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Abstract: It is still uncertain how the epidemic characteristics of COVID-19 in its early phase and
subsequent waves contributed to the pre-delta epidemic size in the United States. We identified
the early and subsequent characteristics of the COVID-19 epidemic and the correlation between
these characteristics and the pre-delta epidemic size. Most (96.1% (49/51)) of the states entered a
fast-growing phase before the accumulative number of cases reached (30). The days required for the
number of confirmed cases to increase from 30 to 100 was 5.6 (5.1–6.1) days. As of 31 March 2021, all
51 states experienced at least 2 waves of COVID-19 outbreaks, 23.5% (12/51) experienced 3 waves,
and 15.7% (8/51) experienced 4 waves, the epidemic size of COVID-19 was 19,275–3,669,048 cases
across the states. The pre-delta epidemic size was significantly correlated with the duration from 30
to 100 cases (p = 0.003, r = −0.405), the growth rate of the fast-growing phase (p = 0.012, r = 0.351),
and the peak cases in the subsequent waves (K1 (p < 0.001, r = 0.794), K2 (p < 0.001, r = 0.595), K3

(p < 0.001, r = 0.977), and K4 (p = 0.002, r = 0.905)). We observed that both early and subsequent
epidemic characteristics contribute to the pre-delta epidemic size of COVID-19. This identification is
important to the prediction of the emerging viral infectious diseases in the primary stage.

Keywords: COVID-19; pre-delta; epidemic size; early prediction; emerging infectious diseases;
United States

1. Introduction

Coronavirus 19 disease (COVID-19) has led to a worldwide pandemic [1,2]. As
of 31 March 2021, the pandemic disease was affecting people in over 200 countries and
territories, with more than 127 million confirmed cases and 4 million deaths reported
globally [3]. At the same time, in the United States (US), there were over 30 million
confirmed cases and 550,354 deaths attributed to COVID-19 [4,5]. The cumulative incidence
of COVID-19 in the United States at that time exceeded 9000/100,000. Whereas, at that
time, only 16% of Americans were completely vaccinated, and the delta variant was just
beginning to spread in the United States [6–8]. It can be considered that the epidemic of
COVID-19 in the United States was in an early stage up to that time. Exploring the factors
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related to the early epidemic in the United States may provide new knowledge and insights
for COVID-19 control and the other emerging viral infectious diseases.

After experiencing the early small-scale spread of the COVID-19 epidemic, many
areas in the United States still experienced multiple outbreaks and spatiotemporal changes
despite the government’s interventions, such as repeated lockdowns and the wide use of
face masks [9–12]. Previous studies have demonstrated that early epidemiological charac-
teristics, such as the basic reproduction ratio, could determine the subsequent epidemic
level [13,14]. Furthermore, early epidemiological characteristics (such as the number of
days from 30 to 100 cases) have been hypothesized as significant predictors of the subse-
quent epidemic of COVID-19 in China [15]. It is still uncertain whether this hypothesis can
be confirmed in the United States from the available epidemiological data.

Various mathematical methods have been used to describe and predict the trend of
the COVID-19 epidemic in the United States [16–19], with a lot of critical mathematical
indicators produced. However, most studies focused on the prediction by models, as to
whether the correlation between subsequent epidemic characteristics involved in these
methods and the epidemic size needs to be further investigated. Quite a few studies have
explored the influence of non-drug intervention measures such as lockdown, mask use, and
mass-testing on the epidemic of COVID-19 by methods such as the dynamics model [20–26].
Nevertheless, to further investigate the role of the non-pharmacological interventions, it
is also important to examine the impacts of the factors in interventions such as residents’
adherence to lockdown (represented as the new cases on the day of restriction) on the
epidemic size in the United States.

We hypothesized that the severity of the COVID-19 epidemic could be characterized
by epidemiological indicators in the early stage and subsequent waves of the epidemic.
To address this question, we collected publicly available COVID-19 epidemic data from
51 states (including Washington, DC, USA) in the United States. We also conducted the
correlation analysis after identifying the epidemic characteristics by the Joinpoint software
and multi-logistic fitting. As the high vaccine coverage and delta variant represent different
transmission patterns, we limit our data collection and analysis to 31 March 2021. This
study aims to identify the impact of the epidemic characteristics in the early stage and
subsequent waves on the pre-delta epidemic size in 51 states of the US.

