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Abstract: Foot-and-mouth disease (FMD), induced by the foot-and-mouth disease virus (FMDV), is a
highly contagious disease of cloven-hoofed animals. Previous studies have reported that FMDV 3C
protease could degrade multiple host proteins; however, the degradation mechanism mediated by
FMDV 3C is still unclear. Here, we found that transient expression of FMDV 3C degraded various
molecules in NF-κB signaling in a dose-dependent manner, and the proteolytic activity of FMDV
3C is important for inducing degradation. Additionally, 3C-overexpression was associated with the
induction of apoptosis. In this study, we showed that an apoptosis inhibitor CrmA abolished the
ability of 3C to degrade molecules in NF-κB signaling. Further experiments using specific caspase
inhibitors confirmed the irrelevance of caspase3, caspase8, and caspase9 activity for degradation
induced by 3C. Altogether, these results suggest that FMDV 3C induces the widespread degradation
of host proteins through its proteolytic activity and that the apoptosis pathway might be an important
strategy to mediate this process. Further exploration of the relationship between apoptosis and
degradation induced by 3C could provide novel insights into the pathogenic mechanisms of FMDV.
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1. Introduction

Foot-and-mouth disease (FMD) is an acute, febrile, highly contagious disease of cloven-
hoofed animals caused by the foot-and-mouth disease virus (FMDV) [1]. FMDV, a member
of the genus Aphthovirus in the Picornaviridae family, is a non-enveloped icosahedral
virus. Its genome, a positive single-stranded RNA of approximately 8.5 kb, encodes a large
polyprotein. Viral proteases process the polyprotein into four structural proteins (VP4, VP2,
VP3, and VP1), eight nonstructural proteins (L, 2A, 2B, 2C, 3A, 3B, 3C, and 3D), and several
intermediates [2].

3C protease, which exists in all picornaviruses, can cleave viral polyproteins and
various host factors through its catalytic activity [3,4]. FMDV 3C has been proven to
subvert host responses by cleaving multiple cellular proteins [3,4]. For instance, 3C cleaves
histone 3 (H3), eukaryotic initiation factor 4AI (eIF4AI), and eukaryotic initiation factor 4GI
(eIF4GI) to block host transcription and translation [5–7]. Src-associated in mitosis of 68 kD
(Sam68), Ras GTPase-activating protein-binding protein 1 (G3BP1), and heterogeneous
nuclear ribonucleoprotein K (hnRNP K) are cleaved by 3C to promote FMDV replica-
tion [8–10]. Moreover, FMDV 3C cleaves IKKγ to inhibit the innate immune response [11].
However, the specific mechanisms of 3C-induced degradation of some proteins such as
γ-tubulin, Karyopherin 1 (KPNA1), double-stranded RNA-activated protein kinase (PKR),
and autophagy-related 5 homolog–12 homolog (ATG5–ATG12) are still unclear [12–15].
Therefore, we attempted to demonstrate the mechanism of the extensive degradation
induced by FMDV 3C.
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Apoptosis is the process of programmed cell death that is selective and controlled [16,17].
Upon external or intrinsic stimuli, apoptosis is induced by the activation of a death signal
and utilizes a cascade of caspases. The activation of caspases or other proteases induces mul-
tiple cleavage events, subsequently causing apoptosis-associated morphological changes,
including membrane blebbing, chromatin condensation and cell shrinkage [16,17]. Previ-
ous studies have shown that 3C proteases of several picornaviruses can induce apoptosis
to promote viral replication and subvert host immunity responses [4,17]; however, the
modulation of apoptosis by FMDV 3C has not been reported.

The present study verified that FMDV 3C degrades multiple molecules involved in
NF-κB signaling through its proteolytic activity. Moreover, 3C induces apoptosis. Further
research found that apoptosis inducers caused the same molecules to degrade and an
apoptosis inhibitor, CrmA restored the abundance of proteins degraded by 3C-expression,
whereas the disruption of caspase3, caspase8, and caspase9 activity did not affect the
degradation events. Thus, our study reveals a critical role of 3C in degrading various
molecules involved in NF-κB signaling and inducing apoptosis and confirms that an
apoptosis inhibitor impedes the degradation induced by 3C.

