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Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2), has been recently considered a systemic disorder leading to the pro-
coagulant state. Preliminary studies have shown that SARS-CoV-2 can infect endothelial cells, and
extensive evidence of inflammation and endothelial dysfunction has been found in advanced COVID-
19. Endothelial cells play a critical role in many physiological processes, such as controlling blood
fluidity, leukocyte activation, adhesion, platelet adhesion and aggregation, and transmigration. There-
fore, it is reasonable to think that endothelial dysfunction leads to vascular dysfunction, immune
thrombosis, and inflammation associated with COVID-19. This article summarizes the association of
endothelial dysfunction and SARS-CoV-2 infection and its therapeutic strategies.
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1. Introduction

Since December 2019, a new β-coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has led to an outbreak of respiratory disease around the
world, which has posed a global challenge [1–3]. By 29 April 2021, it infected more than
148 million people worldwide and caused 3,128,962 deaths in over 200 countries (data
compiled by Johns Hopkins University). Whereas most patients with COVID-19 show
only mild symptoms, a proportion of patients develop severe complications within a
short time after infection [2,4,5]. Both clinical studies and autopsy findings have shown
evidence of vascular damage and thrombotic complications in multiple organs, such as
acute ischemic or hemorrhagic stroke, myocardial injury, liver injury, acute kidney injury,
as well as intestinal damage [6–11]. A number of studies have found that inflammatory
processes, coagulation disorders, and microvascular thrombosis may exacerbate adult
respiratory syndrome (ARDS) and extrapulmonary events in COVID-19 [12,13]. In addition,
evidence suggests that the symptoms and signs of patients severely infected with COVID-
19 are similar to the clinical phenotypes of endothelial dysfunction and have the same
pathophysiological mechanism [6,14]. In particular, recent work by Chioh et al. found that
COVID-19 patients, especially those with preexisting cardiovascular risk, may show signs
of persistent endothelial dysfunction even after recovery from the infection [15].

Endothelial cells (ECs) play an important role in many physiologic processes. They
control blood fluidity, leukocyte activation, adhesion, platelet aggregation and adhesion,
and transmigration [3,16,17]. However, for most human viruses, ECs are the target of
infection. Endothelial dysfunction is closely associated with organ dysfunction during
virus infection [3]. The lung autopsy results of Ackermann et al. on seven patients with

Pathogens 2021, 10, 582. https://doi.org/10.3390/pathogens10050582 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://doi.org/10.3390/pathogens10050582
https://doi.org/10.3390/pathogens10050582
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10050582
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10050582?type=check_update&version=2


Pathogens 2021, 10, 582 2 of 11

COVID-19 showed severe endothelial injury [18]. Increasing clinical evidence has shown
that ECs participate in the pathogenesis of COVID-19 by reducing the integrity of the
vascular wall, regulating clotting cascades, and mediating leukocyte infiltration [6,17,19,20].

To date, there are no specific drugs for COVID-19, and its pathogenesis remains largely
unclear. Attention to the role of the endothelium in the pathophysiology of COVID-19 is of
the utmost importance. In this article, we summarize the pathophysiology of SARS-CoV-2-
induced endothelial dysfunction and potential therapeutic approaches for the treatment
and prevention of COVID-19-related endothelial dysfunction.