2. Results
2.1. Spatiotemporal Changes of COVID-19 Pandemic in the United States

The geographic distribution of the COVID-19 epidemic showed a substantial change
from 31 March 2020 to 31 March 2021, with a significant shift from the Eastern United States
to the Central United States (Figure S1). On 31 March 2020, the incidence in most states was
at a relatively low level (<300/100,000), while the highest incidence was reported in Eastern
United States (New York, 275/100,000; New Jersey, 125/100,000). By 11 December 2020,
there was a substantial increase in incidence in all states across the United States. In
particular, there was a strong emergence in the Central United States (North Dakota,
11,445/100,000; South Dakota, 10,136/100,000). From 11 December 2020 to 31 March 2021,
the growth of incidence slowed down slightly, but the Central United States remained the
most severely affected area.

Remarkably, most of the states that experienced three or four waves were concentrated
in the central part of the United States. The Getis–Ord Gi* statistic for total COVID-19
infectious identified Eastern United States as COVID hotspots in early 2020 and the Central
United States as hotspots in 2021 and late 2020 (Figure S1). The Anselin’s Local Moran’s I
analysis identified New York, located in the Eastern United States, as a high–low outlier
in 2020, and “high–high” clusters were mainly found in the Central United States as of
31 March 2021.
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2.2. Early Epidemic Characteristics of the COVID-19 Epidemic in the US

We demonstrated two-phase linear fits to the first 100 confirmed cases of COVID-19
during the early phase of the epidemic in the 51 states of the US (Figure 1). The simple
model identified one slow-growing phase and one fast-growing phase in the early phase of
the 100 confirmed cases. The slow-growing phase was relatively short with a growth rate
of 1.6 (1.2–2.0) cases/day, whereas the growth rate in the fast-growing phase was about
11 times higher (18.2 (14.5–21.8) cases/day, Table 1). The conversion from the slow phase to
the fast phase occurred on day 13 (9.8–16.1). The average number of confirmed cases at the
phase transition point was 12.6 (10.0–15.3) days, and 96.1% (49/51) of the states transited
from the slow-growing phase to the fast-growing phase at a level below 30 cases (Figure 1,
Table 1). Consistent with a previous finding in China [15], we regarded ‘30’ confirmed cases
as a critical threshold where the COVID-19 epidemic started to increase rapidly. Further, in
the 51 states, the days required for the number of confirmed cases to increase from 30 to
100 was 5.6 (5.1–6.1) days. The average case–fatality rates in the first 100 confirmed cases
across all US states were 1.1% (0.6–1.6%).
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Figure 1. Joinpoint two-phase fitting for 51 U.S. states, showing the transition point below a threshold
of 30 cases. Most of the states transited from the slow-growing phase to the fast-growing phase at a
level below 30 cases.

2.3. Subsequent Epidemic Characteristics Based on Multi-Logistic Fitting

Figure 2 demonstrates the multi-logistic fitting to the COVID-19 epidemics in the
51 states. As of 31st March, our model identified that all 51 states experienced at least 2-
waves of COVID-19 growth, among which 23.5% (12/51) experienced a 3-wave growth, and
15.7% (8/51) experienced a 4-wave growth (Table 2). Across all states, the average number
of estimated confirmed cases was 111,061 (56,997–165,124), with an outbreak duration
of 83.5 (75.0–92.0) days for the first wave. The average number of estimated confirmed
cases was 329,686 (178,466–480,907), with an outbreak duration of 96.7 (90.2–103.1) days
for the second wave. For the third and fourth waves, the average number of estimated
confirmed cases at the peak was 389,757 (256,873–522,641) and 327,861 (43,632–612,091),
and the outbreak duration was 94.1 (86.6–101.6) and 92.1 (76.9–107.3) days respectively.
The fourth outbreak (estimated to saturate at 327,861 cases), the third outbreak (estimated
to saturate at 389,757 cases) and the second outbreak (estimated to saturate at 327,686 cases)
is significantly greater than the first outbreak (saturate at 111,061 cases). However, the
duration of the outbreaks showed no significant difference across the waves.
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Figure 2. Multi-logistic fitting with multi growth phases by US state. Inset maps display the reported
incidence on 31 March 2020 and 31 March 2021. Multi-logistic fittings for the dynamics of the newly
reported incidence are presented for each state as separate panels with the blue line, green line, red
line and light blue line representing the development process of the first wave, second wave, third
wave and fourth wave estimated by fitting, respectively. The types of line colors correspond to the
number of waves obtained by fitting. The total number of waves at 1, 2, 3 and 4 were also displayed
as the colors of the borders of panels with blue, green, red and bright blue, respectively.

