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Abstract: Fungal infections are a serious global concern because of their ability to spread and
colonize host tissues in immunocompromised individuals. Such infections have been frequently
reported worldwide and are currently gaining clinical research relevance owing to their resistant
character, representing a bottleneck in treating affected people. Resistant fungi are an emergent
public health threat. The upsurge of such pathogens has led to new research toward unraveling
the destructive potential evoked by these species. Some fungi—grouped into Candida, Aspergillus,
and Cryptococcus—are causative agents of severe and systemic infections. They are associated
with high mortality rates and have recently been described as sources of coinfection in COVID-
hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination,
and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic
in fungal burden elimination. The struggle between the host immune system and the physiological
strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the
relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration
their physiopathology and how the scientific community could orchestrate their efforts to avoid
fungal infection dissemination and deaths.
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1. Resistance—A Life-Threatening Human Condition

Several pathogenic and opportunistic fungal species can cause fungal disease. It
affects over a billion people on Earth, particularly immunocompromised individuals, and
is responsible for the death of millions of people worldwide [1,2]. A critical issue regarding
the severity of such diseases is the ability of fungi to present or acquire resistance against
drug therapies used to fight these infections.

Drug resistance is an evolving phenotype that confers the fungi ability to maintain their
viability in the presence of chemical agents that cause damage. This may be due to a series
of physiological mechanisms exhibited by the fungi to prevent cell death [3]. To address
this, it is pivotal for clinical therapies to impose strategies capable of preventing fungal
survival in host environments, as their lack could potentially result in fungal dissemination
and host tissue colonization.

Several fungal species are considered of human clinical relevance because of their
potential to cause diseases. Due to the broad spectrum of fungi capable of causing diseases,
infection niches and symptoms may vary. Among such clinical conditions, it is noteworthy
to mention Histoplasmosis caused by Histoplama capsulatum [4], Coccidioidomycosis [5],
infections caused by Fusarium fungi [6], conditions related to Rhizopus infections [7,8],
Emergomycosis [9], Candidiasis caused by Candida species (such as C. albicans, C. auris,
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C. glabrata, C. krusei, C. tropicalis, and others) [10], Aspergillosis (caused by different species
of Aspergillus gender, such as A. fumigatus, A. flavus, A. terreus, and others) [11–13], Cryp-
tococcosis [14], and dermatophytosis caused by different species [15].

Some fungal isolates present resistant traits, not being affected by antifungal drugs.
These are being studied to discover new approaches to accomplish treatment success [16–21].
This is concerning since drug therapies have shown to be less effective against some clinical
isolates, raising the critical call for interventions that enable efficient treatment of fungal
diseases [22,23]. Antifungal drugs are distributed among distinct classes, such as azoles
(fluconazole, itraconazole, ketoconazole, etc.), echinocandins (caspofungin, anidulafungin,
micafungin), polyenes (amphotericin B, nystatin, etc.), and allylamines (terbinafine) applied
in clinical therapies to eliminate the fungal burden in infected individuals [24,25].

Although it is hard to avoid and eliminate the fungal burden from niches, decon-
tamination measures, such as chemoprophylaxis, air filtration with HEPA filters, cleaning
hospital surfaces, and several others could be applied to prevent fungal diseases [26–28].

This brief review summarizes the critical points regarding pathogenic fungi of clinical
relevance concerning scientists worldwide. Here, we discuss recently published data
covering aspects of infections caused by three pathogens that directly impact human
health owing to the resistant phenotypes they have acquired. Candida auris, Cryptococcus
neoformans, and Aspergillus fumigatus are the central points of our commentaries since the
importance of these species in clinical conditions are enormous (Figure 1). Table 1 shows
that infections caused by these three pathogens are distributed across Earth. They are
directly related to underlying conditions—such as Human Immunodeficiency Virus (HIV),
cancer, and long-term care in hospitals—affecting thousands of people worldwide. These
species are often neglected, particularly in Africa.
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Figure 1. Schematic representation of the contagious and development of fungal diseases in humans.
Aspergillosis, candidiasis, and cryptococcosis threaten health systems worldwide due to their resistant
character. Previous conditions may be associated with these diseases, which makes them harder to
treat. Human Immunodeficiency Virus (HIV), cancer, and long-term ICU patients are more likely to
develop critical clinical conditions. SARS-CoV-2-associated infections are being reported worldwide.
Therefore, perspectives comprising vaccines and searching for new drug therapies to treat fungal
diseases are expected. Created with BioRender.com.
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1.1. Candida auris