2. Materials and Methods
2.1. Cells and Viruses

Human embryonic kidney 293T (HEK293T) cells (ATCC; CRL-11268) and porcine
kidney PK-15 cells (ATCC; CCL-33) were cultured at 37 ◦C with 5% CO2 in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum (BI, Kibbutz Beit Haemek, Israel). The FMDV strain O/BY/CHA/2010
was isolated from a pig in China by our laboratory [18].

2.2. Plasmids

The coding sequence of FMDV 3C was fused with Flag-tag and cloned into the
pCAGGS expression plasmid (pCAGGS-Flag-3C), which was constructed using standard
molecular biology techniques. Various HA-tagged components including myeloid differ-
entiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6),
transforming growth factor-β-activated kinase 1 (TAK1), TAK1 binding proteins (TAB1,
TAB2, and TAB3), and IκB kinase complex (IKKα, IKKβ, and IKKγ) expressing plasmids
and CrmA used in this study were kindly provided by Professor Hongbing Shu (Wuhan
University, Wuhan, China). The sequence identity of the plasmids was verified using DNA
sequencing.

2.3. Antibodies and Reagents

Anti-β-actin mouse monoclonal antibody was purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA). Anti-Flag or anti-HA mouse monoclonal antibodies were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The goat anti-mouse IgG secondary
antibody was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Apoptosis
Inducers Kit (C0005) was obtained from Beyotime (Shanghai, China).

2.4. Western Blotting

Western blotting was performed as described previously [19]. HEK293T cells were
cultured in 12-well cell plates for 24 h and then transfected with the appropriate plasmids.
Cells were collected at the indicated time points and lysed. Proteins were resolved by SDS-
PAGE in acrylamide gels and transferred onto nitrocellulose membranes (Merck Millipore,
Billerica, MA, USA). The membranes were incubated with 5% non-fat dry milk in TBS for
30 min at room temperature and probed with appropriate primary antibodies and dye-light
fluorescent conjugated secondary antibodies. Antibody-antigen complexes were visualized
using ECL detection reagents.
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2.5. Site-Direct Mutagenesis

Mutations of FMDV 3C were introduced into the FMDV 3C-encoding plasmids using
Pyrobest DNA Polymerase (TaKaRa, Tokyo, Japan) according to the manufacturer’s in-
structions. Site-directed mutagenesis primers containing nucleotide substitutions targeting
amino acids H46, D84, and C163 were designed, leading to substitutions of H to Y, D to N,
and C to G, respectively, which generated mutations in the catalytic triad of 3C, pCAGGS-
Flag-3C(H46Y), pCAGGS-Flag-3C(D84N), and pCAGGS-Flag-3C(C163G), respectively [20].
A mutant of FMDV 3C with intact catalytic activity pCAGGS-Flag-3C(H205R) was gener-
ated using a similar method [20]. Correct nucleotide substitutions were confirmed using
DNA sequencing.

2.6. Caspase Inhibitors Treatment

HEK293T cells were treated with dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis,
MO, USA), Z-DEVD-FMK (Apexbio Technology LLC, Houston, TX, USA), Z-IETD-FMK
(Apexbio Technology LLC, Houston, TX, USA), and Z-LEHD-FMK (Selleck Chemicals,
Houston, TX, USA) (20 mM) for 2 h, followed by co-transfection of various molecules
in NF-κB signaling with 3C or empty vectors for 18 h. The samples were harvested and
analyzed using western blotting.

2.7. Cytotoxicity Test

HEK293T cells were transfected with various plasmids for 18 h. Cytotoxicity tests
were performed using the Cell Counting Kit-8 (CCK-8) (Biosharp, Hefei, China) according
to the manufacturer’s protocol.

2.8. Quantitative Reverse-Transcription-PCR(RT-qPCR) Analysis

Total RNA was extracted using TRIzol reagent (TaKaRa, Tokyo, Japan). Transcription
levels of CASP3 and CASP8 genes were normalized to the levels of GAPDH mRNA. The
porcine gene-specific primer sequences were as follows: 5′-TCTTCAGAGGGGACTGCTGTA-
3′ (forward) and 5′-CCTCGGCAGGCCTGAATTAT-3′ (reverse) for CASP3, 5′-CCAGGATTT
GCCTCCGGTTA-3′ (forward) and 5′-CAGGCTCAGGAACTTGAGGG-3′ (reverse) for
CASP8, 5′-ACATGGCCTCCAAGGAGTAAGA-3′ (forward) and 5′-GATCGAGTTGGGGCT
GTGACT-3′ (reverse) for GAPDH.