2.4. Epidemic Size and Associated Characteristics

As of 31 March 2021, the overall epidemic size was 30,326,324 cases in the United
States, ranging from the lowest 19,275 cases in Vermont to 3,669,048 cases in California.
Figure 3 demonstrated significant correlations between epidemic size and time from 30 to
100 (p = 0.003, r = −0.405) and growth rate of the fast-growing phase (p = 0.012, r = 0.351).
Additionally, epidemic size also showed significant positive correlations with K1 (p < 0.001,
r = 0.794), K2 (p < 0.001, r = 0.595), K3 (p < 0.001, r = 0.977) and K4 (p = 0.002, r = 0.905). In
addition, the epidemic size was positively correlated with the new cases on restriction day
(p < 0.001, r = 0.764) and new cases on reopening day (p < 0.005, r = 0.880).
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Table 1. Key early characteristics in the early-stage of the epidemic and the subsequent size and severity of the epidemic.

State

Number of
Confirmed Cases

at the Date the
100th Cases were

Reported

Number of
Deaths at the

Date the 100th
Cases were
Reported

Number of Days
from 30 to 100

Case Fatality Rate
in the First 100

Confirmed Cases

Day of the Phase
Turning Point

Number of Cases
at Turning Point

Slow Growing
Phase

(Cases/Day)

Fast Growing
Phase

(Cases/Day)

Alabama 106 0 4 0.0% 3 9.73 2.60 16.16
Alaska 102 2 6 2.0% 8 5.80 0.83 8.48

Arizona 104 1 3 1.0% 51 2.60 0.04 17.49
Arkansas 100 0 3 0.0% 8 28.21 3.91 32.41
California 100 0 7 0.0% 37 12.69 0.31 13.04
Colorado 103 1 4 1.0% 5 12.38 2.03 17.03

Connecticut 159 2 4 1.3% 9 10.48 1.38 26.50
Delaware 104 0 6 0.0% 7 10.36 1.68 10.11
District of
Columbia 116 2 7 1.7% 9 24.28 2.45 19.18

Florida 109 4 4 3.7% 9 11.49 1.29 16.02
Georgia 118 1 6 0.8% 9 11.79 1.44 19.87
Hawaii 106 0 7 0.0% 12 6.71 0.58 11.25
Idaho 123 0 6 0.0% 8 14.07 1.92 17.73
Illinois 104 0 5 0.0% 47 3.74 0.06 16.14
Indiana 128 4 5 3.1% 12 21.76 2.03 22.60

Iowa 105 0 6 0.0% 10 27.65 2.58 14.21
Kansas 102 2 6 2.0% 9 5.25 0.66 10.37

Kentucky 103 3 5 2.9% 14 26.04 2.09 26.44
Louisiana 103 2 3 1.9% 3 2.17 0.70 22.66

Maine 107 0 7 0.0% 3 7.93 3.58 11.10
Maryland 108 1 5 0.9% 9 16.32 1.85 16.19

Massachusetts 110 0 4 0.0% 36 1.41 0.02 20.75
Michigan 334 3 6 0.9% 7 45.55 7.81 90.68
Minnesota 115 0 6 0.0% 8 7.20 1.04 14.27
Mississippi 140 1 4 0.7% 7 21.09 3.63 34.25

Missouri 130 3 4 2.3% 11 6.56 0.68 25.23
Montana 121 1 6 0.8% 11 14.94 1.53 13.78
Nebraska 102 0 13 0.0% 12 16.23 1.54 6.81
Nevada 165 1 5 0.6% 10 12.34 1.34 14.71

New Hampshire 101 1 6 1.0% 14 7.02 0.48 8.96
New Jersey 176 2 4 1.1% 9 21.22 2.68 46.30
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Table 1. Cont.