Candida genus harbors several species reported that cause candidiasis and systemic
infections characterized as candidemia. C. auris is an emergent pathogen that has frequently
been a target of extensive research due to its multidrug resistance [29,30]. It was first
discovered in Japan in 2009 [31]. Over the years, infections caused by this yeast have
been reported worldwide [29]. Such diseases are related to nosocomial circumstances
being reported highly in intensive care unit (ICU) patients, patients who were under the
use of venous catheters, antibiotic therapies, and surgical procedures, and individuals
who present with previous health conditions, such as diabetes and immunocompromised
individuals [32,33]. C. auris likely shows a preference for skin surface colonization at the
expense of colonizing other biological niches [34]. Despite its predominant feature of
colonization, bloodstream infections (candidemia) caused by this pathogen have already
been reported [35], highlighting the threat of fungal infections. However, studies have
detected this yeast in the axilla, nares, and groin [36]. Mortality rates caused by this
pathogen are high, up to 70%, particularly in cases of candidemia [37,38].

A crucial aspect of C. auris infection is its ability to form biofilms, sessile cell communi-
ties embedded in a polymeric extracellular matrix composed primarily of polysaccharides,
which can easily adhere to surfaces [39]. This type of cellular organization makes cells
less susceptible to antifungal action, increasing the resistance of this pathogen when cells
aggregate into thin layers [40]. Biofilms constitute a perfect example of virulence factors
in C. auris that directly influence the destructive potential of this fungus to cause damage
since this pathogen can form biofilms with a higher virulence capacity [41].

Evidence of whether the pathogenic potential of C. auris is due to the presence of viru-
lence factors is described in a study by Larkin et al. (2017) [42]. By researching 16 isolates
of C. auris, the authors showed that 37.5% and 64% of the analyzed strains produced phos-
pholipase and proteinase, respectively, in a strain-dependent manner. They also observed a
reduced ability of the isolates to respond to fluconazole and amphotericin B [42].

In a meta-analysis and systematic review, Sekiere (2018) reported that 44.29%, 15.46%,
12.67%, and 3.48% of isolates were resistant to fluconazole, amphotericin B, voriconazole,
and caspofungin, respectively [43]. The reduced susceptibility to antifungals is one of
the most concerning phenotypes and has led to the search for new drug therapies for
C. auris. One of the cellular mechanisms that support such phenotypes is the occurrence of
mutations in target genes related to resistance. For example, mutations in genes related to
ergosterol biosynthesis, such as erg11, result in amino acid substitutions in target proteins
that can drive resistance in isolates of this pathogen [44,45]. Furthermore, mutations in
genes that participate in the synthesis of glucans, such as fks1, have been identified in
C. auris echinocandin-resistant strains [46]. Notably, transcriptomics also appears to be
involved in stress responses in the presence of caspofungin and amphotericin B, as Gao et al.
(2021) detected the upregulation of a long non-coding RNA known as DINOR in C. auris
under these conditions.
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Table 1. Cases of Candidemia, Invasive Aspergillosis, and Cryptococcosis in people worldwide. NUC—Non underlying condition or others. RD—Respiratory Disor-
der. ISP—Immunossupression (related to transplantation/chemotherapy). ICU—Intensive Care Unit (critical care). Rate/100 K—Rate of cases per 100,000 people.

