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Abstract: Due to low early strength and high shrinkage, ordinary Portland cement (OPC) has difficulty
meeting the actual needs of modern construction projects, while belite calcium sulfoaluminate cement
(BCSA–OPC) composite cement provides a new solution. The mechanical and the drying shrinkage
properties of the BCSA–OPC mortar were determined, the hydration heat of the BCSA–OPC was
studied, and the pore size distribution of the mortar was investigated. In addition, the hydration
products of the BCSA–OPC were analyzed by X-ray diffraction (XRD) and simultaneous thermal
analysis (TG-DSC), and the microscopic morphology of the BCSA–OPC mortar was observed by
scanning electron microscopy (SEM). The results show that with the increase in BCSA dosage in the
BCSA–OPC, compared with OPC, the flexural strengths of the mortar of 50% dosage of BCSA at
the hydration age of 1 d, 3 d, 7 d, and 28 d are improved by 33.3%, 36.6%, 23.6%, and 26.8%, and
the compressive strengths are improved by 50.8%, 35.7%, 13.4%, and 27.7%. The drying shrinkage
and total porosity of the mortar at the hydration age of 28 d are reduced by 117.4% and 21.55%,
respectively. It is attributed to the filling effect of a large amount of ettringite (AFt) and intertwined
with the fibrous C-S-H gel to form a network. This study will provide a theoretical basis for the
application of the BCSA–OPC engineering.

Keywords: ordinary Portland cement; belite calcium sulfoaluminate cement; composite cement;
composite cementitious system

1. Introduction

The ordinary Portland cement (OPC) clinker is mainly composed of tricalcium silicate
(C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and iron phase (C4AF). The early-
age strength of the OPC depends on the calcium silicate hydrate (C-S-H) gel produced by
the hydration of C3S [1]. The AFt is generated by the hydration of C3A and C4AF; however,
the AFt in OPC-based material is insufficient to overcome the shrinkage caused by water
loss. If the tensile stress caused by the shrinkage exceeds the critical strength, the OPC base
will crack, resulting in poor resistance to freezing and erosion [2–4].

To improve the early-age strength and reduce the shrinkage of OPC, it can be modified
with calcium sulfoaluminate cement (CSA) [5,6]. CSA is a kind of low-carbon cement [7,8]
with calcium sulfoaluminate (C4A3$) as the dominant clinker mineral. The CSA can
rapidly form a large amount of AFt and alumina gel (AH3) at the early age of hydration.
The CSA has the advantages of fast hardening and early strengthening, low shrinkage,
excellent freezing resistance, and great erosion resistance [5]; in addition, the CSA has
microexpansion properties [9] and is often used as an expansion agent [10–12].
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However, the content of C2S in CSA clinker is low, which causes a slow growth of the
late-age strength [13]. Previous studies have proved [14,15] that in the CSA–OPC composite
cementitious system, the CSA can effectively enhance the early-age strength of OPC, while
OPC plays an important role in enhancing late-age strength. It should be noted that, when
CSA and OPC form a composite cement, the compatibility should be fully considered.
Piyush et al. [16] showed that CSA–OPC composite cement has microexpansion properties,
but the dosage of CSA should not be higher than 30%; otherwise, the hardened cement
paste will undergo overexpansion and cause cracks, which is due to the excessive crystalline
stress caused by the hydration product of AFt. In addition, a too-high dosage of CSA may
also result in abnormal setting or even affect the development of strength [14,17], which is
frequently solved by the retarder [18].

However, the calcination of CSA relies on the high-grade bauxite, resulting in high
production costs and limiting the application of CSA. The belite calcium sulfoaluminate
cement (BCSA), as an excellent alternative to CSA, can be produced by calcining low-grade
aluminum-rich industrial solid wastes such as aluminum tailings, aluminum mine, and fly
ash below 1250 ◦C [19–21], with a much lower production cost and energy consumption.

The clinker mineral compositions of BCSA and CSA are similar, but the mineral
content is different [22]. The BCSA has a higher content of C2S and lower content of C4A3$.
The BCSA is usually subjected to chemical doping during the calcination process (including
B2O3, Na2O, K2O, BaO, MnO2, and Cr2O3) [23,24], which aims to produce lattice distortion
of β-C2S and activate it to become α-C2S and α’-C2S with relatively higher hydration
activity [25,26]. The hydration rate of α-C2S and α’-C2S is faster than other crystalline C2S,
contributing to a higher degree of hydration.