State

Number of
Confirmed Cases

at the Date the
100th Cases were

Reported

Number of
Deaths at the

Date the 100th
Cases were
Reported

Number of Days
from 30 to 100

Case Fatality Rate
in the First 100

Confirmed Cases

Day of the Phase
Turning Point

Number of Cases
at Turning Point

Slow Growing
Phase

(Cases/Day)

Fast Growing
Phase

(Cases/Day)

New Mexico 100 0 6 0.0% 11 37.95 3.62 21.07
New York 106 0 3 0.0% 4 13.33 4.38 29.65

North Carolina 104 0 5 0.0% 10 5.14 0.53 11.31
North Dakota 109 2 9 1.8% 6 1.06 0.02 6.50

Ohio 120 0 5 0.0% 4 8.62 2.06 15.74
Oklahoma 106 3 6 2.8% 10 4.78 0.49 10.92

Oregon 114 3 9 2.6% 12 11.16 1.00 8.48
Pennsylvania 101 0 5 0.0% 7 17.83 2.89 16.65
Rhode Island 106 0 6 0.0% 13 4.96 0.33 7.26

South Carolina 126 1 5 0.8% 10 23.82 2.59 19.86
South Dakota 100 1 7 1.0% 12 14.77 0.72 9.47

Tennessee 155 0 6 0.0% 7 5.18 0.81 11.24
Texas 106 1 8 0.9% 26 1.99 0.06 11.27
Utah 112 0 5 0.0% 8 7.16 1.03 14.20

Vermont 123 8 5 6.5% 13 13.52 1.22 20.61
Virginia 115 2 8 1.7% 4 7.25 1.98 10.57

Washington 110 9 5 8.2% 40 1.18 0.01 15.80
West Virginia 113 0 5 0.0% 8 16.71 2.47 19.43

Wisconsin 106 0 4 0.0% 37 1.27 0.01 14.65
Wyoming 121 0 8 0.0% 12 22.14 2.09 10.84

Total/Mean
(95%CI)

118.8
(108.9–128.7)

1.3
(0.8–1.8)

5.6
(5.1–6.1)

1.1%
(0.6–1.6%)

13
(9.8–16.1)

12.6
(10–15.3)

1.6
(1.2–2)

18.2
(14.5–21.8)
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Table 2. The fitted parameters for the multi-logistic fitting for the dynamics of the cumulative incidence in each state of US.

State Phase * K1
1 ∆t1

2 tm1
3 K2 ∆t2 tm2 K3 ∆t3 tm3 K4 ∆t4 tm4 K

Alabama 2 158,058 113.0 139.0 356,678 105 287 - - - - - - 514,736
Alaska 2 4868 74.8 122.0 55,034 113 265 - - - - - - 59,902

Arizona 2 219,769 76.2 166.0 621,947 82 339 - - - - - - 841,716
Arkansas 2 89,317 137.0 151.0 250,964 115 289 - - - - - - 340,281
California 2 937,689 124.0 188.0 2,683,967 67.8 341 - - - - - - 3,621,656
Colorado 4 27,074 76.9 58.8 29,840 62.8 142 352,188 85.7 273 402,309 86.7 422 811,411

Connecticut 2 46,842 54.6 49.9 263,325 124 296 - - - - - - 310,167
Delaware 4 10,156 50.0 54.8 10,122 78.8 145 71,115 103 294 95,159 92.3 443 186,552
District of
Columbia 4 10,694 67.2 61.3 4544 87.5 156 257,73 104 296 45,849 113 449 86,860

Florida 2 676,134 70.0 141.0 1,417,834 126 309 - - - - - - 2,093,968
Georgia 4 42,444 54.2 53.9 302,132 97.9 156 651,457 92.6 307 1,051,352 119 469 2,047,385
Hawaii 2 14,189 82.8 175.0 15,304 119 302 - - - - - - 29,493
Idaho 2 31,874 73.2 133.0 147,958 118 266 - - - - - - 179,832
Illinois 3 129,678 52.8 101.0 122,400 63.3 198 960,542 100 315 - - - 1,212,620
Indiana 3 39,662 78.6 59.4 65,411 78.1 163 575,259 92.3 278 - - - 680,332

Iowa 4 23,273 60.0 60.0 52,000 90 150 208,015 70.8 252 65,336 81 326 348,624
Kansas 3 16,721 50.0 65.0 43,685 75 170 241,620 96.1 280 - - - 302,026

Kentucky 4 14,453 64.4 73.3 58,258 87.7 178 331,578 106 288 381,435 93.5 433 785,724
Louisiana 3 43,792 30.0 30.0 114,559 58.4 140 289,018 106 292 - - - 447,369