Candidemia Invasive Aspergillosis Cryptococcosis Reference

NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/
100 K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/

100 K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/
100 K

Africa
Algeria 1414 606 5 47 2818 7.1 28 7 0.09 [47]
Cameroon 779 334 5 134 1041 5.3 6720 30 [48]
Egypt 2889 1238 5 664 8337 10.7 38 0 [49]
Kenya 1393 597 5 239 0.6 11,900 29 [50]
Malawi 600 150 5 1080 106 6.7 8200 47.3 [51]
Mozambique 925 396 5 159 0.6 18,640 70.5 [52]
Namibia 87 37 5 108 15 1 259 15.4 543 21.8 [53]

Candidemia Invasive Aspergillosis Cryptococcosis

NUC/other HIV/AIDS Cancer +
ISP RD ICU +

surgery
Rate/100

K NUC/otherHIV/AIDS Cancer +
ISP RD ICU +

surgery
Rate/100

K NUC/otherHIV/AIDS Cancer +
ISP RD ICU +

surgery
Rate/100

K

America
Argentina 1096 1097 5 334 268 1934 5.8 372 60 1 [54]
Brazil 11,654 * 870 * 3131 * 13,336 * 249 * 6813 1851 4.47 138 6694 3.52 [55]
Dominican Republic 29 0.29 [56]
Peru 1090 467 5 438 1183 5 156 0.5 [57]

Candidemia Invasive Aspergillosis Cryptococcosis

NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100
K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100

K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100
K

Asia
Bangladesh 5670 2430 5 972 4194 3.2 15 0.01 [58]
China 65,609 16,402 5.72 1040 31,800 1,145,908 82.21 [59]
India 150,427 37,607 13.5 2358 7040 1885 239,651 18 1844 9682 0.83 [60]
Indonesia 20,030 6680 10 1400 2700 900 44,500 18.6 340 7540 790 8.7 [61]
Korea 1522 455 4.12 38 6 0.09 [62]
Kyrgyzstan 250 4.2 46 246 4.9 25 0.4 [63]
Malasya 1073 460 5 184 834 3.3 47 700 108 2.8 [64]
Pakistan 777 10,172 5.9 [65]
Tajikistan 371 4.2 27 256 3.2 41 0.5 [66]

Candidemia Invasive Aspergillosis Cryptococcosis

NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100
K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100

K NUC HIV/AIDS Cancer/ISP RD ICU/surgery Rate/100
K

Europe
Azerbaijan 499 5 81 36 577 7 5 0.05 [67]
Belgium 388 165 5 402 273 6.08 [68]
Greece 379 162 5 85 1040 10.4 2 0.02 [69]
Serbia 50 468 7.3 5 0.07 [70]
Sweden 1 30 97 4.7 98 108 89 3 [71]

* Candidemia in hospitalized patients in Brazil.
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The authors concluded that DINOR is a virulence factor and involved in stress re-
sponses, which broadens the perspectives for future studies on long non-coding RNAs
toward drug resistance in this pathogen [72].

C. auris remains an enigmatic microorganism for the scientific community since it is
essential to correlate its pathogenic potential with host immunology-triggered responses.
Little is known about how this pathogen can evade the immune system and evoke host
defenses, leading scientists worldwide to research whether the mortality caused by it is
related the most to its great pathogenic potential or its weak immune response.

