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Abstract: Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational
water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral
pathogens in recreational waters, however, the impact of environmental factors, including the effect of
predatory protozoa source, on their survival in water is poorly understood. We investigated the effect
of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable
FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than
the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa.
F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed
fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded
conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed
significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally
accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the
indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support
the need for studies that address the relationship between the decay of coliphages and viral pathogens
under environmentally relevant conditions.
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1. Introduction

Enteric viruses have been identified as the main etiological agents of waterborne
illness in recreational settings [1–4]. However, the sanitary quality of recreational waters
is routinely and most commonly assessed by enumeration of culturable fecal indicator
bacteria (FIB), such as Escherichia coli and enterococci, and more recently quantitative
polymerase chain reaction (qPCR) in the United States [5]. Despite a long history of use as
an indicator of fecal contamination, there are many criticisms of the FIB approach, at least
partially due to the different fate and transport characteristics of FIB and viral pathogens
(recently reviewed in [6–8]). For example, the decay of FIB in ambient waters is generally
faster than that of viral pathogens due to greater susceptibility to a range of biotic and
abiotic environmental factors. If indicators of fecal contamination are to accurately predict
human health risk, the decay rate of indicators and pathogens in aquatic environments
should be similar, or at least predictably related [8].

In recent years, there has been renewed interest in bacteriophages, such as E. coli-
infecting coliphages, for many different applications [9–12], including as viral indicators
of fecal pollution in recreational waters [13] due to their many similarities to enteric vi-
ral pathogens [14]. Coliphages infect E. coli, a commensal human gastrointestinal tract
species, and are subsequently shed in feces by hosts, following routes of dissemination
into the environment that are similar to those of enteric viral pathogens. The utilization
of coliphages in this context is further supported by epidemiological studies demonstrat-
ing the association between coliphage levels and gastrointestinal illness in recreational
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bathers [15–18]. However, additional information regarding the effect of various biotic
and abiotic environmental factors on FIB and coliphage decay [19–22] in aquatic habitats is
needed to assist with future recreational water quality criteria (RWQC) development. While
the effect of some parameters (e.g., temperature) is well characterized, others (e.g., micro-
bial interactions including viral lysis, intra- and interspecies competition, and protozoan
predation) are less well understood [8].

Protozoan grazers, which consume bacteria and viruses, are a vital part of microbial
food webs in aquatic habitats [23], and these top-down processes are especially important
in oligotrophic environments [24–26], such as William H. Harsha Lake, the subject of this
study [27,28]. The effect of protozoan grazing on FIB has been documented in several
studies, mainly utilizing singular, laboratory-cultured strains of FIB [29–33]. A limited
number of studies relied on more realistic sources of FIB (e.g., human and animal feces and
wastewater), however, FIB sources in these studies were not manipulated and therefore
contained protozoan predators that are ubiquitous in such environments (e.g., Blastocystis,
Entamoeba, Bodo, Colpidium spp.) [34–36]. These studies consistently found a greater decay of
FIB in the presence of aquatic protozoa populations, however, the magnitude of the predator
effect was reduced compared to studies that used FIB cultured in the laboratory [20–22,37].
The presence of protozoan communities indigenous to feces and/or wastewater in the
inoculum may have contributed to the difference in magnitude of the protozoan effect on
FIB decay in these experiments that was not explored in the studies.