The C2S in OPC clinker is mostly β-C2S [27]; therefore, when BCSA is added to OPC,
the amount of C2S rises and the overall activity is improved. Meanwhile, the C4A3$
in BCSA can provide OPC with higher early-age strength and compensated shrinkage.
In conclusion, theoretically, the modification of OPC by BCSA is more feasible, and the
hydration and properties of the BCSA–OPC composite cement are of great importance.

There are many studies on the CSA–OPC, but few on the BCSA–OPC. The purpose of
this study is to use the BCSA to improve the properties of OPC, and to obtain a composite
cement with high early-age strength, low shrinkage, and low porosity. Therefore, the setting
time, the heat of hydration and the hydration products of the BCSA–OPC, the mechanical
properties, the drying shrinkage, and the pore size distribution of the BCSA–OPC mortar
were studied. The results can provide a theoretical basis for engineering applications of the
BCSA–OPC composite cement in practical engineering.

2. Materials and Methods
2.1. Materials

The cements used in this study are OPC produced by Shandong Cement Group Co., Ltd.,
(Jinan, China). and BCSA, produced by Hebei Polar Bear Building Materials Co., Ltd.,
(Tangshan, China). The normalized oxide compositions of OPC and BCSA are given in
Table 1. The Rietveld fitting plots of the XRD patterns of OPC and BCSA are shown in
Figure 1, and the content of each important component of the cement is given.

Table 1. Oxide compositions of cements (wt.%).

Chemical
Analysis CaO SiO2 Al2O3 MgO Fe2O3 SO3 K2O Na2O etc.

OPC 54.32 24.30 9.71 3.93 3.03 2.69 0.63 0.37 1.02
BCSA 45.59 16.30 15.33 3.98 1.32 15.40 0.47 0.25 1.36
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2.2. Mixture Proportions and Sample Preparation

The mixing procedure for the BCSA–OPC pastes are shown in Table 2. The mixing
procedure for the BCSA–OPC mortars are shown in Table 3.

Table 2. Mix ratio of the BCSA–OPC pastes (wt.%).

Category B0 B10 B20 B30 B40 B50 B60 B70 B80 B90 B100

BCSA 0 10 20 30 40 50 60 70 80 90 100
OPC 100 90 80 70 60 50 40 30 20 10 0

Table 3. Mix ratio of the BCSA–OPC mortars (g).

Category OPC BCSA Standard Sand Water

B0 450 0 1350 225
B10 405 45 1350 225
B20 360 90 1350 225
B30 315 135 1350 225
B40 270 180 1350 225
B50 225 225 1350 225

2.3. Methods
2.3.1. Setting Time

The setting time of the cement and the water demand of normal consistency were de-
termined by Vicat apparatus testing according to the Chinese standard GB/T1346-2011 [28].
The paste was mixed with a cement mortar mixer, pouring water and 500 g of cement into
the mixing pot and mixing at low speed for 120 s, stopping for 15 s, and then mixing at
high speed for 120 s. Finally, it was loaded into molds to test the water demand of normal
consistency and the setting time.

The water demand of normal consistency was calculated by Equation (1).

P = Mw/M × 100% (1)

where P is the water demand of normal consistency; Mw is water consumption for mixing,
g; and M is the quality of cement, g.

2.3.2. Early Stiffening Test

The early stiffening tests of the cements were determined by Vicat apparatus testing
according to the Chinese standard JC/T602-2010 [29]. The mixing time of the cement paste
was the same as the Section 2.3.1 setting time. Adopting the cement paste method, the
cement was mixed with water according to the water demand of normal consistency, and
then the initial needle penetration (I), final needle penetration (F), and remixed needle
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penetration (R) of the cement pastes were measured by the Vicat apparatus, respectively.
I/F×100% was used to judge the cement solidification.

(1) When the percentage of I/F is ≥50%, it was judged as normal setting.
(2) When the percentage of I/F is <50%, it was considered that the cement was abnormally

setting (false set or flash set), so we remixed the paste without adding water, and then
measured R. If R < I, the cement was false set, and if R > I, the cement was flash set.

2.3.3. Heat of Hydration

Isothermal calorimeter (TAM Air, Florida, Newcastle, DE, USA) was used to measure
the heat release of the cement. A total of 2 g of cement paste in the fresh state was placed
into a glass vial (W/C = 0.5). The operating temperature was 20 ± 0.2 ◦C and the heat flow
was recorded every 24 s until 72 h.