Genomic copy numbers of FMDV were quantified using a TaqMan probe to con-
served regions within FMDV 3D [21]. The specific primer sequences were as follows:
5′-ACTGGGTTTTACAAACCTGTGA-3′ (forward) and 5′-GCGAGTCCTGCCACGGA-3′

(reverse). The probe sequence was 5′-TCCTTTGCACGCCGTGGGAC-3′, which was mod-
ified with a 5′ 6-carboxy-fluorescein (FAM) dye and a 3′ nonfluorescent quencher with
tetramethylrhodamine (TAMRA).

2.9. Flow Cytometric Analysis of Apoptosis

HEK293T cells were transfected with the various plasmids for 48 h. The apoptosis
occurrence was assessed by staining a cell population with AbFlourTM 488 annexin V
and propidium iodide (PI) using an Annexin V-AbFlourTM 488 Apoptosis Detection Kit
(Abbkine, Wuhan, China).

2.10. Caspases Activity Assay

HEK293T cells were treated with DMSO, Z-DEVD-FMK, Z-IETD-FMK, and Z-LEHD-
FMK (20 mM) , the culture medium was replaced after 2 h. Caspase activity was measured
after 16 h using a Caspase 3 Activity Assay Kit, a Caspase 8 Activity Assay Kit, or a Caspase
9 Activity Assay Kit (Beyotime, Shanghai, China).

2.11. Statistical Analysis

All the data were analyzed using GraphPad Prism software (GraphPad Software
Inc., La jolla, CA, USA). The significance of the results was assessed using an unpaired
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two-tailed Student’s t-test. The results are presented as mean values ± standard error of
the mean (mean ± SEM) of three replicates. All experiments were repeated independently
at least three times, and the data are shown as one representative experiment.

3. Results
3.1. FMDV 3C Degrades Various Molecules in NF-κB Signaling

3C plays an important role in virus replication and subverting host responses during
picornavirus infection [3,4]. To investigate the effect of FMDV 3C on the expression of
molecules in NF-κB signaling, HEK293T cells were transfected with various expression
plasmids of host proteins involved in NF-κB signaling (MyD88, TRAF6, TAK1, TAB1,
TAB2, TAB3, IKKα, IKKβ, and IKKγ) combined with FMDV 3C or empty vectors. The
expression of host proteins in NF-κB signaling and FMDV 3C was measured using western
blotting. We observed that FMDV 3C substantially reduced the expression of these adaptors
(Figure 1A–C). Interestingly, only the cleaved bands of TAB2 and IKKγ were detected in
3C expressing cells. There is also the possibility that the cleaved bands were separated
from fused HA-tag or had a low abundance; thus, these bands could not be detected by
anti-HA antibodies well. These results suggest that 3C induces the degradation of various
host proteins involved in NF-κB signaling.
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Figure 1. FMDV 3C degrades host proteins involved in NF-κB signaling. (A–C) HEK293T cells
were transfected with empty vectors or Flag-3C-expressing plasmids (1 µg) together with indicated
HA-tagged adaptors expressing plasmids (2 µg). After 24 h, total protein extracts were collected and
analyzed by western blotting using antibodies specific to Flag, HA, or β-actin. WB, western blotting.
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3.2. FMDV 3C Degrades Host Proteins Involved in NF-κB Signaling in a Dose-Dependent Manner

To confirm the regulatory effect of 3C on the expression of these adaptors, we trans-
fected HEK293T cells with various expression plasmids of host proteins involved in NF-κB
signaling combined with increasing doses of FMDV 3C. The expression of these adaptors
reduced with the increase in expression of 3C (Figure 2A–C). Moreover, with increasing
dosages of 3C, cleavage products of TAB2, IKKα, IKKβ, and IKKγ were also degraded.
This indicated that 3C had a substantial effect on the expression of host proteins involved
in NF-κB signaling in a dose-dependent manner.
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Figure 2. FMDV 3C degrades host proteins involved in NF-κB signaling in a dose-dependent manner.
(A–C) Indicated HA-tagged adaptors expressing plasmids (2 µg) and increasing amounts of Flag-
3C-expressing plasmids (0, 0.5, and 1.0 µg) were co-transfected into HEK293T cells. After 24 h, total
protein extracts were collected and analyzed by western blotting using antibodies specific to Flag,
HA, or β-actin. WB, western blotting.