Maine 3 4594 117.0 86.2 40,123 84.9 296 35,078 107 422 - - - 79,795
Maryland 3 63,754 65.7 67.0 59,507 78.4 156 279,222 89.6 296 - - - 402,483

Massachusetts 2 114,764 62.1 91.4 515,403 112 334 - - - - - - 630,167
Michigan 4 65,674 65.7 45.0 66,908 78.2 157 479,761 77.1 265 480,316 90.8 409 1,092,659
Minnesota 4 42,237 60.9 81.5 56,831 69.2 172 304,990 50 259 101,135 60.6 326 505,193
Mississippi 2 112,294 140.0 147.0 194,676 96.4 293 - - - - - - 306,970

Missouri 3 16,177 55.0 50.0 102,000 80 165 399,748 97.2 271 - - - 517,925
Montana 1 102,982 126.0 253.0 - - - - - - - - - 102,982
Nebraska 2 26,763 106.0 108.0 179,197 114 283 - - - - - - 205,960
Nevada 2 79,921 96.3 141.0 221,403 94.9 286 - - - - - - 301,324

New
Hampshire 2 6231 78.4 72.2 76,994 110 306 - - - - - - 83,225

New Jersey 2 180,120 64.5 49.2 738,290 131 310 - - - - - - 918,410
New Mexico 2 22,510 108.0 102.0 166,650 101 272 - - - - - - 189,160
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Table 2. Cont.

State Phase * K1
1 ∆t1

2 tm1
3 K2 ∆t2 tm2 K3 ∆t3 tm3 K4 ∆t4 tm4 K

New York 2 411,495 49.5 46.6 1,495,624 121 318 - - - - - - 1,907,119
North

Carolina 2 240,328 146.0 153.0 687,653 104 308 - - - - - - 927,981

North Dakota 3 9515 109.0 118.0 88,707 83.1 242 46,699 77.4 421 - - - 144,921
Ohio 3 32,254 58.9 42.0 76,174 50 139 893,327 97.3 281 - - - 1,001,755

Oklahoma 2 115,630 137.0 169.0 325,333 97.5 296 - - - - - - 440,963
Oregon 2 27,810 116.0 141.0 135,919 112 294 - - - - - - 163,729

Pennsylvania 3 82,241 52.0 45.0 44,856 50 144 900,730 110 292 - - - 1,027,827
Rhode Island 2 17,323 62.2 63.4 118,673 122 295 - - - - - - 135,996

South
Carolina 2 156,103 112.0 145.0 405,559 105 311 - - - - - - 561,662

South Dakota 2 6409 89.6 58.9 108,453 108 246 - - - - - - 114,862
Tennessee 2 207,342 126.0 150.0 577,027 95.1 290 - - - - - - 784,369

Texas 2 786,183 116.0 169.0 2,110,206 122 326 - - - - - - 2,896,389
Utah 2 46,055 104.0 134.0 346,926 130 289 - - - - - - 392,981

Vermont 2 1114 41.6 33.9 20,062 153 327 - - - - - - 21,176
Virginia 3 61,158 88.4 76.7 106,055 91.3 170 454,702 98 308 - - - 621,915

Washington 3 17,699 47.5 76.0 53,412 76.8 178 294,323 122 331 - - - 365,434
West Virginia 2 11,017 101.0 130.0 129,068 105 281 - - - - - - 140,085

Wisconsin 2 56,786 109.0 142.0 568,147 114 288 - - - - - - 624,933
Wyoming 2 2915 56.0 109.0 52,500 93.7 261 - - - - - - 55,415

Total/Mean
(95%CI) -

111,060.5
(56,996.6–
165,124.4)

83.5
(75–92)

101.5
(87.6–
115.5)

329,686
(178,465.5–
480,906.5)

96.7 (90.2–
103.1)

246.5
(226.9–
266.1)

389,757.3
(256,873.4–
522,641.1)

94.1 (86.6–
101.6)

301.1
(279.8–
322.3)

327,861.4
(43,631.9–
612,090.8)

92.1
(76.9–
107.3)

409.6
(364–
455.3)

638,557.2
(434,066.4–
843,048.1)