2.3.4. XRD Analysis

At the specified hydration age, the hydration of the hardened cement paste was
terminated with anhydrous ethanol. Then, the samples were dried at 45 ◦C for 24 h
and grinded with an agate mortar to pass through a 200-mesh sieve. XRD analysis was
conducted on a powder diffraction (Rigaku SmartLab, Tokyo, Japan) using Cu Kα radiation
(45 kV, 200 mA) with a step size of 0.01◦ from 5◦ to 65 ◦.

To quantify the mineral compositions of OPC and BCSA, Rietveld analysis was con-
ducted on the XRD patterns of cement powders by refining the scale factor, peak asymmetry,
zero shift, specimen displacement, and cell parameters.

2.3.5. Mechanical Properties

According to the Chinese standard of GB/T17671-1999 [30], the mortar was
40 mm × 40 mm × 160 mm in size, and there were 3 mortars in each group. A uni-
versal testing machine (DYE 300A, Beijing, China) was used to test the flexural strength
and the compressive strength of the mortars at the hydration ages of 1 d, 3 d, 7 d, and 28 d.
The final results were the average of the strength of mortars in each group.

2.3.6. Drying Shrinkage

The mortar was 25 mm × 25 mm × 280 mm in size, and there were 3 mortars in
each group. At the hydration age of 1 d, the mortars were demolded and then placed into
the curing box for 2 d, and the initial lengths were recorded using a specific length meter
(BC-300, Cangzhou, China). At the drying ages of 1 d, 3 d, 7 d, 14 d, 21 d, and 28 d, the
length of mortars was tested and the drying shrinkage was calculated by Equation (2).

St = (L0 − L1)/L × 100% (2)

where St is the drying shrinkage rate of the cement mortar, %; L0 is the initial reading of the
micrometer, mm; L1 is the average readings in each group at different ages, mm; L is the
effective length between the two internal heads of the specimen; 250 mm was taken here.

2.3.7. TG-DSC Analysis

TG-DSC analysis was conducted using a simultaneous thermal analyzer (TA Q600, Florida,
Newcastle, DE, USA) from room temperature to 1000 ◦C under N2 atmosphere, with a heating
rate of 10 ◦C/min. In total, 20 mg cement pastes with the hydration age of were grinded to
pass through a 200-mesh sieve, and were then applied for the TG-DSC analysis.

2.3.8. SEM Analysis

Samples were made of crushed cement mortar at the hydration age of 28 d; the
microstructure of samples was observed using an scanning electron microscope (EVO/LS15,
Oberkochen, Germany) after sputtering gold coating on the surfaces.
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2.3.9. Pore Size Distribution

The mercury intrusion porosimetry (MIP) method was used to obtain the total porosity
of the specimens and the proportion of the pores with different sizes. The automatic
mercury manometer (AutoPore V 9620, Atlanta, GA, USA) was used to perform mercury-
in-pressure tests on the cement mortar specimens with the hydration age of 28 d.

3. Results
3.1. Analysis of Physical and Mechanical Properties of Composite Cement Systems
3.1.1. Setting Time

The water demand for normal consistency and setting time of the BCSA–OPC are
shown in Figure 2. The water demand for normal consistency tends to decrease and then
increase with the increase in BCSA dosage.
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The setting of OPC is due to the continuous nucleation of C-S-H gels produced by
the hydration of C3S and the AFt produced by the hydration of C3A [31]. The setting of
BCSA is due to the hydration of C4A3$ to produce AFt. Since the hydration activity of C3S
is lower than that of C4A3$ [32], the setting of BCSA–OPC is dominated by C4A3$. The
setting time decreases with the increase in BCSA dosage. The initial and final setting times
of B0 are 182 min and 229 min, respectively. When the dosage of BCSA is 10%, the initial
and final setting times are reduced to 79 and 99 min, respectively.

In the cementitious system of the BCSA–OPC, the hydration of C4A3$ has an important
effect on the setting time. The pH value of the liquid phase of OPC in early-age hydration is
significantly higher than that of BCSA [33,34]. The high pH value promotes the hydration
of C4A3$ to produce the AFt and leads to a decrease in the setting time [5]. The hydration
of C4A3$ in the general condition is shown in Equation (3), and the hydration of C4A3$ in
the CH condition is shown in Equation (4). In addition, the AH3 can react with CH and
gypsum to form AFt, and the reaction equation is shown in Equation (5). Therefore, in the
existence of CH and gypsum, the hydration production of AFt increases significantly and
shortens the setting time of the BCSA–OPC.