1.2. Cryptococcus neoformans

C. neoformans is the foremost pathogen causing cryptococcosis. It can be found in
several environmental niches—such as soil, trees, animals, and pigeon droppings [73]. In-
halation is the primary route of infection that spreads from the lungs to the central nervous
system, particularly when cellular immunity is compromised [74]. Epidemiological data
have allowed us to conclude that infection is often associated with an asymptomatic latent
state [75,76]. Since the first clinical case description, cryptococcosis related to immunosup-
pression has been observed. Infection or reactivation is often fatal in immunosuppressed
individuals with pneumonia and meningoencephalitis [77,78]. Cryptococcal diseases
present antifungal resistance owing to the unique characteristics of this fungus, such as
genomic plasticity and physiological adaptability [79]. Some authors have reported the
use of therapies involving three classes of antifungals: polyenes, flucytosine, and azoles,
which vary according to the location and severity of the disease, as well as the immune
status of the host [78]. Echinocandins are a class of antifungals that inhibit the synthesis of
β-glucan in the fungal cell wall by non-competitive inhibition of the enzyme β-1, 3-glucan
synthase [80]. However, resistance to echinocandins in C. neoformans is almost not notice-
able because of the low concentration of β-glucan in the cell wall of this fungus, which
could make this drug ineffective against C. neoformans [81]. Genetic screening showed that
echinocandin resistance is mediated by calcineurin signaling (Crm1 pathway), which is
over-stimulated by cdc50 deletion, resulting in cell death [82]. Other common resistance
mechanisms involve alterations in erg11 expression and the afr1 efflux pump, an ABC
transporter responsible for pumping fluconazole out of cells [83,84]. Studies have shown
that fluconazole mediated-damaged could occur with high doses of this drug when erg11 is
overexpressed, as overexpression may increase the production of the target-enzyme concen-
tration [85] In contrast, the overexpression of afr1 increased resistance. This increase in afr1
promotes the pumping of fluconazole out of the cell with less drug effect [83]. The ability of
C. neoformans to undergo morphological transitions is exemplified by the formation of titan
cells, which exhibit changes that contribute to antifungal resistance [86]. Titan cells have a
thick cell wall and a highly reticulated capsule [87]. They can also generate daughter cells
that are more adapted to the host environment and are more resistant to fluconazole [86].
Gerstein et al. (2015) showed that daughter cells derived from C. neoformans titan are more
resistant to oxidative stress, similar to those used by the host immune system [88]. They
produce daughter cells resistant to this antifungal agent in the presence of fluconazole,
which suggests that morphological variations of titan cells may be a mechanism for gener-
ating genomic plasticity that leads to resistance to antifungal drugs [88]. A recent study by
Carlson et al. (2021) showed that environmental conditions, such as nutrient deprivation
and high temperatures, could influence antifungal sensitivity [89]. The authors observed
that nutrient deprivation of fungal cells decreased susceptibility to fluconazole, whereas
increasing the temperature improved treatment efficacy with fluconazole and amphotericin
B [89]. Therefore, antifungal resistance mechanisms involve a complex interaction between
environmental conditions, virulence factors, and changes in gene expression.

1.3. Aspergillus fumigatus

A. fumigatus is a ubiquitous filamentous fungus that efficiently disseminates due to its
ability to form conidia. This life form can be readily inhaled by humans, resulting in the
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development of pulmonary diseases. Aspergillosis is a broad spectrum of infections caused
by Aspergillus and may be clinically presented as the occupancy of bronchopulmonary
cavities by spores (conidia) of this pathogen. This occupancy affects more dramatically neu-
tropenic and immunocompromised individuals [90]. Furthermore, it can assume distinct
clinical manifestations depending on the interaction between the host and pathogen, which
groups these presentations into specific clinical condition sets [90]. Invasive pulmonary
aspergillosis (IA), one of the most studied invasive manifestations of the disease, frequently
presents as fever, hemoptysis, cough, shortness of breath, and chest pain [91]. On the
contrary, there may be no symptoms in neutropenic or immunocompromised individuals
because of the deficiency of the inflammatory response [91].

It is worth mentioning that despite the occurrences of aspergillosis in immunocompe-
tent individuals being considerably lower compared with immunocompromised individu-
als, it has been possible to observe a higher prevalence of IA in non-neutropenic patients
who are simultaneously facing underlying conditions, especially those in ICUs [92,93]. In
addition, recent studies have attempted to shed light on the occurrence of IA in patients
with respiratory illnesses, such as those affected by SARS-CoV2 [94,95]. Unfortunately,
due to the high mortality rates of IA patients, scientific efforts must be made to circum-
vent such catastrophic scenarios [96]. Drug resistance may be a major enemy in the fight
against IA. A. fumigatus, causative of IA, is of particular relevance to the Aspergillus species
due to its occurrence. In some countries, using fungicides in agriculture can give rise to
resistant strains, as A. fumigatus could become resistant to azoles by fungicide use [97,98].
This represents a massive threat to human health because their spores could be inhaled
by immunocompromised individuals and thus pose a risk to this group of people. In
this sense, the use of agricultural fungicides might contribute to increased resistance in
Aspergillus [99,100]. Therefore, combatting Aspergillus drug-resistant strains is a scary but
unavoidable duty of researchers worldwide.

