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Abstract: Coronavirus disease 2019 (COVID-19), with an increasing number of deaths worldwide,
has created a tragic global health and economic emergency. The disease, caused by severe acute
respiratory syndrome coronavirus 2019 (SARS-CoV-19), is a multi-system inflammatory disease with
many of COVID-19-positive patients requiring intensive medical care due to multi-organ failures.
Biomarkers to reliably predict the patient’s clinical cause of the virus infection, ideally, to be applied
in point of care testing or through routine diagnostic approaches, are highly needed. We aimed
to probe if routinely assessed clinical lab values can predict the severity of the COVID-19 course.
Therefore, we have retrospectively analyzed on admission laboratory findings in 224 consecutive
patients from four hospitals and show that systemic immune inflammation index (SII) is a potent
marker for predicting the requirement for invasive ventilator support and for worse clinical outcome
of the infected patient. Patients’ survival and severity of SARS-CoV-2 infection could reliably be
predicted at admission by calculating the systemic inflammatory index of individual blood values.
We advocate this approach to be a feasible and easy-to-implement assay that may be particularly
useful to improve patient management during high influx crisis. We believe with this work to
contribute to improving infrastructure availability and case management associated with COVID-19
pandemic hurdles.

Keywords: coronavirus 2019 disease; personalized medicine; infections disease; health care
management; economics; neurosurgery; practical guidelines; pandemic

1. Introduction

The number of SARS-CoV-2-infected patients is increasing dramatically and has now
reached over 75 million confirmed infected individuals with over 1.6 million deaths world-
wide (John Hopkins Corona Resource Center https://coronavirus.jhu.edu/about). The
disease was first reported in December 2019 in the city of Wuhan, China with a cluster
of pneumonia of unknown origin. In January 2020, the disease spread to Japan and over
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February/March 2020 to Europe, before spreading globally in spring 2020. Intensive
epidemiological and biological research led to the advancement of our understanding
of the virus biology with various clinical trials for therapeutic vaccines underway [1,2]
(https://clinicaltrials.gov/ct2/who_table). SARS-CoV-2 infection is primarily respira-
tory and can range from common cold with mild symptoms to severe acute respiratory
syndrome (SARS) with respiratory failure requiring invasive respiratory support [3,4]
eventually leading to death in the worst case. Regular hygiene, wearing a face mask and
social distancing measures are the only available, but not targeted, strategies to minimize
the spread of the disease. Limited effectivity of the aforementioned measures, compounded
with occasional seasonal and regional peaks in the number of COVID-19 cases also leads
to a significant, but unsteady demand for ventilation/intensive care beds. Under such
circumstances, even the most developed Western world health systems are challenged,
leading to disastrous scenarios with high mortality related to SARS-CoV-2 infection. Reli-
able biomarkers predicting a mild or dismissal course of a patient are of high clinical and
economical importance.

Some patients suffering from COVID-19 have been found to present exaggerated sys-
temic inflammatory response [5] with numerous molecular routes how the virus impedes
the host immune answer been published [6,7]. However, there is no consensus regarding
the utility of a quantitative analysis of the systemic immune cell composition of COVID-
19 patients. The systemic immune inflammation index (SII, (#neutrophils × #platelets)/
#lymphocytes) is a predictive parameter for the diagnosis of cancer [8–10]. We exploited
this easy-to-perform and rapid-to-calculate parameter on patient admission in the context
of SARS-CoV-2 infection and investigated whether SII can help in predicting the clinical
progression of the patient. Our results are statistically highly significant and we believe
this data can be useful for the global fight of the COVID-19 pandemic, particularly in the
commencement of the current phase of resurge of infected cases risking a high load of
patients in hospitals.