C4A3$ + 2C$H2 + 34H = C3A·3C$·32H + 2AH3 (3)

C4A3$ + 8C$H2 + 6CH + 74H = 3C3A·3C$·32H (4)

AH3 + 3CH + 3C$H2 + 20H = C3A·3C$·32H (5)

It is recommended that the dosage of BCSA in conventional projects be maintained
within 30%, and if there is a need for a higher dosage of BCSA, the retarder is needed.
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3.1.2. Early Stiffening Test

The early stiffening test is used to measure the abnormal setting of the cement. The
abnormal setting of cement is divided into flash set and false set. The flash set occurs
when the cement is exothermic rapidly and hardens when mixed with water. Once water
is added and mixed again, its plasticity cannot be restored. On the contrary, the false set
occurs when the cement is not exothermic but hardens rapidly when mixed with water.
However, if mixed again without adding water, its plasticity can be restored.

In the Portland cement, the abnormal setting has close ties with the formation of
large amounts of AFt at the initial hydration age [35]. In the BCSA–OPC composite
cementitious system, the hydration of C3S leads to an increase in pH value, promoting the
hydration of C4A3$, and the large amount of AFt generation leads to the abnormal setting of
BCSA–OPC. Therefore, the study of the abnormal setting of the BCSA–OPC can help to
select a reasonable cement mixing ratio and guide the engineering application.

The early stiffening test results of the BCSA–OPC are shown in Figure 3. The initial
needle penetration (I) changes are not obvious, while the final needle penetration (F) tends
to decrease and then increase, reaching a minimum when the BCSA content is 70%. The
flash set of B60, B70, and B80 is due to the mismatch between the amount and activities
of gypsum and aluminate minerals in the cement [35,36]. When the C3A and C4A3$ are
dissolved into the water and release the Ca2+ rapidly into the liquid phase, the small number
of negatively charged gypsum particles cannot provide sufficient inhibition, leading to the
rapid setting of the cement.
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value of I/R.

The remixing needle penetration (R) is decreased with the increase in BCSA dosage,
and the R value of each group is lower than the F value. In summary, except for B60, B70,
and B80, other groups showed normal setting. It indicates that when the dosage of BCSA is
within the range of 60~80%, the compatibility is not good.

The setting time and the early stiffening test are of great significance in guiding the
production of cement and guaranteeing the quality of engineering works [37]. In the
BCSA–OPC cementitious system, a high dosage of BCSA leads to a short setting time, and
at the dosage of BCSA within 60~80%, the flash set occurs. In addition, the aim of this
study is to modify the OPC. Therefore, in the following discussion, B0–B50 will be used to
study the hydration and properties of the BCSA–OPC.
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3.1.3. Heat of Hydration

Figure 4 shows the cumulative hydration heat and hydration exothermic rate of ce-
ments. The cumulative hydration heat reflects the degree of hydration of cement, and the
hydration exothermic rate reflects the hydration activity of cement clinker minerals. Ac-
cording to the previous study [38], the early-age strength of cement has a certain correlation
with the hydration heat; therefore, the study of the hydration heat is actually studying
the early-age strength. The hydration process of OPC is usually divided into four periods:
preinduction period, induction period, acceleration period, and delayed period [39]; these
characteristics still exist due to the fact that OPC is the main component in B0–B50.
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The exotherm of OPC in the preinduction period (0–4 h) was mainly dominated by
the hydration of C3A, while the exotherm of the BCSA–OPC was dominated by C4A3$.
The exothermic rate of the BCSA–OPC was higher than that of OPC, which is due to the
hydration activity of C4A3$ being relatively higher than C3A.