2. The SARS-CoV-2 Virus

Coronavirus, order Nidovirales, family Coronaviridae, is composed of a helical capsid
and a single-stranded RNA genome with a length of 27–32 kb [21–24]. This virus family
includes four distinct genera, namely α, β, γ, and δ [22,25]. SARS-CoV-2, the causative
pathogen of COVID-19, belongs to the β-genus and is considered a zoonotic pathogen that
can infect a variety of species, especially birds and mammals [5,22,25]. Recently, researchers
have completed the whole-genome sequencing of SARS-CoV-2 [22,26]. The SARS-CoV-2
genome contains five major open-read frames, which encode primary structural proteins,
namely membrane (M), envelope (E), nucleocapsid (N), and spike (S) [25]. The M protein
contains transmembrane domains that bind to the nucleocapsid and contribute to the shape
of the virus [27]. The E protein is related to virus assembly and virus pathogenesis [27].
The N protein is mainly responsible for packing and encapsulating the genome into
virions, and can antagonize silent RNA [24,26,27]. SARS-CoV-2 employs the S protein to
recognize the target cells. The S protein comprises a trimer of glycoproteins, including
two functional domains, the N-terminal region and the C-terminal region, named S1
and S2, respectively [24–26,28]. The S1 subunit is mainly responsible for recognition and
binding the angiotensin-2 receptor (ACE2) on the cell surface [22,25,28,29]. The S2 subunit
constitutes the stalk of the S protein, which plays a key role between the target cell and
virus envelope, allowing the virus’s genetic material to enter the cell [22,25].

3. Infection of Endothelial Cells by SARS-CoV-2

Like other CoVs, SARS-CoV-2 relies on the ACE2 to enter the target cells, but has a
higher affinity for ACE2 [5]. Studies showed that ACE2 is mainly concentrated on the
surface of ECs and mucosal epithelial cells, such as the nasal and oral cavities, the lungs,
and intestinal tract [30]. Although ACE2 is expressed on ECs of various organs, this does
not mean SARS-CoV-2 invades all organs. There is no evidence that the virus invades the
ECs of all organs so far. Coronavirus enters the cell mainly through endocytosis, which also
depends on the recognition and binding of virus S protein to ACE2 and the initiation of S
protein by host cell protease [31]. Therefore, coronavirus invasion of the cell depends on
the expression of ACE2 and the involvement of transmembrane serine protease 2 (TMPRSS-
2) or other proteases that cleave the virus S protein [32]. Previous studies showed that
TMPRSS-2 is also expressed in human ECs [33]. Therefore, ECs expressing ACE2 and
TMPRSS-2 are considered to be the target cells of SARS-CoV-2 [17,34,35].

The S protein mediates the virus to enter the host cells through a complex interaction
with the ACE2 of the target cells. This interaction occurs in two key steps: first by attaching
the viral S1 subunit to ACE2, and then by fusing the envelope of the virus to the membrane
of the host cell [25,30,36,37]. Once the S protein binds to the ACE2 on the target cell, it
causes some kind of conformational changes, making the S protein easily activated for
membrane fusion [30]. These processes require the involvement of proteases including
TMPRSS-2 and furin, which are essential for the membrane fusion of the virus with the
cell [25,29,30,38]. They cleave the S protein between S1 and S2 subunits and rearrange
its structure, allowing the envelope of the virus to fuse with the membrane of the target
cell [28–30]. Once the virus enters the ECs, it begins to translate, replicate, and directly
induce endothelial cell injury and apoptosis [17,25,39]. In severe COVID-19, the progressive
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infection of alveolar epithelial cells is accompanied by significant viral shedding, leading
to necrosis and apoptosis [40,41].

4. Pathophysiology of Endothelial Dysfunction in COVID-19 Infection
4.1. Endothelial Dysfunction and Immune Responses

ECs in humans basically express both class I and II major histocompatibility com-
plex (MHC) molecules, so they have important immune functions [3,42]. Costimulatory
molecules and MHC molecules are usually necessary for T cell activation [17]. As ECs do
not express costimulatory molecules CD80/CD86, ECs may function as semi-professional
antigen-presenting cells (APCs) [17]. Thus, the number of T cells activated by ECs is far less
than those activated by professional APCs. ECs can mediate the activation of Ag specific
memory or effector CD4 and CD8 T lymphocytes, but cannot activate naïve lymphocytes [3].
It has been reported that vascular ECs could promote the clearance of cells infected by virus
via presenting viral peptides to CD8+T cells [12,43]. Microvascular ECs have been reported
to induce the trans-endothelial migration of memory or effector CD4 T lymphocytes [17,44].
In addition, cytokines such as IFN-γ can increase the expression of MHC class I or class
II antigens in ECs [45]. Therefore, the endothelial damage and dysfunction mediated by
COVID-19 would prevent ECs from activating lymphocytes, which may directly lead to an
imbalance in the adaptive immune response [43].