The role of protozoan predation on the decay of viruses, including coliphage, is not
as clear and has been studied less frequently [8]. However, some controlled laboratory
feeding studies indicated the ingestion of T4 and MS2 coliphages by Tetrahymena, Thau-
matomonas, and Salpingoeca spp. [38,39]. Earlier studies generally indicated faster decay
of enterophage (bacteriophage infecting enterococci), F+, and somatic coliphage in the
presence of autochthonous aquatic protozoan communities compared to autoclaved and
filtered river, lake, and marine waters [19,40,41]. However, similar to some FIB studies,
these observations were recorded for either singular bacteriophage strains or bacteriophage
cultivated from wastewater, thereby eliminating any possible effect of predatory protozoa
from wastewater or feces. The only field study utilizing wastewater and human feces as
a source of bacteriophages (somatic and F+ coliphages, GB-124 bacteriophage infecting
Bacteroides fragilis) noted minimal effects of marine protozoan communities on decay as
compared to filtered marine water controls [20]. Furthermore, this was the only study that
contained wastewater protozoan communities contributed by the inoculum, making it
unclear whether the effect of protozoa autochthonous to ambient waters observed in earlier
studies was confounded by the presence of wastewater protists, or whether the source of
the bacteriophage (i.e., laboratory propagated strains vs. wastewater/feces) influenced
the results.

Unlike the effect of the source of predators, the contribution of ambient sunlight to
the decay of FIB and coliphages has been more extensively documented and is reviewed
in [8]. In general, culturable FIB and infectious coliphage exhibit greater decay when
exposed to ambient sunlight, compared to dark or shaded controls [8], and this effect is
attributed to either direct damage to nucleic acids in the form of pyrimidine dimers caused
by UVB radiation or endogenous and/or exogenous photo-oxidative damage caused by
UVA radiation [42] although the precise mechanism of UV-induced damage is likely to
differ among different species and taxonomic groups.

The slower decay of FIB and coliphages in the absence of any protozoan predators
and in dark or shaded conditions compared to sunlight exposure has been documented
extensively and reviewed in [8,42–45]. However, the effect of protozoa source has not
been studied before. Therefore, we opted to focus on the effect of protozoan predators
from lakewater vs. wastewater and potential interactions with ambient sunlight instead.
Through selective removal of protozoan communities from either the lakewater or the
wastewater, we were able to investigate the effects of different grazer sources on the decay
of the diverse communities of FIB and coliphage contained in lakewater and wastewater.
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Incubation under sunlight and shaded conditions enabled characterization of the relative
influence of and interactions between predator source and ambient sunlight. Finally, a
direct comparison of FIB and coliphage decay characteristics allowed us to document
differential and temporal responses of these two fecal indicator groups to biotic and abiotic
environmental stressors.

2. Materials and Methods
2.1. Experimental Design

The goal of the study was to compare the effect of protozoa from lakewater (treatments:
A and B) vs. wastewater (treatments: C and D) on decay (log10 reduction) of bacterial and
viral indicators under conditions of high (treatments A and C) or low (treatments: B and
D) light intensity (Table 1). The experimental treatments were as follows: (A) exposure to
lake protozoan predators and ambient sunlight (lake protozoa/sun), (B) exposure to lake
protozoan predators only (lake protozoa/shade), (C) exposure to wastewater protozoan
predators and ambient sunlight (wastewater protozoa/sun) and (D) exposure to wastewater
protozoan predators only (wastewater protozoa/shade) (Table 1). A submersible aquatic
mesocosm (SAM) device, constructed as previously described [8,19,22,46,47] was used to
conduct the experiment in situ. Even though a singular SAM device was deployed for this
experiment, each treatment and time point consisted of three independent dialysis bag
replicates, prepared as described below, as is common practice for similar field studies,
e.g., [20,46,48–50]. Fifty percent of bags with each inoculum type (i.e., lake protozoa or
wastewater protozoa) were placed at the upper level of the SAM for the sunlight-exposed
treatment (approximately 2–5 cm below the water surface), while the remaining half was
placed at the lower level (approximately 25-30 cm below the water surface) underneath
the heavy-duty black plastic tarp covering to simulate shaded conditions. Independent
triplicate dialysis bags for each treatment were collected for enumeration of FIB and
coliphages (as described below) immediately after the inoculum preparation (T0) and after
24h (T1), 72h (T3), 120h (T5), 192h (T8), and 336h (T14) of in situ incubation.