The exotherm of OPC at the induction and acceleration period (4–24 h) was mainly
dominated by the hydration of C3S. The C3S started to hydrate to produce the C-S-H gel
and CH, which increased the pH value of the pore solution [40]. Meanwhile, the hydration
of C4A3$ in the BCSA–OPC was not finished, and the increase in pH value accelerated the
hydration of C4A3$. The hydration of C4A3$ was almost finished at the hydration time
of 8 h. Then, the hydration exothermic rate of the BCSA–OPC started to decrease, and
the hydration exothermic rates of B20–B50 were lower than that of OPC, which is related
to the decrease in C3S content. Likewise, the height of the hydration exothermic peak of
the BCSA–OPC decreased with the increase in BCSA dosage. Moreover, the increase in
BCSA dosage delayed the form of the hydration exothermic peak, which is related to the
retardation effect of gypsum in BCSA on C3S [41].

During the delayed period (24–72 h), the hydration of the remaining C3S in B0–B50
continued. The hydration exothermic rate decreased with the dosage of BCSA due to the
decrease in C3S content in B0–B50. The hydration exothermic rate decreased slowly with
the increase in hydration time.

Compared with OPC, the cumulative hydration heat of BCSA–OPC increased with
the increase in BCSA dosage until the hydration time of 30 h. This is attributed to the rapid
hydration of C4A3$ in the early age of hydration. With the increase in hydration time, the
cumulative hydration heat of cements tended to decrease with the increase in BCSA dosage
after 40 h. This is because the content of C3S decreases with the increase in BCSA dosage.



Buildings 2024, 14, 890 8 of 15

3.1.4. Mechanical Properties

Figure 5 shows the mechanical properties of mortars. The flexural and compressive
strengths of the BCSA–OPC at the hydration of all ages tended to increase with the increase in
BCSA dosage except for B50 at the hydration of 7 d. Compared with B0, the flexural strengths
at the hydration age of 1 d, 3 d, 7 d, and 28 d of B50 were improved by 33.3%, 36.6%, 23.6%,
and 26.8%, respectively, and the compressive strengths were improved by 50.8%, 35.7%, 23.4%,
and 27.7%, respectively. The compressive strength of B50 was lower than that of B40 at the
hydration age of 7 d, but it was still higher than that of B30. This is due to the lower hydration
generation of C-S-H gel caused by the lower content of C3S in B50. The compressive strength
of B50 was higher than that of B40 at the hydration age of 28 d. This is attributed to the high
C2S content in B50 and that the activity of C2S is lower than C3S.
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The early-age strength of the BCSA–OPC was significantly improved compared with
OPC. This is attributed to the AFt produced by the hydration of C4A3$ [42]. In addition,
the CH produced by the hydration of C3S accelerated the hydration of C4A3$, and further
increased the hydration production of AFt.

The late-age strength of the BCSA–OPC was also improved. This is attributed to the
C2S in OPC being mostly β-C2S, but the C2S in BCSA being mostly α’-C2S whose hydration
activity is higher than β-C2S. When BCSA was added to OPC, the overall hydration activity
of C2S was improved. A previous study demonstrated that the compressive strength of
α’-C2S was higher than that of β-C2S at the age of 28 d [43]. Therefore, the late-age strength
of the mortar was enhanced with the increase in BCSA dosage.

The mechanical properties of mortar increased with the increase in BCSA dosage at
the hydration age of 1 d and 3 d. It is highly correlated with the results of the cumulative
hydration heat at the hydration age of 1 d, but contrary to that at the hydration age of
3 d. This is due to the early-age strength of OPC mainly depending on the densification
of C-S-H gel hydrated by C3S [44]. However, the early-age strength of the BCSA–OPC
mortar mainly depends on the C-S-H gel growth on the AFt skeleton [45,46]. Therefore,
although the cumulative hydration heat decreased with the increase in BCSA dosage at the
hydration age of 3 d, the mechanical properties increased.

3.1.5. Drying Shrinkage

The drying shrinkage is important to the cementitious materials. During the hydration
process of the cementitious materials, the decrease in absolute volume for the materials leads
to the generation of internal tensile stress. When the tensile stress exceeds the tensile strength
of the cementitious materials, cracking occurs [47]. The cracks will reduce the durability of the
cementitious materials. Figure 6 shows the drying shrinkage of the cement mortars.
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The results show that the drying shrinkage tended to decrease with the increase in BCSA
dosage. The drying shrinkage of B0 was the highest, and B50 was the lowest. The drying
shrinkage of each mortar increased rapidly from 1 d to 7 d, which is mainly attributed to
the continuous hydration in the early age of the mortar and the massive loss of water in
a dry environment. B10–B50 reached a constant value at the hydration age of 14 d, and
there was almost no change at the later hydration age, but the drying shrinkage rate of OPC
increased continuously. This shows that BCSA could compensate for the drying shrinkage of the
BCSA–OPC mortars. Compared with B0, the drying shrinkage at the hydration age 28 d of
B10–B50 was reduced by 16.8%, 19.1%, 27%, 36%, and 54%, respectively.