Cytokines have been thought to play a critical role in immunopathology and immunity
during the course of virus infection, but when released in excess or inappropriately, they
can disrupt the normal protective function of the endothelium and enhance the pathological
process [3,46]. IL-6 is produced by ECs in response to virus invasion and elevated in the
circulation in the inflammatory state [17,47,48]. Clinical reports have shown that increased
levels of IL-6 are related to COVID-19 pathogenesis [2,49]. IL-6 induces ECs to secrete pro-
inflammatory/chemokines and activate C5a complement [3,50,51]. Evidence of elevated
levels of C5a can be found in a number of clinical studies, including one that confirmed
elevated levels of C5a in 39 patients with COVID-19 undergoing maintenance hemodialy-
sis [12,52]. C5a mediates the activation and recruitment of leukocytes by binding to the
receptor of C5a, thus promoting the degradation of vascular endothelial (VE)-cadherin and
further leading to the destruction of the endothelial barrier [17,53,54]. Treatment of COVID-
19 patients with anti-C5a antibodies has been shown to reduce systemic inflammation
and increase lung oxygenation [12,55]. To date, the role of C5a in the pathophysiological
process of COVID-19 remains unclear.

ECs are speculated to be involved in the recruitment of leukocytes from the blood-
stream to the inflammatory and infected sites [17,44,56]. In the process of SARS-CoV-2
infection, cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) bind to
the TNF receptor and IL-1 receptor on the surface of the ECs, which further initiates various
kinase cascades and induces the expression of many kinds of adhesion molecules, such as
VCAM-1, ICAM-1, P-selectin, and E-selectin [17,44]. VCAM-1 is a monocyte endothelial
ligand independent of CD11/CD18, which not only recognizes α4β1 and α4β7 integrins
in leukocytes, but also mediates monocytes’ recruitment from the bloodstream to sites
of infection and injury [17]. ICAM-1, expressed on the surface of ECs and upregulated
in lesions, supports leukocyte recruitment and adhesion and mediates the transition of
lymphocytes and monocytes by binding with CC-chemokine ligand 2 (CCL2) [17,44]. P-
selectin is mainly expressed on the endothelium and platelets, and plays an important
role in the interaction between ECs and leukocytes, especially in regulating inflammatory
pathways and preventing infections [17]. It has been found that the levels of adhesion
molecules (VCAM-1, ICAM-1, P-selectin, and E-selectin) are significantly increased in
patients severely infected with COVID-19 [17,57].

A clinical study reported that the levels of IL-6, IL-10, and TNF-α were significantly
increased in COVID-19 [58]. In the context of SARS-CoV-2 infection, endothelial injury-
mediated excessive inflammation is an important factor leading to lymphocyte depletion,
as studies showed that IL-6 and TNF-α can induce lymphocyte deficiency [12]. Reduction
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in the number of CD4+ T lymphocytes may weaken the immune response to SARS-CoV-2
infection, and even aggravate excessive inflammation by down-regulating inflammatory
mediators [12].Taken together, the above evidence indicates that the uncontrolled inflam-
matory response in severe infections with COVID-19 is closely related to ECs [59].