Table 1. Schematic of the experimental design.

Designation Light Intensity
(Sun/Shade)

Protozoa Removed
by Filtration Overall Effects Studied

A High (Sun) Wastewater protozoa removed
Effect of lake protozoa on
decay rates of indicators

under high light intensity

B Low (Shade) Wastewater protozoa removed
Effect of lake protozoa on
decay rates of indicators
under low light intensity

C High (Sun) Lakewater protozoa removed

Effect of wastewater
protozoa on decay rates of

indicators under high
light intensity

D Low (Shade) Lakewater protozoa removed

Effect of wastewater
protozoa on decay rates of

indicators under low
light intensity

Hourly light intensity (lux) and temperature (◦C) readings were recorded at both
the upper and lower levels of the SAM using HOBO® UA 002-08 data loggers (Onset
Computer Corporation, Bourne, MA USA). The mean and standard deviation for the water
temperature readings were 16.7 ± 1.2 ◦C and 16.5 ± 0.90 ◦C for upper (sunlight) and lower
(shade) levels of SAM, respectively. The mean and standard deviation for light intensity
measurements were 585.0 ± 3490.0 lux for the upper and 111.2 ± 429.0 lux for the lower
level of the SAM. Mean light intensity was significantly higher at the upper level of the
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SAM compared to the lower level (p < 0.0001) indicating that our experimental design
adequately created shaded conditions.

2.2. Mesocosm Preparation

Primary wastewater effluent and ambient water samples (~15 L each) were collected
from a local wastewater treatment plant (Little Miami Wastewater Treatment Plant, Cincin-
nati, OH: 39.1038889◦ N, -84.4330556◦ W) and William H. Harsha Lake (Batavia, OH:
39.0252◦N, -84.1303◦ W), respectively. Immediately after collection, 1

2 of each sample type
was passed through a (0.80 µm pore size, 47 mm diameter) nitrocellulose membrane filter
(Pall Corporation, Port Washington, NY USA) to remove protozoan predators and other
particulate matter. Removal of protozoa via filtration is a common procedure and less
detrimental to the integrity of the water sample compared to other techniques (e.g., heat
and chemical treatments) [51–55]. Both filtered and unfiltered samples were held at 4 ◦C
overnight to minimize any changes in microbial populations.

The following day (<24 h after sample collection) the mesocosm inoculum was pre-
pared by mixing a 1:1 ratio of either unfiltered lakewater with filtered primary wastewater
effluent (treatments A and B) or filtered lakewater with unfiltered primary wastewater
effluent (treatments C and D) (Table 1). Given that we used wastewater as the source of FIB
and coliphage, and therefore could not modify the starting concentrations, and accounting
for a ~2 log10 difference in concentrations between the two indicator types, this particular
ratio was chosen to ensure that quantifiable densities could be obtained for a maximum
number of sampling time points. Two hundred milliliters of each inoculum type were used
to fill regenerated cellulose dialysis bags (75 mm flat width, 13–14 kD pore size MWCO,
Spectrum Labs, Rancho Dominguez, CA USA) that were rehydrated for 24 h in sterile
diH2O prior to the start of the experiment. Potential attenuation of ambient sunlight by
the regenerated cellulose dialysis bag material has been tested previously and found to
be minimal (<10%) [21]. Prepared dialysis bags were placed in Ziplock™ bags containing
approximately 50 mL of ambient water to prevent desiccation and transported to the field
site (William H. Harsha Lake) on ice.

