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Abstract: Fusarium wilt of banana is a devastating disease that has decimated banana production
worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this
disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating
populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci
and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to
a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of ‘DH-Pahang’ reference
assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-
rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated
protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an
interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies
but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of
these genes may control resistance at this locus. To confirm the segregation of single-gene resistance,
we generated an inter-cross between the resistant parent ‘Ma850’ and a susceptible line ‘Ma848’, to
show that the STR4 resistance co-segregated with marker ‘28820’ at this locus. Finally, an informative
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SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid
and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance
at this locus, including lines known to be TR4-resistant, such as ‘Pahang’, ‘SH-3362’, ‘SH-3217’,
‘Ma-ITC0250’, and ‘DH-Pahang/CIRAD 930’. Additional screening in the International Institute
for Tropical Agriculture’s collection suggests that the dominant allele is common among the elite
‘Matooke’ NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African
highland bananas. Fine mapping and candidate gene identification will allow characterization of
molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now
aid the marker-assisted selection of TR4 resistance in breeding programs around the world.

Keywords: banana; fine mapping; quantitative trait locus; Musa acuminata ssp. malaccensis; Fusarium
wilt; Fusarium oxysporum f. sp. cubense; tropical race 4; subtropical race 4; marker-assisted selection;
resistance gene expression; receptor-like kinase; RNAseq

1. Introduction

Bananas (Musa spp.) are an important horticulture crop, typically consumed as a fruit
or staple food, and they are cultivated in the tropical and subtropical regions around the
world. Musa spp. were domesticated in Southeast Asia and Melanesia, and hybridisation
involving mainly A (Musa acuminata) and B (Musa balbisiana) genome progenitors gave rise
to most of the domesticated forms of the dessert and plantain bananas we see today [1–3].
Musa acuminata have been divided into multiple subspecies [4,5], and hybridisation among
them resulted in edible diploids. Restitution of the gametes at meiosis led to the formation
of triploid cultivars [1,6,7].

Fusarium wilt of banana (FWB), also known as Panama disease, is one of the most
devastating diseases affecting banana plants. The global epidemics owing to FWB have
put major constraints on banana production both historically and at the present time [8,9].
The causal agent for this disease is the soil-borne fungus Fusarium oxysporum f. sp. cubense
(Foc). Foc can be classified into a race structure, reflecting its banana host range [10–13] and
unique vegetative compatibility groups (VCGs). Foc race 1 was the cause of the pandemic
that decimated the triploid cultivar ‘Gros Michel’ (genome AAA) during the last century. Its
replacement, the ‘Cavendish’ banana, is resistant to Foc race 1. Cavendish bananas are now
the dominant cultivar on the market, accounting for more than 40% of the 124 M tonnes of
world banana production in 2021 [14], with export markets accounting for approximately
15% of the total production [15].

During the 1990s, a previously unknown race, the tropical race 4 (TR4) of FWB,
emerged and decimated Cavendish plantations around the world [16,17]. According to
the range of the banana subgroups affected, TR4 strains are collectively classified by sub-
tropical race 4 (STR4) as members of race 4. Vegetative compatibility grouping (VCG) and
multi-loci molecular phylogeny have provided distinction between the two groups of iso-
lates [11,13,18,19]. STR4 can infect Cavendish plants under subtropical conditions, whereas
TR4 is virulent on all Cavendish and many other banana cultivars under both tropical and
subtropical conditions [20]. So far, TR4 has significantly curtailed banana production in
Australia [21], China [22], Indonesia [23], Malaysia [24], the Philippines [19,25], Jordan [26],
Israel and other Middle East regions [27], India [28], Mayotte [29], and Africa [30] and has
spread to locations as far as Colombia and Peru [31,32]. The disease poses a major threat to
banana production, limiting the selection of cultivars and the land suitable for commercial
production and, at the same time, putting constraints on food security of smallholders.

Foc infects banana plants through the roots then travels through the vascular vessels
to colonise the rhizome and the pseudostem of susceptible plants [33,34]. Symptoms are
manifested as localised necrotic lesions in and around the vascular vessels. Eventually the
mycelia travel up through the xylem and establish themselves in the aerial parts of the
plants. Extensive fungal colonisation blocks the water-conducting vessels of the xylem,
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restricting water and nutrient supplies to the plant. This leads to wilting of the leaves and
eventually kills the plant. Once Foc is disseminated in infected soil, it can remain in the soil
for decades, surviving as chlamydospores on infected planting material or as endophytes
on alternative weed hosts and spreading through the movement of contaminated water
and soil [35,36]. Disease control strategies have focused on deterrence through biosecurity
measures [16], providing clean planting materials [37] and biocontrol agents, such as
Tricoderma spp. or endophytic F. oxysporum spp. [20,38,39].