4.2. Endothelial Dysfunction and Thrombosis

ECs secrete various signals and mediators under normal physiological conditions that
play a vital role in the prevention of pathological thrombosis [60]. The glycosaminoglycan
on the endothelial surface binds to antithrombin III, resulting in the production of a
potent thrombin inhibitor [61]. Thrombomodulin on the endothelial surface binds to
thrombin, resulting in a decrease in activated protein C, which regulates coagulation
activation by proteolytic cleavage of the cofactors VIIIa and Va [56,61]. ECs can also
express a procoagulant protein inhibitor, which can prevent thrombosis induced by tissue
factor [56,62]. In addition, ECs can synthesize and release a variety of relaxing factors,
such as prostacyclin (PGI2) and nitric oxide (NO) [17,60,63]. NO can prevent the adhesion
of leukocytes and platelets, the migration of inflammatory cells into the vessel wall, the
proliferation of smooth muscle cells, and suppresses inflammation and apoptosis [64].
PGI2 and NO synergistically increase the content of cAMP in platelets, thereby preventing
platelet aggregation and limiting the formation of thrombi [60]. In addition to PGI2 and NO,
the lumen surface of ECs is covered by enzymes [60]. Ectonucleotidase hydrolyzes ATP
and ADP, both of which are potent platelet-aggregating agents, into AMP and adenosine,
thereby reducing platelet aggregation [60].

Whereas normal vascular lumen has anticoagulant, antithrombotic, and fibrinolytic
functions, the anticoagulant and antithrombotic properties of the vascular lumen change
when ECs are injured [56,60]. The tropism of SARS-CoV-2 for ACE-2 receptors expressed on
ECs seems to result in ECs injury and apoptosis, leading to loss of the ability to maintain the
physiological functions mentioned above [65]. Subsequently, the endothelial dysfunction
leads to the procoagulant change in the vascular lumen and the formation of immune
thrombosis. The autopsy studies of COVID-19-related deaths have reported clot formation,
hyaline membrane in pulmonary arterioles, and diffuse alveolar injury [64,66].

4.3. Endothelial Dysfunction and Hypercoagulability

The endothelium secretes tissue plasminogen activator and has a glycocalyx layer,
which prevents platelet binding or coagulation cascade triggering [47]. In addition, a
variety of receptors are expressed on ECs, which have important antifibrinolytic, anti-
platelet aggregation and anticoagulant activities. Thrombomodulin, a transmembrane
receptor constitutively expressed on the surface of the ECs, can reduce the prothrombin
activity of thrombin and favor activation of anticoagulant protein C after binding to the
thrombin [67].

For patients with COVID-19, a hypercoagulable state is a critical condition [25,68,69].
Studies have shown that in this disease, elevated D-dimer levels are correlated with
the worst outcomes and the hypercoagulable state is associated with higher mortal-
ity [8,10,25,70]. Compared with survivors, non-survivors had significantly longer pro-
thrombin time, higher fibrin degradation product and D-dimer levels, and activated partial
thromboplastin time [3,71]. This typical figure is considered to be the result of endothelial
cell injury induced by SARS-CoV-2 infection.

First, the endothelial injury results in the loss of the anticoagulant function of these
cells and exposes underlying tissue factor to coagulation factors in the blood [60]. Second,
destruction of endothelium integrity increases the exposure of the thrombogenic sub-
endothelium to the vasculature, thus activating the intrinsic coagulation pathway [12,60].
Finally, endothelial dysfunction results in the massive release of von-Willebrand factor
(VWF) from Weibel-Palade bodies, which has been reported in COVID-19 [12,72]. VWF is
a glycoprotein secreted by ECs and platelets, which is stored in the Weibel-Palade body of
ECs with Factor VIII [73]. Following endothelial dysfunction, this stored VWF is secreted,
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providing an effective bridge for platelet aggregation and thrombus assembly, which is
conducive to the formation of organized clots [56].

In summary, SARSCoV-2 infection directly or indirectly causes endothelial dysfunction
leading to a prothrombotic state through activating the internal and external coagulation
pathways [12].