A series of cellular mechanisms can confer azole resistance to A. fumigatus. Mutations
in the gene cyp51, coding for an enzyme of the ergosterol biosynthesis pathway, are among
the most studied mechanisms for generating resistant phenotypes [98]. Other mechanisms
involved in ergosterol biosynthesis—such as mutations in the gene hmg1, coding for the
enzyme HMG-CoA reductase—have been recently reported to be associated with triazole
resistance in this pathogen [101,102]. As azole is the first-line drug treatment against
antifungal diseases, resistance-associated phenotypes of isolates could be detrimental to the
success of clinical therapies. Therefore, echinocandins could be used to circumvent such
bottlenecks. As new strains resistant to antifungals are increasing, IA must be considered a
clinical condition worthy of careful assistance since it could be fatal in some patients. A
mutation in the gene fks1 of A. fumigatus was recently described as a result of previous
in vitro exposure of this fungus to an echinocandin drug, anidulafungin [103]. Satish and
Perlin (2019) proposed a model of echinocandin resistance in which no mutations in the fks1
gene were observed. In their study, in vitro exposure of A. fumigatus to caspofungin elicited
mitochondrial reactive oxygen species production, resulting in alterations of the membrane
lipid microenvironment of glucan synthase, which would lead to a decrease in the affinity
between the enzyme and drug, contributing to the rise of a resistance phenotype in this
fungus [104].

2. Exacerbated Fungal Infections in Association with the COVID-19 Pandemic

The pandemic caused by the new coronavirus SARS-CoV-2, responsible for the COVID
disease, brings to discuss challenges that face our understanding of how potential secondary
infections could be hazardous to public health worldwide. Long-term patients in the ICU
and those receiving treatment in hospitals are more likely to be infected with pathogens.
However, this scenario has been affected by the COVID-19 pandemic in recent years.

Infections caused by the yeast C. auris have been observed worldwide and have become
a severe global threat due to the resistance traits exhibited by this pathogen. Countries such
as Brazil, the United States of America, India, Lebanon, and Turkey have identified C. auris
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co-infections in COVID-19 patients [105–109]. Incidences of such infections in hospitalized
patients could be critical for their health, especially in the presence of C. auris, which causes
candidemia. Bloodstream infections would be the worst scenario for ill COVID patients, as
the severity of infection could likely result in long-term care in hospitals or even the death
of sick individuals. Furthermore, it could worsen the clinical conditions of such patients
in cases where resistant strains of C. auris would be the source of secondary infections.
In this sense, Chowdhary et al. (2020) observed that all C. auris isolates studied in their
research were resistant to fluconazole, and 40% of them were resistant to amphotericin
B [106], which highlights the concern of resistant strains in co-infections.

Aspergillosis is another secondary disease often diagnosed in ill COVID patients. A
retrospective case series study by Martins et al. (2021) showed that three COVID patients
were co-infected with aspergillosis, four presented candidemia, and one was co-infected
with cryptococcosis [110]. The potential for fungi to co-infect individuals in nosocomial
niches is clear. In such cases, the treatment of both clinical conditions must be rationally
designed to guarantee survival. In this context, it could be challenging to treat both fungal
infection and COVID because we know that using corticosteroids could constitute a risk
factor for aspergillosis [111,112]. It is noteworthy that the deadly potential of Aspergillus
coinfections is in hospitalized COVID patients. In addition, it is reasonable to discuss how
drug therapies could be crucial to preserving human life.