Host genetic resistance to Foc provides a long-term solution for the management of
the disease. Foc race 4 type resistance has been detected in both wild and cultivated banana
plants [33,40–45]. Wild relatives or cultivated diploid varieties, including M. acuminata ssp.
malaccensis ‘Pahang’, ‘DH-Pahang’, M. acuminata ssp. burmannica ‘Calcutta 4’, M. itinerans,
cv. ‘Tuu Gia’, and cv. ‘Rose’, are highly resistant to Foc TR4 [41,45,46]. Inter- and intra-
specific hybrids, such as ‘FHIA21’, ‘FHIA25’, ‘SH3142’, as well as all tested plantains and
East African highland bananas (EAHBs), also exhibit high levels of TR4 resistance [43,45].
The Cavendish somaclones ‘GCTCV’ carry varying levels of TR4 resistance [33,43,45].
In some cases, TR4 resistance or susceptibility expressed by some of these somaclones
appeared to be dependent on the inoculum dosage as well as the environment [42,43,45].

Forward genetic approaches have led to the identification of genes controlling plant
yield and development, as well as biotic and abiotic stress tolerance [47]. Genetic mapping
typically identifies major genes that control a large percentage of the trait variations [48].
Such genes are useful for developing molecular markers to select favourable alleles in
breeding programs [49].

In banana, forward genetics have not been performed frequently due to experimental
constraints associated with sterility, polyploidy, long life cycles in population development,
and phenotypic assessments [50]. Linkage maps have been traditionally constructed
using restriction fragment length polymorphism (RFLP), isozymes, random amplified
polymorphic DNA (RAPD) [51], microsatellites or simple sequence repeats (SSRs), and
amplified fragment length polymorphisms (AFLPs) [52] on M. acuminata ssp. banksii- and
M. acuminata ssp. malaccensis-derived populations. However, these markers are not easily
transferable to other populations, and large segregation distortion has been observed [51].
More recently, diversity array technology (DArT) has been deployed for high throughput
genotyping in Musa [53]. DArTseq, a powerful genotyping-by-sequencing (GBS) approach
to generate high-density linkage maps, has been successfully used for genotyping large
segregating populations of diploid and triploid Musa spp. [54–56].

Previously, we used flow cytometry and simple sequence repeat genotyping to show
that wild lines of Musa spp. contained a diploid genome and were taxonomically charac-
terised as Musa acuminata ssp. malaccensis [57]. These M. acuminata ssp. malaccensis lines
were resistant to both STR4 and TR4 [57,58], and they were heterozygous for single-gene
resistance, with resistance dominant over susceptibility. A quantitative trait-locus-by-
sequencing (QTL-seq) approach was used to identify a major locus on chromosome 3 con-
ferring resistance to STR4 [57]. This QTL is distinct to the QTL identified on chromosome 10
for race 1 and TR4 resistance [54]. Genome ancestry analysis on our lines showed that the
region on chromosome 3 had a M. acuminata ssp. malaccensis origin [57], making this region
ideal for gene isolation using the M. acuminata ssp. malaccensis reference genome [46].

In this study, we performed genetic mapping in the chromosome 3 QTL region by
screening a self-derived F2 population with SNP-based cleaved amplified polymorphism
sequence (CAPS) markers. Individuals carrying recombination events were tested against
both STR4 and TR4 strains to define and limit the candidate region. One marker carried an
informative SNP that allowed chromosome 3-specific resistance to be assayed in 132 Musa
accessions, including the core M. acuminata ssp. malaccensis collection from the International
Musa Germplasm Transit Centre (ITC), as well as a comprehensive collection of diploid
and polyploid genotypes from the International Institute for Tropical Agriculture (IITA) in
Nigeria and Uganda. The validation of this marker will allow marker-assisted selection of
TR4 and STR4 resistance to be deployed in breeding programs around the world.
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2. Results
2.1. Foc-STR4 Phenotypes and Population Development