* All the parameters were defined by the multi-logistic fitting; 1 The parameters K1, K2, K3, K4, and K represent the asymptotic values that bound the function and therefore specify the
level at which the epidemic and the overall epidemic saturates; 2 The parameters tm1, tm2, tm3, and tm4 represent the midpoint of each epidemic growth and hence the peak of each
outbreak; 3 The parameters ∆t1, ∆t2, ∆t3, and ∆t4 are the lengths of time intervals required for the epidemics to grow from 10% to 90% of the saturation level.
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Figure 3. Spearman correlation between epidemic size, multi-logistic parameters, characteristics in
the early stage of the epidemic and non-pharmacological intervention characteristics. The size of each
circle represents the absolute value of the correlation coefficient. The color of each circle represents
the sign of the correlation coefficient and the magnitude of its absolute value. The asterisks in circles
indicate that the p-value of the hypothesis test for the correlation coefficient is less than 0.05. HAQ:
healthcare and access quality index.

2.5. Correlation between Early and Subsequent Epidemic Characteristics

Notably, early characteristics of the epidemic also show a correlation with overall
epidemic-wide fluctuations (Figure 3). Time from 30 to 100 was significantly negatively
correlated with the K1 (p = 0.003, r = −0.41), K2 (p = 0.028, r = −0.31), and K3 (p = 0.048,
r = −0.45). There is a negative correlation between HAQ and ∆t1 (p = 0.021, r = −0.325) and
∆t4 (p = 0.001, r = −0.929). In contrast, the new cases on reopening day showed a positive
correlation with K1 (p < 0.001, r = 0.618), K2 (p = 0.003, r = 0.478), K3 (p < 0.001, r = 0.874),
and K4 (p = 0.042, r = 0.829).

3. Discussion

Our study demonstrated that during the early phase of the epidemics in 51 US states,
30 cases appear to be a critical threshold for switching from a relatively slow-growing phase
to a fast-growing phase. This is consistent with one of our previous published studies [15].
We identified multiple temporal waves and geographical distribution in the subsequent
COVID-19 epidemics. Most states (50/51) have experienced at least 2 waves of the epidemic
outbreak. The subsequent waves are significantly stronger and longer than the first wave,
but states with a higher first wave tend to have higher subsequent waves as well. We also
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showed a geographic shift of the epidemic from the coastal states to inland states. The
COVID-19 epidemic size across the US states is significantly associated with the duration
from 30 to 100 cases, the growth rate of the fast-growing phase, and the peak cases in the
subsequent waves.

Our study demonstrated similar early epidemic characteristics in the US compared
with the previous findings in China [15]. In both settings, both countries were unprepared
for the unprecedented outbreak. Based on the previous study, we again demonstrate
that the first 30 cases appear to be an essential indicator of the onset of a rapid phase of
COVID-19 transmission. Once this critical level is reached, the epidemic tends to enter a
period of rapid expansion. Establishing an early warning system based on the number
of confirmed cases per day is crucial to controlling the spread of an epidemic in the early
phase. Interventions that aim to contain it to a low level in its early stage may be most
beneficial in reducing its subsequent size.

Our study indicated that early characteristics are predictive of the subsequent waves of
the epidemics and the epidemic size. Notably, the shorter the duration to increase from 30
to 100 cases in its early phase, the more severe the subsequent epidemic burden. The shorter
duration represents a more rapid epidemic spread and likely reflects the absence of effective
prevention strategies and diagnostic capacity in the states, leading to a high transmission
rate. Consistent with this, more rapid growth in the early phase is also associated with a
greater magnitude of subsequent waves. We believe the early rapid development of the
outbreak may serve as an important warning signal for the healthcare system to respond to
the outbreak and help predict the potential size of COVID-19 in the later development of
the epidemic.

Our study demonstrated a significant shift in the geographical distribution of the
COVID-19 epidemic from coastal to inland states, and inland states appeared to have
experienced more subsequent waves, similar to the results of an earlier study [27]. This
might be due to their delay in their response to COVID-19 prevention. California, New
Jersey, Illinois, and Connecticut started restrictions early. In comparison, as of 3 May
2020, the eight states in the Central United States had not issued any residence orders
nor lockdown interventions. Consistent with this, our study found that the lower the
cumulative number of cases on lockdown days, the lower the extent of the subsequent
epidemic size. Furthermore, the first eight states that experienced the fourth wave might
have higher population density and more frequent changes in social distancing restrictions,
such as frequent lockdown and reopening [28–34]. This may have led to the earlier decline
of the previous wave and the earlier appearance of the next wave. Additionally, a low
cumulative number of cases on the reopening day also corresponds to a smaller epidemic
size intensity. This may also reflect the fact that states that emphasize non-pharmaceutical
interventions are more effective at controlling the epidemic [35], which confirmed the view
in a previous study that a hasty reopening may lead to another epidemic [10]. However,
although many areas would implement restrictions and reopen according to the epidemic
situation, the reduced adherence caused by pandemic fatigue may also lead to a large-scale
epidemic [36].