The results show that the drying shrinkage of the BCSA–OPC was significantly lower
than that of OPC. This is attributed to the AFt generated by the hydration of C4A3$
provided by BCSA. The AFt can improve the density of the mortar and reduce the number
of microcracks. Therefore, the drying shrinkage of the mortar is reduced [48].

3.1.6. Pore Size Distribution

Based on the pore size, the pores in cementitious materials are classified into
four types [49], which are gel pores below 10 nm, small capillary pores from 10 to 100 nm,
large capillary pores from 100 to 1000 nm, and macropores above 1000 nm, among which
the pores above 100 nm are the harmful pores. It negatively affects the mechanical proper-
ties and impermeability of the mortar. Figure 7 shows the pore structure of mortars at the
hydration age of 28 d.
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The results show that the total porosity of the mortar decreased with the increase
in BCSA dosage. Compared with B0, the total porosity of B50 decreased from 14.99% to
11.76%. With the increase in BCSA dosage, the volume of gel pores increased and the
volume of macropores and large capillary pores decreased significantly.

The C4A3$ in BCSA can generate a large amount of AFt at the early age of hydration,
and a large number of AFt fills the pores of the BCSA–OPC mortars. Therefore, the porosity
of the mortar decreased [50,51]. The results indicate that the AFt could reduce the pore sizes
of the mortar. The OPC mainly relies on the C-S-H gels generated by hydration to make
the internal structure dense, and the C-S-H gels do not have the expansion property [52];
therefore, the total porosity of the BCSA–OPC is lower than that of OPC.

A previous study demonstrated that the early drying shrinkage of mortar is related
to the volume of capillary pores [53]. It was also noted that the decrease in the number
of large capillary pores and macropores can improve the mechanical properties of the
mortar [54]. These studies are consistent with the discussion of mechanical and drying
shrinkage properties. Moreover, there are studies that point out that the decrease in porosity
also improves resistance to seepage, freezing, and sulfate [55,56].

The physical and mechanical properties of the BCSA–OPC mortars were improved.
This is due to the large production of AFt at early-age hydration. The AFt decreases the
porosity of the mortars. Meanwhile, the lower porosity helps to reduce the loss of water,
and then decreases the drying shrinkage of the mortar [57].

3.2. Compositional and Micromorphological Analysis of Hydration Products
3.2.1. XRD Analysis

Figure 8 shows the XRD patterns of cement pastes at the hydration ages of 1 d, 3 d, 7 d,
and 28 d. In the left of each figure are the XRD patterns of the hydration samples, and in
the right is the local enlargement of XRD patterns at the range of 32–33◦.
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The intensity of the diffraction peaks of ettringite (AFt), ye’elimite (C4A3$), and
anhydrite (gypsum) increased with the increase in BCSA dosage. Almost all of the C4A3$
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reacted at the hydration age of 3 d, which played an important role in the increase in AFt
and the improvement in the mechanical and drying shrinkage properties, and reduced the
porosity of the BCSA–OPC mortar.

The intensities of the diffraction peaks of α’-C2S and β-C2S were increased with the
increase in BCSA dosage at the hydration ages of 1 d, 3 d, 7 d, and 28 d. The intensity of the
diffraction peaks of C3S decreased with the increase in BCSA dosage at the hydration age of
1 d. Since the C4A3$ was fully hydrated at the hydration age of 7 d, it does not contribute
to the late-age strength of the BCSA–OPC. Meanwhile, the C3S is not fully hydrated and
the C2S is just starting to hydrate. The C3S and C2S can hydrate to generate the C-S-H
gel, which contributes to the late-age strength. This is consistent with the discussion in
Section 3.1.4 Mechanical Properties.

The diffraction peaks of anhydrite (gypsum) are still present in all groups at the
hydration age 28 d. The gypsum can continuously react with CH and AH3 to produce
AFt. [58], Moreover, the gypsum can prevent the conversion of AFt to AFm. The volume of
AFt is larger than that of AFm, which can help to maintain a low porosity and avoid the
decrease in the mechanical properties of the mortar in the late age of hydration.