Three STR4-resistant (‘Ma850’, ‘Ma851’, and ‘Ma852’) and three STR4-susceptible
(‘Ma845’, ‘Ma846’, and ‘Ma848’) M. acuminata ssp. malaccensis F1 parental lines were
derived from two independent progenitors (Figure 1). From each parent, 20–30 self-derived
progenies were previously tested against both STR4 and TR4. The progenies of ‘Ma850’,
‘Ma851’, and ‘Ma852’ were segregated for single-gene resistance to both STR4 and TR4
at a 3R:1S ratio, whereas the progenies of ‘Ma845’, ‘Ma846’, and ‘Ma848’ were uniformly
susceptible to both races [58]. Subsequently, four F2 populations segregating for Foc-
STR4 resistance were developed (Figure 1B). ‘Population 1’ comprised two self- and one
inter-cross between the R parents ‘Ma851’ and ‘Ma852’, which are known to segregate for
STR4 and TR4 resistance. ‘Population 2’ was derived from an inter-cross between ‘Ma850’
and ‘Ma848’ (Figure 1B). A total of 435 F2 and 102 F3 individuals from Population 1 and
Population 2, respectively, were obtained from embryo germination in tissue culture and
then multiplied to sufficient numbers for phenotyping.
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Pathogens 2023, 12, 820 5 of 27

(A) Representative plants of six genotypes following infection with Foc-STR4. Foc-STR4-susceptible
individuals ‘Ma845’, ‘Ma846’, and ‘Ma848’ displayed vascular wilting and plant death, and brown
discolourations were associated with the colonisation of the fungus inside the rhizomes. The ‘Ma850’,
‘Ma851’, and ‘Ma852’ parents were completely resistant to Foc-STR4 and did not show any internal
or external symptoms. (B) The development of Musa acuminata ssp. malaccensis populations used
in this study. The ‘R’ progenitor is the original Foc race 4-resistant parent which gave rise after
selfing to three F1 plants, ‘Ma850’, ‘Ma851’, and ‘Ma852’, segregating for both Foc-TR4 and Foc-STR4
resistance. A susceptible ‘S’ progenitor, that was not related to the ‘R’ progenitor, gave rise to three
self-crossed progenies, ‘Ma845’, ‘Ma846’, and ‘Ma848’, all of which were Foc race 4-susceptible. The
genetic analysis carried out in this study used self-derived F2 progenies of Ma851 and Ma852 as
well as progenies derived from an inter-cross between the two (Population 1). The segregation of
resistance was further validated using an inter-cross between ‘Ma850’ and ‘Ma848’ (Population 2).
The F2 line #5 from this cross was selfed to generate an F3 population segregating for STR4 resistance.
Rectangles indicate parental lines. Ovals indicate progenies derived from the same parent(s). Parents
are coloured according to resistant (red) or susceptible (blue) Foc race 4 phenotypes. Progenies (ovals)
are shaded blue to indicate the absence of resistance amongst all progenies tested or exhibit red/blue
stripes to indicate the segregation of Foc race 4 resistance within the population. Solid lines indicate
self-cross pollinations. A dashed line indicates an inter-cross.