3.3. Proteolytic Activity Is Involved in the Degradation Induced by FMDV 3C

Previous studies have illustrated that the protease activity of 3C is essential for the
modulation of host responses [5–9,11–13]. To determine whether the degradation of 3C is
dependent on its proteolytic activity, we generated a series of mutants, including 3C(H46Y),
3C(D84N), and 3C(C163G) with disrupted catalytic activity as well as 3C(H205R) with
intact catalytic [20]. The effect of different FMDV 3C mutants on the expression of host
proteins involved in NF-κB signaling was investigated by western blotting. The results
showed that 3C mutants with disrupted proteolytic activity had a weaker ability to decrease
the abundance of host proteins, and even restored their expression levels entirely, while
3C(H205R) with intact catalytic activity induced degradation events similar to wild-type
3C, even more significantly (Figure 3A–C). Taken together, these results demonstrate that
3C degrades various host proteins, partly because of its proteolytic activity.
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(A–C) HEK293T cells were transfected with empty vectors, wild type 3C, or 3C mutants (H46Y, D84N, C163G, H205R) (1 µg)
together with indicated adaptors (2 µg). After 24 h, total protein extracts were collected and analyzed by western blotting
using antibodies specific to Flag, HA, or β-actin. WB, western blotting.

3.4. Expression of 3C Induces Apoptosis

Previously, picornavirus 3C has been reported to control cell apoptotic pathways.
For instance, 3C of poliovirus (PV) [22], enterovirus A71 (EV-A71) [23], Senecavirus A
(SVA) [24,25], and coxsackievirus B3 (CVB3) [26], can trigger apoptosis. However, it
remains unclear whether FMDV 3C affects apoptosis progression. In this study, we found
that the expression of 3C led to characteristic apoptotic morphological changes, including
cell shrinkage and plasma membrane blebbing (Figure 4A). 3C-expressing cells were
subjected to flow cytometry to assess apoptosis, and the proportion of apoptotic cells
among 3C-expression cells was markedly increased (Figure 4B,C). Moreover, we detected
the mRNA levels of CASP3 and CASP8 in 3C-expressing cells. The results showed that 3C
upregulated the expression of CASP3 and CASP8 in PK-15 cells (Figure 4D). Interestingly,
expression of FMDV 3C induced apoptosis, regardless of whether the proteolytic activity
is intact or disrupted, whereas 3C(H46Y) had a slighter effect on apoptosis compared to
wild-type 3C and 3C(H205R) (Figure 4A–C). Collectively, 3C could induce apoptosis and
the proteolytic activity of 3C might be involved in this process, although it is not essential.