2.3. FIB and Bacteriophage Enumeration

The FIB and coliphage concentrations were measured using the standard membrane
filtration technique [56,57] and double agar layer (DAL) assays [58], respectively. When
necessary, decimal dilution series were prepared using a sterile 1X phosphate-buffered
saline (PBS) solution (0.0425 g L−1 KH2PO4 and 0.4055 g L−1 of MgCl2: pH 7.2 Sigma
Aldrich, St. Louis, MO). For FIB enumeration, samples were filtered through 0.45 µm
(47 mm diameter) nitrocellulose filters and incubated on either mEI for 16–18 h at 41 ◦C
(enterococci) or modified mTEC agar for 2 h at 35 ◦C, followed by 14–16 h at 44.5 ◦C (E. coli).
For the somatic and F+ coliphages, 1 mL of sample was added to 5 mL of the molten top
(0.7% agar) tryptic soy agar (TSA) overlay containing 0.1% of appropriate antibiotic stock
solution (100 µg mL−1 nalidixic acid for somatic or 15 µg mL−1 streptomycin/ampicillin
for F+ coliphage [Fisher Scientific, Waltham, MA]) followed by the addition of 200 µL
of appropriate E. coli host (CN-13 ATCC#700609 [somatic] or Famp ATCC#700891 [F+],
American Type Culture Collection, Manassas, VA USA) in the midlog growth phase. The
top agar overlay mixture was poured on the bottom agar TSA plates (1.5% agar and
containing 0.1% of appropriate antibiotic stock solution) and then incubated at 37 ◦C for
16–18 h. The following day, characteristic colony-forming units (CFU) and plaque-forming
units (PFU) were enumerated. During each sampling event, for both FIB and coliphages,
method blank (sample substituted with 1X PBS) and media sterility negative controls were
performed. For the duration of the study, no CFUs or PFUs were observed indicating the
absence of contamination.
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2.4. Data Analyses

FIB and coliphage concentrations were log10 transformed prior to data analyses. The de-
cay of FIB and coliphages was calculated as cumulative log10 reduction (log10 C0–log10 CT)
where CT represents the concentration at different sampling time points (T1, T3, T5, T8,
and T14) and C0 represents the starting concentrations measured at T0. To facilitate com-
parisons with other studies, daily decay rates for each organism and treatment are also
provided in Table S1. Out of 72 samples collected during the study, the proportion of samples
containing no detectable FIB or coliphage was low (i.e., 12.5% for enterococci, 0% for E. coli,
11.1% for F+ coliphage, 1.38% for somatic coliphage) and it occurred in the later stages of the
experiment (T5–T14). Table S2 contains details on observations below the detection limits.
GraphPad Prism version 8.1.2 (GraphPad Software, La Jolla, CA USA) was used to conduct
a two-way analysis of variance (ANOVA) with Tukey’s multiple comparison test to evaluate
the effects of the two factors (source of protozoan predators and exposure to ambient sun-
light) on decay (Table 2). The same software was used to conduct the one-way ANOVA to
compare decay across different indicators within the same treatment and Wilcoxon matched
pairs signed rank test to assess differences in light temperature readings between the upper
and lower levels of the SAM. The pairing was effective as indicated by a high Spearman
correlation coefficient (r = 0.9252) and a low corresponding p value (<0.0001).

Table 2. Two-way ANOVA summary of the effect of treatment variables (predator source and
sunlight) on indicator decay at each time point. Statistically significant factors are bolded.

Indicator Time Point (days)