2.2. Genetic Mapping

Population 1 was used for genetic mapping. Eleven CAPS markers were developed
to anchor the region underlying the STR4 QTL (Table 1). The most proximal (27960)
and distal (30000) markers defined a 1.45 Mb region in ‘DH-Pahang’ v4 (Table 2). The
markers are named according to their unique identifiers in ‘DH-Pahang’ v1, and their
corresponding v4 gene models as well as their predicted proteins are listed (Table 2).
The 11 co-dominant CAPS markers were mapped in 435 F2 individuals of Population
1. The genetic distance in centiMorgan (cM) was calculated as the number of progenies
carrying a cross-over event between a pair of adjacent markers over the total number of
individuals (Figure 2). Overall, the order of the genetic linkage map was consistent with
the physical positions of these genes on chromosome 3 in ‘DH-Pahang’ v4, indicating
the absence of large structural rearrangements in this region between the parental M.
acuminata ssp. malaccensis lines and ‘DH-Pahang’ v4. A set of 32 lines carrying cross-
over events in this region were phenotyped to further delimit this region (Figure 3A).
Resistance was completely dominant over susceptibility at this locus. Therefore, only
recombinants carrying a homozygous-B to heterozygous-H (B/H) or a H/B cross-over were
tested. Recombinants carrying A/H or H/A cross-overs were not tested, as ‘A’ cannot be
differentiated phenotypically from ‘H’. The recombinants were grouped according to their
Foc-STR4 resistance and susceptibility (Figure 3B). In the Foc-STR4-resistant phenotypic
group, the three M. acuminata ssp. malaccensis parents, ‘Ma850’, ‘Ma851’, and ‘Ma852’, along
with nine recombinants, showed resistant phenotypes that were clearly separated from
the susceptible progenies by least significant difference (LSD) (Figure 3B). Among them,
the H/A recombinant line ‘18’ showed a resistant phenotype, but it is not informative for
individuals carrying homozygous alleles for resistance (A), as it cannot be differentiated
phenotypically from the heterozygotes (H). On the other hand, 23 recombinants showed Foc-
STR4-susceptible phenotypes (Figure 3B). The susceptibility of these recombinants seemed
to be highly elevated, with the majority of the clones exhibiting an RDI of 8 (plant death) by
the time of harvest. The STR4 resistance locus is defined by three proximal recombinants
(852-143, 852-168, and 4_16), with marker-phenotypes all suggesting that the locus is
distal to marker 28420, and with four distal recombinants (852-7, 852-140, 852-162, and
81) collectively, suggesting that the locus is proximal to marker 29590 (Figure 3A,B). This
defined the locus within a genetic interval of 12.9 cM between 28420 and 29590 (Figure 2).
Furthermore, the marker phenotype of recombinant lines 194 and 852-108 indicated that
the locus can potentially be refined to lie between markers 28820 and 29460 (Figure 3A,B),
although additional recombinant lines are required to validate this interval. However,
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eta-squared (η2) values of marker–trait association are the highest at markers 28820 and
29460 (p = 0.05), confirming that they are positioned closest to the trait locus (Figure 3A).

Table 1. CAPS marker information. The numeric identifier in primer names corresponds to the
gene models of ‘DH Pahang’ assembly v1 without the prefix ‘GSMUA_Achr3G’. T is the annealing
temperature used in the PCR. Frag or fragment denotes the PCR amplicon size in base pairs (bp). In
the ‘Cut sizes’ column, lengths of the digested products are shown for the R and S marker alleles.
Superscript ‘m’ indicates a monomorphic SNP cutting site. The SNP position (R to S nucleotide
change) is calculated from the predicted translation start site AUG or ‘ATG’ in the genomic sequence
of ‘DH-Pahang’ v4 gene models (SNPATG).

Primer Name Primer Sequence (5′ to 3′) T
(◦C)

Frag
(bp) Cut by Cut Sizes (bp) SNPATG

27960-SNP1-F1 GACCAGCAGCAGAAGGACCAGACC 58 764 BsaI R:764 Exon1
27960-SNP1-R1 AGAATGAGTGGTATGGGAT S:394,370 T1152C

28220-SNP8-F1 CCTGATTGTAAATGGGAAGTTTCTC 56 546 MnlI R:292,223,31m Intron2
28220-SNP8-R1 ATCGCCCAGCAGTGATTTGA S:515,31m G3100A

28420-SNP1-F1 CAAATATGCTGCTCCATCTG 54 740 NsiI R:740 Intron4
28420-SNP1-R1 CTTGGAAGAAACTAACGAGTGT S:403,337 A2547G

28820-SNP8-F2 CAGGTAACCATTTAGACTGACAA 55 544 BstZ17I R:544 Exon3
28820-SNP8-R1 AATCAAGGAAATAGGGTGGCAC S:300,244 C3274T

29460-SNP21-F2 GGATACTTGGACCCTGAGTACCAT 58 344 XhoI R:313,31m Exon4
29460-SNP21-R1 CCATCGCTCTCTATTGCTTGC S:178,135,31m T6353C

29590-SNP1-F1 GCTCAGATGTCTCAGTCCAGA 55 457 BstNI R:457 Exon1
29590-SNP1-R1 CTTCTTCCATCCTCTTCTCC S:317,140 A137G

29670-SNP8-F1 AAGAGATGTCATGTTGGTTCATTTG 56 628 BspCNI R:628 Intron5
29670-SNP8-R1 CACTCACTCCTGCTATGCGGTTG S:345,283 G5078C