3.5. CrmA Abolished the Ability of 3C to Degrade Host Proteins Involved in NF-κB Signaling

Since 3C triggers the occurrence of apoptosis, many proteases are activated and
released during this process. We hypothesized that the apoptosis pathway might be
involved in host protein degradation caused by 3C. To exclude any cytotoxic effect of
3C expression, we transfected HEK293T cells with FMDV 3C plasmids. As shown in the
results, 3C did not decrease cell viability (Figure 5A), indicating that the decrease in host
protein expression induced by 3C did not result from a cytotoxic effect. Interestingly, a
similar marked decrease in the levels of host proteins involved in NF-κB signaling was also
observed with apoptosis inducers treatment, supporting the hypothesis that apoptosis is
involved in the degradation induced by 3C (Figure 5B–D). Here, we co-transfected CrmA,
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an apoptosis inhibitor (Figure 4B,C), with FMDV 3C and the indicated adaptors, and found
that CrmA rescued the protein levels of the adaptors and the cleaved bands (e.g., TAK1,
IKKα, IKKβ, and IKKγ) (Figure 6A–D). Moreover, the expression of CrmA also resulted in
the inhibition of FMDV replication (Figure 6E). These results indicated that CrmA might be
an effective inhibitor of 3C that is a virulence factor of FMDV. Moreover, apoptosis might
be an important pathway by which 3C degrades multiple host proteins to facilitate FMDV
replication.
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Figure 4. Expression of FMDV 3C induces cell apoptosis. (A) HEK293T cells were
transfected with the indicated plasmids for 24 h or treated with apoptosis inducers for
12 h. Cells were visualized using a Laser scanning confocal microscope Leica TCS SP8
(Leica Microsystems, Wetzlar, Germany), 400× magnification. (B) A cell population
with AbFlourTM 488 annexin V and PI staining. HEK293T cells were transfected with the
indicated plasmids for 48 h or treated with apoptosis inducers for 24 h. Cells were collected
for analysis of the percentage of cells with apoptotic characteristics by flow cytometry.
(C) Analysis of apoptosis occurrence in HEK293T cells from (B). (D) PK-15 cells were
transfected with the indicated plasmids for 24 h. Expression levels of CASP3 and CASP8
were assessed by RT-qPCR. The results are presented as relative fold changes in mRNA
levels compared to mock cells. The results represent the average of three replicates. Error
bars represent SEM; *: p < 0.05; **: p < 0.01; ***: p < 0.001, compared to mock cells.
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Figure 5. Apoptosis inducers cause similar degradation of host proteins involved in NF-κB signaling as that induced by
FMDV 3C. (A) Cytotoxic effect in HEK293T cells transfected with the indicated plasmids were analyzed by CCK8 assay.
The results represent the average of three replicates. Error bars represent SEM; ns, no significance (p > 0.05), compared
to mock cells. (B–D) HEK293T cells were transfected with the indicated adaptors (2 µg) for 16 h and then were treated
with apoptosis inducers for 6 h. Total protein extracts were collected and analyzed by western blotting with the indicated
antibodies.
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Figure 6. CrmA abolishes the ability of 3C to downregulate host proteins involved in NF-κB signaling and inhibits FMDV
replication. (A–D) HEK293T cells were transfected with empty vectors or CrmA (1 µg) together with 3C (100 ng) and the
indicated adaptors (2 µg). After 24 h, total protein extracts were collected and analyzed by western blotting using antibodies
specific to Flag, HA, or β-actin. (E) PK-15 cells were transfected with empty vectors or CrmA in increasing dosage for
24 h and were infected with FMDV (6 or 12 h; MOI = 0.1). Genomic copy numbers of FMDV were quantified using the
quantitative RT-qPCR assay. The results represent the average of three replicates. Error bars represent SEM; *: p < 0.05,
compared to mock cells.

3.6. Degradation of Host Proteins Involved in NF-κB Signaling Induced by FMDV 3C Is
Independent of the Activity of Caspase3, Caspase8, and Caspase9

Apoptosis is mediated by a series of highly complex cascade events that are trig-
gered by apoptosis-inducing factors. During apoptosis signaling, caspase8 or caspase9 are
activated to induce the activation of caspase3, which results in the occurrence of apopto-
sis [27]. To explore the specific apoptosis-associated molecules through which 3C targets
the host proteins involved in NF-κB signaling, HEK293T cells were treated with three
specific inhibitors: caspase3 inhibitor (Z-DEVD-FMK), caspase8 inhibitor (Z-IETD-FMK),
and caspase9 inhibitor (Z-LEHD-FMK), which significantly decreased the activity of the
caspases (Figure 7A–C). Unexpectedly, none of the inhibitors rescued the protein levels of
host proteins involved in NF-κB signaling (Figure 7D–L). These data suggest that FMDV 3C
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degrades host proteins involved in NF-κB signaling, which is independent of the activity
of caspase3, caspase8, and caspase9.
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Figure 7. 3C induces the degradation of host proteins involved in NF-κB signaling, independent of
the activity of caspase3, caspase8, and caspase9. (A–C) Caspase activity was assessed after treatment
with specific caspase inhibitors. The results represent the average of three replicates. Error bars
represent SEM; *: p < 0.05; **: p < 0.01; ***: p < 0.001, compared to mock cells. (D–L) HEK293T cells
(1 × 106) were treated with DMSO, Z-DEVD-FMK, Z-IETD-FMK, or Z-LEHD-FMK (20 mM) for 2 h.
Then, the indicated expression plasmids of host proteins (2µg) and 3C or empty vectors (100 ng)
were co-transfected for 24 h. Total protein extracts were collected and analyzed by western blotting
using antibodies specific to Flag, HA, or β-actin.
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4. Discussion

It is well known that picornavirus 3C induces an abundance of cleavage events and
degrades many host proteins [4]. Regarding cleavage events, they could be triggered by 3C
itself or by the caspases activated by 3C. However, the degradation mechanism of FMDV
3C is still unclear.