Factor

Source of Predators a Sunlight Interaction b

% p Value % p Value % p Value

E. coli

T1 86.37 <0.0001 1.513 0.2398 4.895 0.0542

T3 85.43 0.0004 0.126 0.7657 13.57 0.0224

T5 81.43 0.0001 0.519 0.5561 10.65 0.0265

T8 64.70 0.0008 5.350 0.1719 10.93 0.0643

T14 20.45 0.0118 57.11 0.0013 18.16 0.0148

Enterococci

T1 96.72 <0.0001 0.033 0.7506 0.806 0.1424

T3 98.46 <0.0001 0.309 0.1821 0.309 0.1821

T5 75.05 <0.0001 19.53 0.0001 2.270 0.0431

T8 42.59 0.0043 35.12 0.0071 0.420 0.7054

T14 13.84 0.1770 59.67 0.0224 1.806 0.5950

F+ coliphage

T1 13.06 0.2147 13.80 0.2034 15.63 0.1787

T3 1.713 0.6984 5.678 0.4854 7.708 0.4189

T5 5.885 0.2175 45.59 0.0057 22.48 0.0303

T8 13.81 0.1422 33.97 0.0340 10.51 0.1933

T14 0.753 0.6851 19.17 0.0821 66.04 0.0100

Somatic coliphage

T1 54.89 0.0019 8.966 0.1028 15.00 0.0444

T3 86.57 <0.0001 0.493 0.5945 0.111 0.7989

T5 47.29 0.0059 25.23 0.0266 0.003 0.9775

T8 10.72 0.0174 77.91 <0.0001 1.762 0.2605

T14 0.775 0.6236 82.75 0.0029 0.426 0.7143
a Percent contribution of each treatment variable (predator source and sunlight) to the observed variability in the
dataset.b Interaction between treatment variables (predator source and sunlight).
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3. Results
3.1. Effect of Predator Source and Sunlight on FIB and Coliphage Decay

The source of protozoan predators had a profound and significant effect on the decay
of E. coli and enterococci in the first 24 h, from T0 to T1 (Figure 1, Tables 2 and 3), accounting
for >86% of the observed variability in log10 reduction (Table 2). FIB exposed to lake
protozoa (A and B) decreased by 2.39–3.10 log10 by T1, while those exposed to wastewater
protozoa (C and D) decreased only 0.13–0.87 log10 in the first 24 h of the experiment
(Table 3). The influence of protozoan source remained high at T8, accounting for 64.7% and
42.6% of variability for E. coli and enterococci, respectively (Table 2). At T14, the protozoa
source was a significant factor in E. coli decay, accounting for 20.5% of variability, although
it was not significant in enterococci decay. As the influence of protozoan source on decay
decreased over time, sunlight became a significant factor, accounting for 57.1% of the
variability in E. coli decay at T14. The interaction of variables was also a significant factor
at T14, contributing 18.2% of the variability and indicating that the influence of sunlight
was dependent on the protozoa source (Table 2). Sunlight became a significant factor in the
decay of the enterococci at T5 and it remained so until T14 when it accounted for 59.7% of
the variability (Table 2).
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Figure 1. Change in concentrations of E. coli and enterococci over time in response to the source
of protozoan predators and exposure to ambient sunlight. Treatments: A (lake protozoa/sun),
B (lake protozoa/shade), C (wastewater protozoa/sun), D (wastewater protozoa/shade). Error
bars represent the standard deviation between independent dialysis bag replicates. All data shown
including samples where LOD was used.
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Table 3. Decay (cumulative log10 reduction ± standard deviation for independent dialysis bag replicates) values for FIB and coliphage for each treatment and
sampling day.

E. coli Enterococci F+ Coliphage Somatic Coliphage

Treatment 1

Days A B C D A B C D A B C D A B C D

T1 2.60 ± 0.19 2.39 ± 0.16 0.13 ± 0.53 0.87 ± 0.27 2.92 ± 0.10 3.10 ± 0.22 0.66 ± 0.33 0.39 ± 0.26 0.35 ± 0.11 0.34 ± 0.15 0.15 ± 0.08 0.35 ± 0.14 0.03 ± 0.04 0.02 ± 0.06 0.08 ± 0.02 0.17 ± 0.02

T3 2.97 ± 0.09 2.49 ± 0.07 1.10 ± 0.52 1.69 ± 0.06 3.34 ± 0.09 3.03 ± 0.18 1.19 ± 0.23 0.93 ± 0.01 1.42 ± 0.05 1.34 ± 0.14 1.40 ± 0.07 1.40 ± 0.02 0.90 ± 0.05 0.90 ± 0.05 0.70 ± 0.03 0.68 ± 0.06