Resistant fungi are likely to represent a threat to drug therapies in the case of COVID co-
infections. Mohamed et al. (2021) described a fatal COVID-19 pneumonia case complicated
by a multi-triazole-resistant A. fumigatus co-infection [113]. Genotyping analysis of the
isolate identified a mutation in cyp51A, confirming the resistant phenotype of the pathogen,
supported by the high Minimum Inhibitory Concentration (MIC) values for voriconazole,
itraconazole, and posaconazole [113]. Resistant co-infections represent a considerable
challenge for treating COVID patients since such infections are more likely to arise in
nosocomial niches, where the severity of the clinical conditions of the ill patients is notable.

It is worth mentioning that other co-infections between fungi and SARS-CoV-2 have
also been reported, such as the occurrences of mucormycosis, caused by species of Mucor
gender, in several countries. These co-infections present high mortality rates and demand
attention from global health [114–116].

In a world affected by the COVID-19 pandemic, scientific efforts should preserve life
and reduce risks, especially those of drug therapies, with the utmost efficiency. In the
meantime, with the expected end of the pandemic, the discussion to be braved relies on
research for new drug discoveries and awareness to avoid neglecting fungal diseases.

3. Immunotherapeutic Approaches

Antifungal immunity is exerted by innate and adaptive immune cells and depends
on factors such as the host’s immune status, fungal morphology and virulence, cell wall
complexity, and site of infection [117]. Although innate immunity initiates the antifungal
response, the interaction between the host and fungus is essential for initiating the adaptive
immune response [118]. Cellular immunity is mediated by T lymphocytes that directly or
indirectly control fungal proliferation and are classified as helper CD4 T cells and cytotoxic
CD8 T cells [119]. Activated T cells secrete a set of cytokines that promote the differentiation
of naïve T cells into subsets of T helper (Th) cells: Th1, Th2, Th17, and regulatory T cells
(Tregs) [119].

Studies have been conducted to improve the antifungal arsenal by identifying new
drug targets. However, the development rate of new antifungals offered by the market is
lower than the increase in drug resistance [120]. Thus, alternative approaches involving the
use of combination therapy, the development of new treatments, and the modulation of the
host immune response are being explored [120]. A promising approach is the development
of preventive immunotherapies and vaccines against fungal pathogens [121]. Conjugated
vaccines based on fungal cell wall β-glucans have proven to be a broad-spectrum strategy
to restrict infection and prolong survival in murine infection models by Candida spp.,
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Cryptococcus spp., and Aspergillus spp. [122–124]. A new vaccine against C. auris was
designed using an in silico approach with the selection of the adhesion protein agglutinin
3 (als3) involved in virulence and directed to predict T and B cell epitopes [125]. The
results of the study showed that vaccine construction was stable, soluble, antigenic, and
non-allergic, and exhibited stable interaction with the Toll-like receptor (TLR) and the
major histocompatibility complex (MHC). In addition, it can be cloned and expressed
in Escherichia coli [125]. Thus, it is possible to infer that the vaccine could be used as an
alternative therapy for treating C. auris. However, its efficacy and safety still need to be
determined through in vivo studies [125].

Vaccine development for infections caused by C. neoformans was first described by
Devi et al. (1991), in which the use of the antiphagocytic antigen present in the fungal
capsule—known as glucuronoxylomannan (GXM)—was able to induce an immune re-
sponse without the help of T cells [126]. However, although vaccinated mice developed
a specific anti-Cryptococcus antibody response, most did not show a protective immune
response [126]. Current studies have identified 11 cryptococcal protein antigens (cpd1,
glo1, blp4, sacch, mep1, 3143, 4874, cda1, cda2, cda3, and sod1), which conferred protection
in BALB/c and C57BL/6 mice against challenge with C. neoformans strain KN99 when
formulated in vaccines based on the encapsulation of glucan particles [127,128]. Further
studies are needed to determine whether other adjuvants can replace glucan particles and
the immune mechanism. In infections caused by A. fumigatus, vaccine therapy induced
protective immunity in immunosuppressed and immunocompetent patients [129]. In a
study by Rayens et al. (2021) in a murine model of drug-induced immunosuppression, a re-
combinant protein vaccine of A. fumigatus (AF.KEX1) generated a robust immune response
and promoted a decrease in mortality and fungal load in the lungs of vaccinated mice [130].
Other studies have shown that conidia, mycelium extracts, or fungal culture filtrates can
also induce adequate protection against aspergillosis [131,132].