2. Results
2.1. Patients Characteristics

Only cases with a confirmed viral infection, as defined by a positive PCR test result
on a nasal-swab sample, were included. In many cases, diagnostics was followed with
computer tomography. Of the 224 patients, 77, 25, 62 and 60 came from the hospital nr.
1, 2, 3, and 4, respectively. The patients’ mean age was 62 ± 17.131 (58%) were male.
Following comorbidities were recorded: 65 (29%) of the patients suffered from diabetes,
80 (36%) from hypertension, 32 (14%) from heart failure, 16 (7%, one missing value) from
COPD, 18 (8%) from a stroke. Regarding medication, 53 (24%) required acetylsalicylic acid,
55 (25%) beta-blockers, 70 (31%) ACE inhibitors, and 60 (27%) anti-diabetic medication.
91 patients (41%, one missing) required intubation during hospitalization. During their
hospital stay, 13 (11%, 101 missing) suffered liver failure, 59 (26%) kidney failure, 15 (7%)
heart failure, and 3 (1%) stroke. 68 of the patients (30%) did not survive.

Among the surviving patients, 95 (61%) were male, while among the deceased, only
34 (50%) were male. The surviving patients were generally younger (58 ± 17 years) than
the deceased (72 ± 13). The lab values for all patients are listed in Table 1.

All ethical and legal required formalities according to Iranian national guidelines to
conduct this retrospective study have been granted for this work, and are in concordance
to international standards such as the declaration of Helsinki.

2.2. Predicting Intubation and Outcome

A classifier based on the Pr(survival) = 0.5 threshold had a sensitivity of 0.875, speci-
ficity of 0.551, and accuracy of 0.766 (CI = (0.688, 1)). Its accuracy was significantly better
(p = 0.0045) than the noninformative model (accuracy = 0.662) (Figure 1). Patients’ survival
could be reliably predicted at admission. Step-wise variable selection led to a model with
age (OR = 0.95, CI = (0.93, 0.98), p = 0.00011), the logarithm of SII (OR = 0.18, CI = (0.05, 0.66),
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p = 0.01), antidiabetics (OR = 0.36, CI = (0.13, 0.99), p = 0.048) and beta blockers (OR = 3.82,
CI = (0.89, 16.38), p = 0.071) as predictors for survival. McFadden’s pseudo-R2 was 0.205
(Figure 2).

Table 1. General lab values of patient cohort.

At Admission At Intubation

Lab Mean SD Mean SD

Platlets 187,000 89,633 178,316 97,356
WBC 9076 5639 9968 7134

Neutrophils (%) 75.9 12.7 83.2 8.4
Lymphocytes (%) 18.6 11.5 15.2 27.9

Monocytes (%) 4.33 3.91 7.5 8.3
Neutrophils (/µL) 7941 6228 10,894 6003

Lymphocytes (/µL) 1165 629 1093 673
Monocytes (/µL) 503 431 1626 2377

Creatining 1.76 1.63 3.82 2.34
SGOT 46.1 39.5 65.8 30.8
SGPT 35.2 35.3

Alkaline Phospathase 212.8 232.5 278 122
Bilirubin 0.90 0.43 2.21 1.00

AST 56.9 29.1
SII 1,769,543 1,610,378 2,087,603 1,592,935
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Figure 1. A predictive model for survival a: receiver operating characteristic (ROC) curve for the
survival predictor, based on age, systemic immune inflammation index (SII), antidiabetics and beta-
blockers. The predictor is significantly better than the non-informative (null) predictor (p = 0.0026).
A classifier based on the Pr(survival) = 0.5 threshold had a sensitivity of 0.875, specificity of 0.571,
and accuracy of 0.772 (CI = (0.695, 1)). Its accuracy was significantly better (p = 0.0026) than the
noninformative model (accuracy = 0.662).
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Figure 2. A predictive model for survival b: patient data and predicted boundaries for 50% survival
probabilities. Younger patients and those with a lower SII at admission (lower left area of the
figure) have much better survival chances than older patients and patients with a high SII (upper
right area). The four black lines denote 50% survival boundaries for four possible combinations of
medications taken by the patients: none, antidiabetics (AD), beta-blockers (BB) and both antidiabetics
and beta-blockers (AD + BB).

The data projected on the age/log-SII plane with the corresponding 50% survival
boundaries for all combinations of significant medication are shown in supplement files
(Supplementary Materials Figures S1 and S2).