T5 2.46 ± 0.12 2.12 ± 0.08 0.79 ± 0.47 1.33 ± 0.04 4.93 ± 0.35 3.27 ± 0.23 2.08 ± 0.21 1.27 ± 0.39 1.82 ± 0.12 1.60 ± 0.63 2.62 ± 0.21 1.34 ± 0.17 0.99 ± 0.14 1.16 ± 0.04 1.23 ± 0.15 1.40 ± 0.06

T8 2.99 ± 0.74 2.16 ± 0.08 1.30 ± 0.24 1.45 ± 0.11 5.86 ± 0.06 4.98 ± 0.53 4.90 ± 0.35 4.19 ± 0.43 2.48 ± 0.22 2.37 ± 0.20 2.75 ± 0.02 2.39 ± 0.10 1.57 ± 0.29 0.71 ± 0.16 2.10 ± 0.26 0.94 ± 0.10

T14 5.87 ± 0.18 2.70 ± 0.66 3.52 ± 0.18 2.63 ± 0.36 5.43 ± 0.12 3.44 ± 0.90 4.32 ± 1.14 2.92 ± 0.11 2.91 ± 0.06 2.85 ± 0.05 2.76 ± 0.03 2.98 ± 0.06 2.54 ± 0.06 1.27 ± 0.57 2.77 ± 0.04 1.30 ± 0.21

1 A (lake protozoa/sun), B (lake protozoa/shade), C (wastewater protozoa/sun), and D (wastewater protozoa/shade).
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The effect of the source of protozoan predators on the coliphages varied between
somatic and F+ coliphages (Figure 2, Tables 2 and 3). Predator source was not a significant
factor in the log10 reduction of F+ coliphage, at any of the time points (Table 2). In contrast,
the predator source significantly influenced somatic coliphage decay at T1–T8, accounting
for the maximum variability of 86.6% at T3, though diminishing to 10.7% at T8 and becom-
ing a negligible factor at T14 (Table 2). Somatic coliphage decay was generally greater in the
presence of wastewater protozoa compared to lake protozoa (T1, T5, and T8) except at T3
(Table 3), although the magnitude of the difference was not as pronounced as it was for FIB.
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Figure 2. Change in concentrations of somatic and F+ coliphage over time in response to source
of protozoan predators and exposure to ambient sunlight. Treatments: A (lake protozoa/sun),
B (lake protozoa/shade), C (wastewater protozoa/sun), D (wastewater protozoa/shade). Error bars
represent standard deviation-independent dialysis bag replicates. All data shown including samples
where LOD was used.

The effect of sunlight on bacteriophage decay was different for F+ vs. somatic col-
iphage, particularly toward the end of the experiment (T8 and T14). While sunlight was
not a significant factor in the decay of either coliphage group until T5. At T8, sunlight
contributed nearly 80% to variability in somatic coliphage decay, though less than half that
to F+ coliphage decay (i.e., ~34%) (Table 3). The difference was even more apparent at
T14 when the effect of sunlight on somatic coliphage increased further to 83%, and log10
reduction values in the sun were double the log10 reduction values in the shade (Figure 2,
Table 3). Sunlight was not a significant contributor to F+ coliphage decay at T14, further
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highlighting disparities in the sunlight effect on the two coliphage groups. In fact, the
magnitude difference in the decay of the F+ coliphage in the sun vs. the shade at T8 and
T14 was only a small fraction of that observed for the somatic coliphage. (log10 reduction:
0.06-0.22) (Figure 2, Table 3). For example, at T8, when sunlight was a significant factor
in decay for somatic and F+ coliphages, decay of the somatic coliphage in sunlight was
twice that of the shaded conditions (difference of 0.86 and 1.16 log10 between sun and
shade in the presence of lake and wastewater protozoa, respectively) (Figure 2, Table 3). In
contrast, F+ coliphage decay in sun vs. shade at T8 differed by only 0.11 and 0.36 log10 in
the presence of lake and wastewater protozoa, respectively.