Here, we found that FMDV 3C generally decreased the protein levels of several host
proteins involved in NF-κB signaling in a dose-dependent manner (Figures 1A–C and 2A–C).
A previous study found that lysosomal degradation of PKR induced by FMDV 3C does
not require protease activity of 3C [28]. Here, we found that mutations in the catalytic triad
of 3C (H46Y, D84N, or C163G) partly abolished the degradation of host proteins involved
in NF-κB signaling (Figure 3A–C), indicating that the protease activity of FMDV 3C is
involved in the degradation of these host proteins.

Likewise, the host proteins degraded by FMDV 3C in this study have been shown to
be the targets of other picornavirus 3C proteases. For instance, TAK1 could be cleaved by
3C of multiple enteroviruses (CVA16, CVA6, EV-A71, and EV-D68) [29,30], and TAB1, TAB2,
and TAB3 could be cleaved by EV-A71 3C [30]. In addition, both hepatitis A virus (HAV)
and FMDV 3C can cleave IKKγ to impair the production of interferons [11,31]. However,
there are no host factors, which have been shown to mediate the degradation events in
these studies. Hence, studies have shown that 3C is an effective factor for picornaviruses
to modulate apoptosis. For instance, 3C proteases of PV [22], SVA [24,25], EV-A71 [23], and
CVB3 [26], have been shown to be pro-apoptotic factors, while human rhinovirus (HRV) 3C
suppresses apoptosis and induces non-necrotic cell death [32]. Here, we found that FMDV
3C is also an apoptosis inducer (Figure 4A–D), which might help 3C target more host
factors and promote FMDV proliferation. We also showed that the induction of apoptosis
caused the same substrates to degrade and the apoptosis inhibitor CrmA blocked 3C-
induced degradation (Figures 5B–D and 6A–D), suggesting that FMDV 3C might degrade
host proteins involved in NF-κB signaling in an apoptosis-dependent pathway; however,
caspase3, caspase8, and capsase9 activity are not essential (Figure 7D–L). Importantly,
CrmA, a member of the serpin family encoded by the cowpox virus, was found to be an
inhibitor of caspase1 and caspase8 which are key molecules in apoptosis [33]. CrmA has
been shown to protect cells from apoptosis [34]. Caspase1, a cysteine protease that folds
like a serine protease (like chymotrypsin), was originally described as a target of CrmA,
their interaction was described as an example of a “cross-class inhibition” [35]. CrmA acts
as a protease inhibitor and interacts with the protease through a cleavage site within it,
which is a pseudosubstrate mechanism [36]. The FMDV 3C protease is a cysteine protease
with a chymotrypsin-like fold. Therefore, it is possible that CrmA directly inhibited the
proteolytic activity of FMDV 3C. However, CrmA had a stronger effect in impeding the
degradation compared to mutants with mutations in the active sites of 3C (Figrues 3A–C
and 6A–D). This suggests that apoptosis might be another pathway through which CrmA
interrupts the degradation induced by FMDV 3C. In addition, the induction of apoptosis
was not entirely dependent on the proteolytic activity of 3C (Figure 4B,C). Therefore, clearly
dissecting the primary effects due to the proteolytic activity of the FMDV 3C protease and
secondary effects resulting from 3C-induced apoptosis is challenging.

In summary, we identified the antagonistic role of FMDV 3C, as an apoptosis inducer,
on the expression of various host proteins involved in NF-κB signaling, while CrmA abol-
ished the inhibitory effect and inhibited FMDV replication. Furthermore, the degradation
induced by FMDV 3C was independent of caspase3, caspase8, and caspase9 activity. These
results suggest that 3C is an important factor in inhibiting innate immunity and promoting
viral replication during FMDV infection. However, the conclusion that apoptosis is in-
volved in the degradation induced by 3C is preliminary, and the specific mechanism of the
inhibitory effect of CrmA on the degradation and apoptosis induced by 3C still needs to be
studied. Clarifying these queries might help us understand the pathogenic mechanism of
picornavirus and develop efficient 3C inhibitors to prevent picornavirus infection.
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