4.4. Endothelial Dysfunction and Vascular Permeability

ECs are the inner-most structure of all blood vessels and serve as the basic barrier
between the interstitium and blood [60]. Controlling vascular permeability is one of the
recognized functions of ECs in maintaining physiological homeostasis [17,60]. Under
physiological conditions, endothelial gateways maintain vascular integrity by selectively
regulating endothelial permeability [56,60]. VE-cadherin, known as the guardian of en-
dothelial integrity, plays an important role in maintaining the integrity of the endothelial
barrier [56,74]. In the context of SARS-CoV-2 infection, IL-1 stimulation can reduce VE-
cadherin and thus affect endothelium integrity, resulting in capillary leakage [56]. In
addition, the entry of SARS-CoV-2 through ACE2 induces a down-regulation of the expres-
sion of membrane-bound ACE2, which in turn may indirectly activate the kallikrein–kinin
system (KKS), and eventually lead to the increase in vascular permeability [22,59,75,76]. In-
creased vascular permeability may contribute to extravasation and accumulation of fluids,
proteins, and various inflammatory factors in the alveolar space and affect oxygenation
function [56,76–78]. This finding directly links endothelial injury to capillary leakage and
the exacerbation of ARDS as presented in advanced COVID-19 [56].

5. Therapeutic Strategies

To date, there are no specific antiviral drugs, and the treatment of COVID-19 patients is
limited to symptomatic or palliative care. Given the above, therapies directly and indirectly
aimed to prevent endothelial dysfunction and/or improve endothelial function may help to
mitigate rapid disease progression and high mortality of COVID-19. Ongoing clinical trials
are investigating treatments that target endothelial dysfunction associated with COVID-19.
Therefore, we review the current therapies that prevent endothelial dysfunction and/or
improve endothelial function in COVID-19.

5.1. Serine Protease Inhibitors

SARS-CoV-2 invasion of the cell mainly depends on the host TMPRSS-2, which plays
an important role in the fusion of the S protein and the endothelial cell membrane. As
such, inhibitors of synthetic serine protease, such as camostat mesylate, can negate the
activating proteolytic processing of virus, and thus can theoretically prevent SARS-CoV-2
infection [64]. A recent study demonstrated that TMPRSS2, a protease inhibitor that can
effectively prevent SARS-CoV-2 from invading cells, was tested in vitro and has been
approved for clinical use [32]. Since ACE2 is required for viruses to invade cells, another
method to prevent SARS-CoV-2 from invading cells is to use human recombinant soluble
ACE2 [3,12]. Recombinant soluble ACE2 was proven to be a promising drug for the
treatment of SARS-CoV-2 [12].

5.2. Renin-Angiotensin–Aldosterone System (RAAS) Inhibitors

Numerous studies have shown that both ACE inhibitors (ACEIs) and angiotensin
receptor blockers (ARBs) can improve endothelial dysfunction [79]. ACE2 is not only a
receptor for the virus invading the ECs, but also a vital part of RAAS [17]. As inhibitors of
the RAAS upregulate ACE2 receptors [80], there were initial concerns about whether drugs
such as ACEIs and ARBs would increase susceptibility to SARS-CoV-2 by upregulating
the expression of ACE2 [81]. A number of clinical trials are underway to study the role of
RAS inhibitors on COVID-19 (Clinical Trials NCT04311177, NCT04312009, NCT04335786,
NCT04353596, NCT04364893, NCT04364984, NCT04367883, and NCT04394117). Evidence
from a meta-analysis showed that the use of ACEI/ARB did not aggravate the severity
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of COVID-19 and can reduce the mortality of COVID-19 [82]. The available data indicate
that the use of RAAS inhibitors did not increase the risk of SARS-CoV-2 infection or cause
adverse outcomes [40,81,83–85]. On the contrary, due to an increase in the production of
angiotensin 1–7 and the catabolism of angiotensin II, ACE2 upregulation may be more
helpful than harmful for patients infected with SARS-CoV-2 [86,87]. Evidence from cardiol-
ogy showed that RAAS inhibitors such as ACEIs and ARBs can reduce the risk of thrombus
formation [88]. Thus, RAAS inhibitors have a positive effect on other antithrombotic
treatments of COVID-19 [47].