Our study also demonstrated a strong correlation between waves. We are the first to
identify the number of waves and quantify the size and duration of the waves. We report
the subsequent waves were at least three times more than the first waves and each cycle of
the waves is about 3 months. The duration likely reflects the time for the healthcare system
to react, intervene, and gradually reduce the epidemics.

There are some limitations to our findings. First, our research only verified the pre-
delta epidemic data before 31 March 2021 without considering the underestimated cases
in the first waves [37] and the effect of the vaccination on the trajectory of the epidemic
and multiple rounds of public health interventions. Further investigation is necessary to
identify the impacts of these interventions on the course of the COVID-19 epidemic in the
US. Second, states in the US may begin to witness the sixth wave of outbreaks with the
emergence of another strain. The increasing waves may affect the prediction accuracy of
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various characteristics of the epidemic. Third, many potential confounding factors such as
environmental, meteorological and intervention factors [38,39] were not included in our
current study, which demands future investigations. Fourth, the vaccination efficacy, along
with the population structure that may influence the vaccine effect and susceptibility [40,41],
was not taken into consideration due to the limitation of data sources. The mortality rate
was also affected by the complexity of its influencing factors [42–44] and was not considered
to be an outcome indicator. Moreover, our study only considered the first restriction and
first reopening. Many areas have since implemented more restrictions and reopening, which
were not included in this study. The number of new cases on the days of other restrictions
and reopening would likely serve as important indicators to predict the epidemic size,
which could be addressed in further study.

4. Materials and Methods
4.1. Data Source

We collected publicly available data from 51 states in the United States, that reported
on cases of COVID-19 (number of daily confirmed cases, deaths, and recovery cases) from
21 January 2020 to 31 March 2021 from the Coronavirus resource center of Johns Hopkins
University and Medicine [3]. In accordance with the methods of another study [45], for
some inconsistencies between Johns Hopkins University data and state-level reporting, we
have manually supplemented and corrected this dataset and adjusted for reporting-day
biases according to the NY Times website [4] to improve the accuracy of our analysis.

We collected social distancing data from the IHME COVID-19 Forecasting Team’s
article [46]. We also obtained each state’s population size from the WorldPop Population
Counts [47] along with the Healthcare Access and Quality (HAQ) Index, which was a
summary measure of personal healthcare access and quality, from the GBD’s article [48].

4.2. Selection of Epidemic Characteristics Indicators

We defined the epidemic size for each state as the cumulative number of confirmed
cases on 31 March 2021.

For the early epidemic trend of each 51 states, we used the Joinpoint software [49]
to identify the trend and transition point of the epidemic during the initial phase of the
epidemic based on the first 100 confirmed cases. We imposed a two-phase fit (it can be
determined through the Joinpoint software automatically) [15] with the maximum of one
joinpoint (corresponding to two-time intervals) and used a linear regression model for both
phases. We identified: (1) the time of the transition point between the two phases; (2) the
number of cases at the transition point; the growth rates of the (3) first (slow-growing)
phase and (4) the second (fast-growing) phase. For the 51 states of the United States,
the average number at the turning point is 12.6 (10–15.3) days (Table 1), along with the
majority (49/51) of transition points occurring below 30 cases, which is consistent with
our previous conclusion of 30 cases in China [15]. Therefore, in this study, we regarded
30 cases as an important threshold for the epidemic growth where the epidemic changed
from a slow-growing to a fast-growing phase. We also estimated three additional predictors
based on the first 100 confirmed cases, namely: (1) the days required to increase from 30 to
100 cases (time from 30 to 100); (2) the case fatality rate among the first 100 confirmed cases
(CFR-100). The ‘first 100 cases’ was defined as the number of confirmed cases on the day
the 100th confirmed case was reported.

We also collected various non-pharmacological intervention indicators under the
epidemic situation, which were as follows: (1) the time of first restriction and first reopening
for 51 US states; (2) the confirmed new cases on the day of restriction and reopening.