3.2.2. TG–DSC Analysis

Figure 9 shows the TG–DSC curves of the cement pastes at the hydration age of 28 d.
The endothermic peaks around 60–170 ◦C correspond to the decomposition of AFt and C-S-H
gel, the endothermic peaks around 170–250 ◦C correspond to the decomposition of AFm
and gypsum, the endothermic peaks around 450–550 ◦C correspond to the decomposition
of CH, and the endothermic peaks around 650–800 ◦C correspond to the decomposition
of CaCO3 [59–61].
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The results show that the weight loss of AFt and C-S-H gel increased with the dosage
of BCSA. The loss of gypsum and AFm decreases with the increase in BCSA dosage, which
is due to the sufficient gypsum provided with the BCSA; only when there is insufficient
gypsum available is the AFm generated by hydration [62]. It is also understood that AFm
can react with SO4

2− to form AFt [63]. The loss of CH decreases with the increase in BCSA
dosage, which is not only due to the reaction of AH3 and gypsum forming AFt with the
participation of CH, but also due to the effect of the carbonation reaction to form CaCO3.
This is also corresponding to the weight loss of CaCO3 at 650–800 ◦C.

3.2.3. SEM Analysis

Figure 10 shows the SEM analysis of the mortars at the hydration age of 28 d under
the 10,000 times microscope.
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The results show that the number of cracks in the BCSA–OPC mortars decreases with
the increase in BCSA dosage. This indicates that the BCSA improves the cracking resistance
of OPC significantly. This is mainly attributed to the AFt and closely intertwined with
the C-S-H gel to form a network structure [64]. This also leads to the improvement in
mechanical and drying shrinkage properties as well as the reduction in porosity of the
BCSA–OPC mortar. Meanwhile, it was shown that the improvement in cracking resistance
contributes to the frost resistance and freezing resistance of the mortar [65].

4. Conclusions

In this study, the hydration mechanism and properties of the BCSA–OPC compos-
ite cement were revealed from both macroscopic and microscopic perspectives, and the
conclusions are as follows:

(1) The setting time of the BCSA–OPC decreased with the increase in BCSA dosage, and
except for BCSA dosage of 60–80%, the rest of the cement could be set normally.

(2) The exothermic rate of hydration of the BCSA–OPC in the preinduction period in-
creased compared with that of OPC, which is due to the increase in C4A3$. The
exothermic rate of hydration of the BCSA–OPC in the later periods decreased com-
pared with that of OPC, which is due to the decrease in C3S and the retardation effect
of gypsum.

(3) The mechanical properties of the BCSA–OPC mortar increased with the increase in
BCSA dosage. Compared with OPC, the flexural strengths at the hydration ages of 1 d,
3 d, 7 d, and 28 d of the BCSA–OPC with 50% BCSA dosage were improved by 33.3%,
36.6%, 23.6%, and 26.8%, respectively, and the compressive strengths were improved
by 50.8%, 35.7%, 13.4%, and 27.7%, respectively. This is attributed to the filling effect
of a large amount of AFt intertwined with the fibrous C-S-H gel to form a network
and make the mortar dense.

(4) The drying shrinkage and total porosity of the BCSA–OPC mortar decreased with
the increase in BCSA dosage. The drying shrinkage and total porosity of B50 at the
hydration age of 28 d were reduced by 117.4% and 21.55%, respectively. This is due to
the fact that AFt has the effect of compensating the shrinkage and blocking the pore
size to reduce the water loss.

In conclusion, the properties of the BCSA–OPC were significantly improved compared
with OPC. Considering that the cost of BCSA is higher than that of OPC, the dosage of
BCSA should be appropriate. Moreover, BCSA has a strong influence on the setting time
of OPC; therefore, the dosage of BCSA in normal projects should be strictly controlled to
prevent adverse effects on the quality of concrete. When the dosage of BCSA exceeds 30%,
it is recommended to use the retarder. In projects with the need for rapid setting, the dosage
of BCSA can be increased as appropriate, but should not exceed 50%.
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It is believed that this study could provide a significant referential value for engi-
neering applications, and the BCSA–OPC has a wide range of applications. However, the
BCSA–OPC may have low alkalinity and this may be not beneficial for its durability. In
this study, the long-term mechanical properties and durability of BCSA–OPC were not
investigated, which can be the focus of the future research.
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