Immune checkpoint therapy is an emerging immunotherapeutic strategy that targets
the axis programmed cell death protein 1 (PD-1) and its ligand PD-L1, as this protein is a
key regulator of the immune system. Its interaction with PD-L1 promotes suppression of
the immune system [117]. A fungal infection study with A. fumigatus showed that PD-L1,
mediated by α-(1,3) glycans, is a negative regulator of the immune response promoting
the increased polarization of regulatory T cells [133]. Therefore, PD-L1 blockade efficiently
inhibited the polarization of regulatory T cells mediated by α-(1,3) glycans and promoted a
protective Th1 immune response in the host [133]. In addition, PD-1 blockade improved
survival and reduced the fungal burden in a murine model of pulmonary aspergillosis [134].
Thus, exploring therapeutic approaches involving the PD-1/PD-L1 axis may be promising
for improving protective immunity in human models.

In summary, we highlight some of the most encouraging therapeutic approaches for
developing new treatments to combat current and emerging fungal threats. Furthermore,
in the future, the greatest challenge regarding studies on fungal diseases will be to test the
use of immunotherapy in clinical trials.

4. Perspectives

As previously discussed, one of the bottlenecks in the treatment of fungal diseases is
the high prevalence of resistant strains worldwide. It is essential to understand that the
availability of antifungal drugs may not be the same for all countries worldwide since eco-
nomic measures may require interchangeable measures according to government priorities.

Fungal diseases are not democratically distributed. The higher rates of candidemia
are related to occurrences in middle-income countries since 50% of the global cases of
candidemia were reported in Asia [2]. Keratitis is another example of a discriminatory
infectious disease. Keratitis rates were considerably higher in countries such as Nepal,
Pakistan, Thailand, Egypt, and Mexico [2]. These countries are an apparent representation
that such disease rates could be related to healthcare system failures, resource depletion, un-
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availability of diagnostic tests, and impoverished policies in infection control, as discussed
by Bongomin et al. (2017) [2].

HIV-associated fungal diseases represent one of the greatest challenges in Africa. Dis-
eases such as cryptococcosis, candidiasis, histoplasmosis, and emergomycosis are among
Africa’s most affected HIV-associated diseases despite the implementation of antiretroviral
therapy [135]. Recent data published by UNAIDS showed that among the 37.7 million
people living with HIV worldwide, more than 25 million live in Africa [136]. These data are
alarming, considering immunosuppression is a risk factor for fungal infections. Notably,
fungal diseases can no longer be neglected at the expense of other diseases [137].

It is also worth mentioning that a parallel could be drawn regarding mycosis inci-
dents worldwide, as shown in Table 1. It can be observed that HIV/AIDS appears as
a frequent and critical condition in cryptococcal infections, whereas long-term ICU and
cancer/immunosuppression have a greater association with candidemia and aspergillosis
occurrences [138–143]. This is a remarkable point already described by literature towards
elucidating epidemiological traits on which mycoses are based, highlighting new perspec-
tives on the research of pathogenesis and immunology regarding fungal infections.

The worldwide strategy to fight fungal infections relies on developing new antifungal
drugs to eradicate diseases that cause many annual deaths. The scientific community must
design methodologies to circumvent the challenges imposed by neglecting illnesses that
do not democratically affect the world. This is pivotal in countries where access to clinical
resources is lacking. Thus, preventing diseases caused by fungi worldwide would help
avoid millions of deaths caused by obscurantism.
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