3.2. Decay of FIB Compared to Coliphage

E. coli and enterococci typically decayed more rapidly than coliphages throughout
the study (Figures 1 and 2, Table 3,) and this trend was particularly evident in treatments
containing lake protozoa (A: lake protozoa/sun and B: lake protozoa/shade). For example,
at the last time point, T14, log10 reduction of FIB in treatment A (lake protozoa/sun),
was nearly double that of the coliphages (≥5.4 vs. 2.9). This difference was statistically
significant (p ≤ 0.0001) when either FIB group was compared to either coliphage group. In
treatment B (lake protozoa/shade) at T14, enterococci decayed faster compared to somatic
coliphage (p = 0.0121), though there were no other statistically significant comparisons.
While there was a trend for the faster decay of FIB compared to coliphages for treatment C
(wastewater protozoa/sun) (Table 2), there were no significant differences in decay among
all microorganisms (p ≥ 0.1659) at the last time point. Finally, all microorganisms decayed
significantly faster (p ≤ 0.0126) than the somatic coliphage at T14 in treatment D (wastewater
protozoa/shade).

4. Discussion

Measurement of viable and culturable FIB used historically to assess water quality may
not be sufficient indicators of the sanitary quality of recreational waters, considering that
the majority of recreational water disease outbreaks are caused by viral pathogens [1,2,59].
Therefore, viral indicators, specifically somatic and F+ coliphage, have been suggested as
additional monitoring tools for recreational waters [13]. In order to improve our under-
standing of the utility of both FIB and coliphage as fecal indicators, more information is
needed about their fate in ambient waters.

While the direct effect of protozoan grazing on the decay of FIB and coliphage has
been well documented [8,23,44], the effect of protozoa source on indicator decay remains
unexplored. To the best of our knowledge, this is the first field study where the effect of
predator source on the decay of fecal microorganisms was investigated through systematic
removal of protists from either the wastewater inoculum or lakewater medium.

The source of predators had a significant impact on the decay rates of E. coli and
enterococci, as FIB decay in the presence of lake predators was frequently ≥1 log greater
than in the presence of wastewater protozoa. The protozoan communities autochthonous to
lakewater and wastewater are fundamentally different [35,36,60–68]. Ciliates are typically
the dominant group in wastewater (by biomass and the number of species) while small
flagellates are the most abundant form in lakewater [69]. Direct comparisons of protist
diversity between human feces and both marine and freshwater aquatic environments
indicated lower diversity in feces [35]. While the diversity of protists in wastewater is
higher than in fecal specimens, it is still lower compared to environmental waters [47,70].
The increased diversity and richness of predatory species have been linked to elevated
predator production and higher grazing rates [71] and offer a plausible explanation for our
observations regarding the greater decay of FIB in the presence of protozoa indigenous to
lakewater compared to those from the wastewater inoculum.

The influence of the protozoa source was not as clear for coliphages, as the predator
source did not have a significant effect on the decay of F+ coliphage. Although the proto-
zoan source significantly affected the decay of somatic coliphage, the predator source with
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more impact changed over time during the study, and the magnitude of difference in decay
rates between predator sources was always much less than 1 log. Nonetheless, the starting
concentrations of both coliphages and the decay observed in this study were comparable
to an earlier field study utilizing wastewater as the source of coliphages [20], however, it
was considerably lower than the studies utilizing laboratory-propagated coliphages under
similar conditions [19,41]. While the preferential protozoan grazing on some viral species
over others has been previously documented [38,72,73], the potential influence of coliphage
source (i.e., wastewater versus laboratory cultivated strains) is novel and merits further
consideration. Furthermore, while lower starting concentrations of coliphage provided a
more realistic representation of levels expected in ambient waters following a wastewater
pollution event, this difference could influence the observed effect (or the lack thereof)
of the predatory protozoa [74–76]. Finally, another important distinction between our
study and earlier works [20,40,41], is that we filtered lakewater and wastewater through
a 0.80 µm filter, which would have retained the bacterial population from both sources,
while others utilized either autoclaving or filtration through 0.22 µm, which likely resulted
in their removal. The presence of the autochthonous bacterial community provided an
additional abundance of potential prey for protozoan grazers, and it could have affected
the time-dependent influence of protozoan source on somatic coliphage, as well as lack of
predator source on F+ coliphage decay rates.