Among the complications, only kidney failure could be reliably predicted using
available data. Forward step-wise selection led to a model using creatinine (OR = 1.002,
CI = (1, 1.004), p = 0.079), monocytes (OR = 4.62, CI = (1.58, 13.47), p = 0.0051), and alkaline
phosphatase (OR = 1.012, CI = (1, 1.023), p = 0.041) (all at admission) as predictors. Mc-
Fadden’s pseudo-R2 was 0.355. A classifier based on the Pr(kidney failure) = 0.4 threshold
had a sensitivity of 0.455, specificity of 0.947, and accuracy of 0.884 (CI = (0.797, 0.943)).
However, since few patients developed kidney failure (11 out of 86 = 12.8%), its accuracy
was not significantly better (p = 0.45) than the noninformative model’s (accuracy = 0.872)
(Figure 3).

Whether a patient would require intubation could also be reliably predicted at admis-
sion. The data projected on the %-monocytes/bilirubin plane with the 50% boundary for
intubation are shown in Figure 4. Step-wise variable selection led to a model with percent-
age of monocytes (OR = 1.48, CI = (1.27, 1.73), p = 8.9 × 10−7), and bilirubin (OR = 11.06,
CI = (3.11, 39.35), p = 0.00021) as predictors. McFadden’s pseudo-R2 was 0.308 (Figure 5).
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Figure 3. Predictions for complications: ROC curve for the kidney failure predictor, based
on monocytes, creatinine, and alkaline phosphatase at admission. The predictor is better than
the non-informative (null) predictor, but not significantly (p = 0.13). A classifier based on the
Pr(kidney failure) = 0.5 threshold had a sensitivity of 0.455, specificity of 0.987, and accuracy of 0.919
(CI = (0.839, 0.967)). However, since few patients developed kidney failure (11 out of 86 = 12.8%), its
accuracy was not significantly better (p = 0.13) than the noninformative model’s (accuracy = 0.872).
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Figure 4. The predicting intubation requirement a: patient data and the predicted boundary (black
line) for 50% intubation probabilities. Patients with a lower percentage of monocytes and lower
bilirubin levels at admission (lower left area of the figure) are much less likely to require intubation.
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Figure 5. The predicting intubation requirement b: ROC curve for the intubation predictor, based
on % monocytes and bilirubin at admission. The predictor is significantly better than the non-
informative (null) predictor (p = 3.1 × 10−5). A classifier based on the Pr(intubation) = 0.5 threshold
had a sensitivity of 0.614, specificity of 0.929, and accuracy of 0.82 (CI = (0.743, 0.883)). Its accuracy
was significantly better (p = 3.1× 10−5) than the noninformative model’s (accuracy = 0.656).

