Parameters

The ConvNet’s algorithm relies on precise calibration of various parameters to achieve
an appropriate learning trajectory and optimize image recognition performance. Specifi-
cally, three critical parameters are involved: the number of complete passes through the
provided dataset (i.e., termed ‘number of epochs’), the quantity of operations executed
before an iteration is deemed complete (i.e., ‘steps per epoch’), and the count of validation
checks conducted before termination (i.e., ‘validation steps’). The standard-setting values
have been used for the algorithm according to the literature [22].

The ‘steps per epoch’ and ‘validation steps’ are determined by the size of the training
or validation dataset and the batch size, which is the number of examples utilized in a single
iteration. With a batch size set to 30, we defined ‘steps per epoch’ as 4 and ‘validation steps’
as 1. Given the modest size of the datasets, the ConvNet began an early overfit, meaning
its learning stopped and performance declined when the number of epochs exceeded 55.
Various parameter combinations and found optimal performance between 50 to 55 epochs
with the previously mentioned ‘steps per epoch’ and ‘validation steps’ were experimented.
The accuracy and loss functions that are used to measure the error in the recognition
process, on the training dataset are shown in Figure 3.
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In the assessment of the validation set, Figure 4 indicates a progressive advancement
in the learning curve of the ConvNet. Notably, the accuracy ascends and appears to level
off at approximately 84% towards the end of the learning and validation phases. This trend
is observable in the validation loss as well, which is documented alongside the accuracy in
these figures, reflecting a consistency in ConvNet’s performance throughout validation.
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The graphical performance data relates to the identification of actual images, whereas
the experiment aimed at recognizing simulated objects retrieved from building informa-
tion models. Consequently, a secondary validation level was determined, wherein the
trained ConvNet was employed to identify images extracted directly from the building
information models.
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4.2.2. Validation and Evaluation of Building Information Model Object Images

The ConvNet’s precision in identifying images from building information model
objects was first validated using a dataset of 50 images. As previously explained, these
images varied according to different parameters including angle, context inclusion, or/and
color inclusion. This initial dataset was therefore assembled with diverse characteristics to
identify any impact on the image recognition system’s efficacy. Figure 5 illustrates various
images of a window from the building information model; particularly, image 1 depicts
a two-opening window complete with material textures set within the surrounding wall,
image 2 presents the same window in isolation, captured frontally in grayscale, and image
3 captures the same window at a different angle, also in grayscale and situated within its
hosting wall.
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The initial dataset used to evaluate ConvNet’s recognition capabilities revealed a
70% accuracy rate in distinguishing between windows with two openings versus those
with three. A closer examination of the outcomes indicated a correlation between image
attributes and algorithmic success. Standalone window images, devoid of contextual ele-
ments like hosting walls, yielded higher recognition accuracy. This aligns with ConvNet’s
architecture, which deconstructs images, rendering them indifferent to color or object
orientation. However, when parts of the windows were obscured by walls, there was a
notable drop in recognition performance.

To validate these findings, a refined dataset exclusively consisting of isolated window
images was assembled. Subsequent assessments conducted 100 times over this refined set,
demonstrated an improved average accuracy of 82%, occasionally achieving highs of 90%.
This confirmed that ConvNet’s efficacy was significantly influenced by the visual isolation
of the window features in the images.

5. Discussion

Researchers are increasingly leveraging these cutting-edge technologies to enhance
traditional methods, yielding remarkable results. The application of image recognition in
the construction industry for geometry reconstruction from models of existing structures
has demonstrated promising accuracy levels in various studies [68].

Reflecting on the advancements in this field, Ref. [42] utilized ML to automate anomaly
detection in BIM models, achieving an accuracy between 50% and 75%. Similarly, Ref. [59]
introduced a nouvel workflow for automatic detailing in BIM, resulting in an average error
reduction of 47.4% in classification tasks and 18.8% in regression tasks. Several research
works suggest applying image recognition techniques for classifying different object types
within existing structures [27,32].

The accuracy achieved in the experiment under discussion states the viability of
image recognition techniques in construction-related tasks. The exploration into ConvNet’s
applicability within the construction domain, particularly for BIM model enrichment,
unveils nuanced insights into the interdependencies between image characteristics and ML
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efficacy. A comprehensive evaluation of the proposed approach shows that the presented
methodology can enrich BIM models with an accuracy that is equal to 84% with realistic
photographs and 82% with digital rendering.

Nevertheless, it is important to note that the current prototype was trained using a
relatively small image dataset. Increasing the dataset size could potentially enhance the
model’s recognition capabilities, as evidenced by successful outcomes in other research
domains. This suggests that further improvements in the image recognition process could
be realized with the expansion of the training dataset.

The recognition process in existing studies is limited to standard components such as
walls, doors, and windows, excluding elements that are not definable within BIM authoring
software. Moreover, these studies do not consider the non-geometric attributes linked to the
geometric data in their recognition mechanisms. While, this study introduces an innovative
approach that facilitates the unrestricted classification of objects beyond the constraints
of standard BIM authoring solutions, and the identification of features grounded in the
geometric depiction of virtual entities. Additionally, it demonstrates the proficiency of
ConvNet in discerning particular attributes of virtual objects by employing real-world
images sourced from the internet as a basis for training and validating the system.