For the study period in each of the 51 states, we used a simple multi-logistic fitting
(https://logletlab.com/, accessed on 5 April 2022) to identify the key characteristics of
the COVID-19 epidemic based on the cumulative number of confirmed COVID-19 cases.
We modelled the epidemic patterns by identifying 1 to 4 growth waves of the COVID-
19 epidemic. We identified: (1) Km (m = 1,2,3,4) for each wave which represents the

https://logletlab.com/
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asymptotic values that bound the function and therefore specify the level at which the
epidemic saturates. The sum of K represents the point at which the epidemic has finally
reached saturation; (2) tm for each wave represents the midpoint of each epidemic growth
and hence the peak of each outbreak. tm4-tm3, tm3-tm2, tm2-tm1 represent the time interval
between the two consecutive outbreaks. The sum of tm represents the sum of the time
required for each epidemic to reach its peak; (3) ∆t for each phase represents the lengths
of time intervals required for the epidemics to grow from 10% to 90% of the saturation
level. The sum of ∆t represents the sum of the interval lengths required for each epidemic
to increase from 10% of saturation level to 90%. Figure S3 is a schematic graph with three
main characteristics of Km, tm and ∆t.

4.3. Statistical Analysis

We generated the disease mapping of COVID-19 in ArcGIS10.8 (Environmental Sys-
tems Research Institute, Redlands, CA, USA). The reported incidence in each state was
joined to the shapefile of state boundary by administrative unit code. We created dis-
tribution maps for the COVID-19 on 31 March 2020, 11 December 2020 (the day when
the Food and Drug Administration (FDA) of the United States issued an Emergency Use
Authorization (EUA) for the first vaccine to prevent COVID-19) [50], and 31 March 2021,
separately. We also performed Anselin Local Moran’s I and Getis-Ord Gi* to identify the
spatial variations of the COVID-19 in the United States further. For the geospatial analysis,
we normalized the epidemic size by dividing the population size of each of the states to
obtain the infected rates of per 100,000 individuals.

After verifying the non-normal distribution of most variables through the Kolmogorov–
Smirnov test, we used the Spearman correlation test in the OriginPro 2021b software (Origin-
Lab Corporation, Northampton, MA, USA) to examine the correlation between epidemic
size, early epidemic characteristics (time from 30 to 100, CFR in the first 100 confirmed
cases, day of the phase turning point, number of cases at the turning point, slow-growing
phase (case/day), fast-growing phase (case/day)), intervention (new cases on restriction,
new cases on reopening) and HAQ indicators and the multi-logistic fitting characteristics
of the subsequent epidemics (number of phases; K1, K2, K3, K4, Sum of K; tm1, tm2, tm3, tm4,
sum of tm; tm4-tm3, tm3-tm2, tm2-tm1; ∆t1, ∆t2, ∆t3 ∆t4, Sum of ∆t).

We also compared the differences among K1, K2, K3, K4; ∆t1, ∆t2, ∆t3, ∆t4 and tm4-tm3,
tm3-tm2, tm2-tm1 using the Wilcoxon signed-rank test (GraphPad Prism (Version 8.3.0)).

5. Conclusions

In conclusion, we confirmed that the first 30 cases of COVID-19 might be a critical
threshold for switching from a relatively slow-growing phase to a fast-growing phase in
the early epidemic in the United States. Further, most states have experienced more than
1 wave of the COVID-19 epidemic, and the magnitude of the first wave tends to predict the
magnitude of subsequent waves. The pre-delta epidemic size is negatively and significantly
correlated with the duration from 30 to 100 cases but positively correlated with the growth
rate of the fast-growing phase, and the peak cases in the subsequent 4 waves.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11050576/s1, Figure S1: The changes of the geographic
distribution of COVID-19 incidence in the United States from 31 March 2020 to 31 March 2021,
including 11 December 2020; Figure S2: Comparison of the fitted parameters for the multi-logistic
approximation of 50 US states and Washington DC; Figure S3: A schematic graph with three main
indicators of Km, tm and ∆t; Table S1: The Global Moran’s I of COVID-19 incidence in the United States
on 31 March 2020, 31 March 2021 and 11 December 2020; Table S2: Spearman correlation between
multi-logistic parameters and indicators in the early stage of the epidemic and non-pharmacological
intervention indicators.
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