5.3. Statins

Apart from lipid-lowering actions, statins can improve endothelial function via dif-
ferent mechanisms, including inhibition of NADPH oxidase, improved coupling and
increased expression of nitric oxide synthase, and suppression of pro-inflammatory signal
transcriptional and transduction pathways [40]. Previous studies have found that statins
are beneficial for endothelial function in patients with rheumatoid arthritis or in patients
with cardiovascular disease [89,90]. Some evidence suggests that statins are helpful in viral
pneumonia (such as influenza) [91], indicating that they may be a promising category of
drugs for preventing vascular damage and treating endothelial dysfunction in COVID-19.
Evidence suggests that treatment with statins can reduce the production of inflammatory
biomarkers and improve the prognosis of COVID-19 [40,56]. Safety concerns about statin
therapy (liver damage, kidney damage, and myotoxicity) may be the reason for the reluc-
tance to use statins as an adjunctive therapy for COVID-19 [92]. These conditions may
be more common in patients severely infected with COVID-19 [92,93]. Therefore, further
clinical practice should be considered to obtain reliable evidence of the role of statins in
COVID-19.

5.4. Heparin

Heparin has anti-inflammatory effects, protecting the ECs by reducing histone tox-
icity and decreasing vascular leakage and lung edema [17]. In addition, heparin has an
antiarrhythmic effect and can even oppose classical RAAS activation [47]. Anticoagula-
tion with low-molecular-weight heparin (LMWH) can improve the prognosis of patients
severely infected with COVID-19 [12]. A retrospective study of COVID-19 in 17 hospi-
tals in Spain confirmed that heparin can reduce mortality after adjusting for age and
sex [94]. Many studies have shown that heparin is beneficial to selected high-risk patients
with COVID-19 [95]. Current expert recommendations suggest the use of unfractionated
heparin or prophylactic-dose LMWH in all hospitalized COVID-19 patients without con-
traindications [21,96]. However, many findings have shown that thrombosis can occur in
patients severely infected with COVID-19 despite treatment with LMWH at therapeutic
doses [19,47]. The recommended dose of LMWH has not yet been determined, and the
results of ongoing clinical trials are eagerly awaited. A number of clinical trials are under-
way to understand the role of LMWH in the treatment of patients with COVID-19 (Clinical
Trials NCT04373707, NCT04393805, NCT04492254, NCT04542408, and NCT04584580).

5.5. Corticosteroids

In addition to direct injury of ECs caused by viral infection, widespread release
of inflammatory factors can also lead to ECs damage [72]. Given the important role of
inflammatory factors in the pathophysiology of COVID-19, anti-inflammatory treatment is
worthy of careful clinical evaluation. Corticosteroids are steroid hormones with strong anti-
inflammatory properties [3]. They affect the function of various immune cells, including
B lymphocytes, T lymphocytes, dendritic cells, and ECs [3,97]. A retrospective study of
201 patients with COVID-19 confirmed that methylprednisone treatment may be helpful
for patients with ARDS [98]. Moreover, Group et al. showed that dexamethasone can
significantly decrease 28 day mortality in patients severely infected with COVID-19 [99].
Dexamethasone has been authorized by the U.S. Food and Drug Administration (FDA) for
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emergency treatment of COVID-19 [12]. A number of clinical trials are underway to study
the role of glucocorticoids in the treatment of COVID-19 (Clinical Trials NCT04343729,
NCT04344288, NCT04344730, NCT04348305, and NCT04381936).

5.6. Other Agents

Other therapeutic considerations to improve endothelial dysfunction include: cytokine-
directed therapies (against IL-1, IL-6, and interferon gamma), HMGB1-RAGE/TLR4 sig-
naling inhibitors, antioxidant drugs, complement inhibitors, VEGFA/VEGFR2 signaling
inhibitors, and pharmacological modulators [17].

6. Conclusions

There is growing evidence that endothelial dysfunction plays an important role in
SARS-CoV-2 infection, suggesting that physiological functions and immunology of ECs
should be paid more attention. Therapies aiming to prevent endothelial dysfunction
and/or improve endothelial function in conjunction with specific antiviral administration
may be particularly helpful to improve outcomes in COVID-19.
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