Furthermore, the evolution from CAD to BIM, incorporating artificial intelligence
and ML, marks a significant development in construction technology, enhancing model
accuracy and fostering a data-rich, collaborative environment [69,70]. This integration is
most effective in technologically advanced settings, promoting efficiency and innovation in
digital construction management. However, The effective fusion of ML and BIM mainly
occurs in technologically equipped settings: in a dynamic environment where diverse
areas are associated and multiple interpretations on different levels can cooperate [25,28].
Enriching BIM models, particularly ML-based image recognition, has extended BIM’s
capabilities, enhancing its semantic richness and facilitating a deeper understanding of
construction elements [26,71]. This progression points towards the potential of BIM across
the construction lifecycle, driving industry-wide adoption and innovation [3,6].

The practical implications of image recognition innovation into BIM systems extend
significantly beyond theoretical advancements for industry professionals to be considered
as future work. Moreover, the ability to automatically update and enrich BIM models with
real-world images aids in maintaining the relevance and accuracy of the model throughout
the building’s lifecycle, offering benefits in facility management and renovation plan-
ning [3]. The adoption of such technologies by industry professionals can lead to improved
collaboration, where decision-making is supported by data-rich, accurate BIM models.

Incorporating image recognition innovation into BIM systems offers tangible benefits
for a diverse range of stakeholders in the construction industry. Architects and engineers,
as primary users of BIM models, stand to gain from enhanced model precision and detail,
facilitating more informed design decisions. Construction managers can leverage improved
model accuracy for efficient planning and execution, potentially reducing project timelines
and costs. Facility managers benefit from enriched BIM models for more effective mainte-
nance and renovation planning, ensuring that buildings continue to meet occupant needs
over time [72]. Additionally, property developers can utilize these enriched models to
communicate more effectively with potential buyers or tenants, showcasing the building’s
features with greater accuracy.

6. Conclusions

This work navigates the complexities of modern construction practices, and the inte-
gration of precise and comprehensive digital models stands as a foundation for advancing
the industry. The core aim of this research was to address the inconsistency between the
graphical details and the computable semantic information within BIM models. Through
a method to transform these visual details into computable semantic information, the
proposed framework significantly enhances the semantic depth and utility of BIM systems.
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This advancement supports more robust analytical and simulation capabilities within the
construction sector, promoting informed decision-making and improved collaboration.

This research work proposed a framework designed to validate the consistency be-
tween geometrical and non-geometrical information in building information models, and
to verify the accurate semantic representation of model-contained objects, thus laying the
groundwork for enhanced future data utilization. The framework employs a ML image
recognition engine, which has exhibited substantial efficacy in discerning features of virtual
objects using a training set derived from real-world images.

An image recognition engine built upon Convolutional Neural Network (ConvNet)
technology, was trained in accordance with set parameters and conditions. After its training
phase, the engine processed images of BIM objects archived within a separate database and
each linked to the object’s unique Global Unique Identifier (GUID). The engine was then
applied to identify specific features in these images, leveraging this insight to verify and
potentially enrich the BIM data. This adept interpretation of image data by the ML engine
helps bridge the gap between graphically transmitted information and computable data,
surpassing the semantic limitations inherent in existing BIM authoring tools.

The research included the development of a prototype utilizing Python, demonstrat-
ing a significant reduction in the time required for extracting images from the Industry
Foundation Classes (IFC) file format, thereby transitioning the task from a manual to an
automated process. With a ConvNet optimized for a computing environment equipped
with an Intel i7 processor and 16 GB RAM, the ML training process was approximately one
hour. It is noteworthy that the training was not multi-core optimized, suggesting further
time reductions could be achieved through algorithmic refinement.

Several aspects have been identified for potential future developments:

I. The methodology relies on identifying individual components within models by their
classes or other details discernible from their graphical depiction. Yet, distinguishing
some elements proves challenging due to their visual resemblance and the complex
assessment of scale in the images sourced. In alignment with the cognitive processes of
humans and ongoing research in automatically generating BIM from point cloud data,
future research could focus on integrating algorithms that understand the context,
providing a dual verification process that assesses both individual object recognition
and its placement within the model’s environment.

II. Defining the recognition and verification rules is both time-intensive and knowledge-
extensive. Future studies could investigate the potential for reusing such rules to
enhance the practical applicability of the system.

III. The current requirement for manual collection and labeling of images represents an-
other bottleneck. Investigating automated solutions for image collection and labeling,
could significantly enhance the efficiency and quality of the training set compilation.

IV. While ConvNet was selected for its proven capabilities in image recognition tasks,
the exploration of alternative algorithms could provide valuable comparative per-
formance data, potentially revealing more efficient or accurate options for image
recognition within the construction industry domain.
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