The contribution of ambient sunlight to the decay of fecal microbiota is arguably one
of the best-studied environmental parameters [8,42,44]. As expected, we observed that the
decay of FIB and somatic coliphages is faster under sunlight-exposed conditions compared
to the shaded controls. The exception to this observation was the F+ coliphage, which
decayed similarly under all treatment conditions. While F+ coliphage has been reported
to be more resilient than the somatic subgroup to wastewater UV disinfection [77,78],
which relies on germicidal action of UV-C spectrum [79], extrapolation to ambient sunlight
conditions (mainly consisting of UV-A and UV-B spectra) [42] is not appropriate given
the great differences in these two irradiation sources and intensities. Furthermore, while
somatic and F+ coliphage decay rates were similar under sunlight-exposed conditions,
somatic coliphage decay rates under shaded conditions were considerably lower compared
to F+ (≤1.5 log10). This implies that consistently higher concentrations of somatic coliphage
(as compared to F+) frequently detected in ambient waters [78,80–83] may be at least in
part due to greater persistence of the somatic subgroup under shaded conditions (i.e., no
direct exposure to ambient sunlight). This finding is novel and warrants further study,
particularly as a comparison with viral pathogens.

A limited number of studies comparing decay characteristics of coliphages and viral
pathogens (i.e., poliovirus-1-Sabin, norovirus GI-1, human adenovirus 2) suggest that viral
indicators are more appropriate proxies for viral pathogen persistence in environmental
waters than FIB [19,84,85]. We generally observed accelerated decay of both FIB compared
to somatic coliphages. However, FIB decay rates under shaded conditions were similar to
those of the F+ coliphages. Some viral indicators may be more resilient to environmental
stressors compared to their bacterial counterparts. However, this study found that environ-
mental conditions and the type of coliphage influence the relative rapidity of their decay
rates. Previous reports also noted the extended persistence of coliphages compared to FIB in
freshwaters [86–88] and marine environments [87–89]. A trend of faster decay of culturable
FIB compared to viral pathogens (i.e., adenovirus 40/41 and coxsackie A9) [90–93] further
supports the need for viral indicator(s).

In summary, we demonstrated that the decay of FIB in the presence of protozoa
is generally more rapid than that of coliphages, further supporting the need for viral
indicators of fecal pollution to better reflect the decay characteristics of pathogenic viruses
in recreational waters. We have also shown that somatic coliphage decay rates under
shaded conditions are considerably slower than those of F+ coliphage or FIB. This difference
has important implications for the selection of coliphage groups as viral indicators for
recreational water quality and highlights the need for studies that compared the decay
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of pathogenic viruses to that of coliphages under environmentally relevant conditions.
Furthermore, we established that the lake protozoa were more influential in the decay
of FIB compared to wastewater predators, though the effect of predator source on the
decay of somatic coliphages, and the lack of effect of predatory source on F+ coliphage,
was less clear and merits further research. While our study adds to the growing body of
knowledge regarding the effect of biotic and abiotic parameters on decay, the findings
should not be directly extrapolated to other geographic regions or seasons due to the
inherent variability of factors such as autochthonous microbial communities, intensity,
duration of UV radiation, and water temperature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12030378/s1, Table S1. Cumulative decay rate per
day values for FIB and coliphage for each treatment and sampling day. Table S2. Analyses with
observations below the assay limit of detection.
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