3. Discussion

COVID-19 pandemic is a global health problem affecting all societies globally. Im-
proved management of the COVID-19 disease, both in the therapeutic and predictive
diagnostic sector, is needed to fight this urgent problem. Our work is in line with the
global efforts to develop better diagnostics for the disease ranging from the development
of infection detection assays [11,12] to disease progression surveillance assays [13] as well
as predictive diagnostics [14,15]. Our work extends the lists of inflammation-associated
proposals for predictive biomarkers for the course of SARS-CoV-2 infections. As such, the
respiratory inflammation index [16,17], cytokine signature [18–20], hyper inflammation
signature [21,22], lymphocyte subsets [23–25], diet-instructed immune index [26], amongst
others (the authors acknowledge the rapidly evolving literature on this topic, making
it impossible to comprehensively cite all relevant work), have been proposed to predict
severity of the disease course. As a remark, our results are in line with very recently
published work identifying the value of SSI to predict the risk of in-hospital mortality
of COVID-19 patients [27]. Notwithstanding this growing list of prediction assays, we
believe our work is important for the world and significantly distinct from previous work
for three main reasons: First, given the striking significant clinical prognostic value in
COVID-19 patient population from different treatment centers, we strongly believe in
the robustness of our proposed application. Second, since SII can be simply calculated
from blood sample data routinely acquired around the world, our application has great
potential to be rapidly implemented and thereby rapidly disseminated worldwide. This
is not only in relation to the aforementioned inflammation markers, but especially in
comparison to attempts to predict COVID-19 severity based on imaging diagnostic, which
require special infrastructure and trained staff [28]. The latter fact makes our approach
distinct and more suitable for dissemination as compared to other prediction-oriented
assays. Lastly, in comparison to [27], our work extends the relevance of SSI at hospital
admission to predicting the course of the disease to non-lethal outcome measurements.
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Our work confirms the results of [27], presenting data of a similar-sized patient cohort,
but also extends the relevance of SSI as a powerful predictive diagnostics in COVID-19
patients to Middle Eastern ethnicity. Confirmatory clinical studies, ideally multicentre
studies in different ethnic backgrounds, represent a cornerstone of establishing new clin-
ical guidelines [29], and our work adds the value of using SSI at hospital admission for
managing COVID-19 patients. Being based on simple quantification of cell composition,
our blood-based diagnostics is suitable for application even in centers with minimal re-
source availability, such as rural areas or without sophisticated lab infrastructure. The
authors acknowledge that the presented data does not include the analysis of widely used,
infections-indicating blood parameters, such as C-reactive protein or others. The inclusion
of those parameters in addition to the SSI may increase the specificity or predictive power
of our assay, but this is not the scope of this study. In addition to its clinical relevance, we
furthermore hypothesize that SSI–based stratification of COVID-19 patients may be useful
in designing clinical trials regarding the disease. Depending on the trial design, patients
can be selected or excluded according to the predicted severity of the course. We appreciate
the great potential of artificial intelligence-guided prediction of disease progression based
on various other routinely available clinical data [30]. Thus, implementation of SSI in
such multi-parameter computational-based predictions may further improve the power
of such machine—learning-based approaches for COVID-19 patient management. The
authors furthermore acknowledge the great potential of modern biosensors for improving
diagnostics of SARS-CoV-2 infection including their use in predictive medicine [31]. Here,
CRISPR/Cas-based diagnostics seem most potent for rapid application due to their target
amplification-free set-up and high accuracy [32] making them ideal for POCT. However,
as of now, no standardized CRISPR/Cas diagnostics are available and the field still lags
behind routine diagnostics (such as SSI) in terms of long-term clinical experience. The focus
of our work lays in providing diagnostics that can predict the severity course of the disease
at admission. Including the duration of stay, or other later-time point related data, in the
statistical model, would not be relevant for acute management of new admissions. Our
study is limited by the total number and only a single ethnicity of the included patients.
We propose the independent validation of our findings in other parts of the world, ideally
in prospective clinical settings. This will also tackle the problem of using a subpopulation
of the overall patient cohort of our study for validation purposes, which was due to the
limited number of available independent patient cohorts.

4. Material and Methods

Clinical and on-admission laboratory data were collected retrospectively from four
hospitals treating COVID-19 patients. 224 patients with complete records were identified.
Patients’ characteristics, clinical and laboratory data were analyzed using R, version 3.6.1
“Action of the Toes”. Missing values were removed. For descriptive statistics, the per-
centages were calculated using only available data. Odds ratios between comorbidities
and medications (uncorrected) were computed from contingency tables and tested using
Fisher’s exact test. Multivariable logistic regression was used for modeling survival proba-
bility, probability of complications, and intubation probability. Predictor variables were
chosen by step-wise forward selection, based on Akaike’s Information Criterion (AIC).
After having selected the predictor variables, the models were retrained and validated
using leave-one-out validation. The significance level of 0.05 was used.

According to national rules, retrospective analysis of patient samples that are routinely
assessed and acquired (not requiring extra effort for acquisition) do not require explicit
ethical approval. For details about national biomedical research guidelines, see [33].

5. Conclusions

Systemic immune inflammation index is an easy-to-quantify parameter with high
sensitivity and specificity to predict the clinical course of SARS CoV-2 infected patients. SII
might be a valuable tool to improve the management of COVID-19.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/1/58/s1, Figure S1: SII-Survival relationship of individuals included in this study. Figure S2:
Age-Survival relationship of individuals included in this study.
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