29730-SNP1-F1 ATGGCACAGGTGATGTCAGT 58 686 BcoDI R:686 Intron1
29730-SNP1-R1 ACTAGATGACTCAGATTAGTAGG S:359,327 T544C

29730-A-SNP1-F2 GCAATGAGTACCTCTAAGCA 52 795 BcoDI R:707,88m Intron1
29730-A-SNP1-R2 TAAGTTCTAGTATCAAGTACAA S:366,341,88m T544C

29850-SNP13-F2 CTTGTTCCTGTTACCTATTAG 56 363 StyI R:363 Intron5
29850-SNP13-R1 CCTTGTGCCTAGATGCTTGG S:192,171 A4287G

29930-SNP1-F2 GTTCACACCCTTGACATCCTA 54 493 MseI R:190,64,99m,49m,36m,30m,25m Intron4
29930-SNP1-R1 TAAGCATTCATTAGCAAACGG S:254,99m,49m,36m,30m,25m A3401G

30000-SNP2-F2 CTTAAAACTTGGCGGAAGG 56 468 NsiI R:251,217 Exon14
30000-SNP2-R2 CTGAAGCACAACTGTCCTTG S:468 A6749G

Table 2. The ‘DH-Pahang’ reference genome v1 and v4 gene models for the CAPS markers developed
in this study. The prefix of the v1 and v4 gene models are shown in brackets. The coordinates
of the gene models defined on chromosome 3 of the ‘DH-Pahang’ v4 are shown in base pair (bp)
‘https://banana-genome-hub.southgreen.fr/’ (accessed on 23 February 2023). A plus (+) or minus
(−) symbol indicates the positive and negative DNA strand designation, respectively, in the reference
genome with respect to the transcriptional start of the gene models.

‘DH-Pahang’ v1
(GSMUA_Achr3G)

‘DH-Pahang’ v4
(Macma4_03_g)

‘DH-Pahang’ v4
Position (bp) Description

27,960 30,750 40,893,205—40,895,172 (−) MHD domain-containing protein
28,220 31,030 41,068,780—41,075,115 (−) Uncharacterized membrane protein At1g16860-like
28,420 31,200 41,183,294—41,197,461 (−) F-box domain-containing protein
28,820 31,680 41,695,490—41,699,989 (+) Bifunctional nuclease 2
29,460 32,270 42,052,018—42,058,909 (+) Leaf rust 10 disease-resistance locus receptor-like protein kinase-like 1.3
29,590 32,440 42,138,268—42,142,592 (−) Pentatricopeptide repeat-containing protein At4g28010
29,670 32,510 42,186,029—42,193,520 (−) Cycloartenol-C-24-methyltransferase 1
29,730 32,560 42,210,035—42,215,274 (−) Nuclear transcription factor Y subunit A-1
29,850 32,690 42,283,482—42,289,346 (+) WRKY transcription factor SUSIBA2
29,930 32,770 42,323,762—42,327,884 (−) Hypothetical protein
30,000 32,830 42,349,497—42,357,604 (−) Long chain base biosynthesis protein 2d

https://banana-genome-hub.southgreen.fr/
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Figure 2. A genetic map constructed using CAPS markers developed in the QTL region at the
distal end of the long arm of chromosome 3. The marker names correspond to the numeric part
of the ‘DH-Pahang’ v1 gene names. The centiMorgan (cM) distance between markers on the left is
calculated from 435 F2 individuals derived from the self-crosses of ‘Ma851’ × ‘Ma851’ and ‘Ma852’
× ‘Ma852’ and the inter-cross of ‘Ma851’ × ‘Ma852’, collectively referred to as Population 1. The
candidate region is mapped to a 12.9 cM genetic interval between markers 28420 and 29590. The
Foc-STR4/Foc-TR4 resistance locus is highlighted in red. This locus is defined by multiple critical
lines carrying recombination events between markers 28420 and 28820 and between markers 29460
and 29590. The markers most closely linked to the locus are 28820 and 29460. The directions of
the marker–trait association are indicated with an arrow. All lines were tested against Foc-STR4.
Asterisks (*) indicates that these lines were additionally tested against Foc-TR4. Plus (+) indicates that
the Foc-TR4 phenotype of this line was not in agreement with all the other lines tested at the same
recombined position.
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1 

 

 
Figure 3. Fine mapping of the STR4/TR4 resistance locus. (A) A genetic map constructed using mostly homozygous B/H (B: marker allele homozygous for
susceptibility, H: marker allele heterozygous) recombinants in the QTL region. A: marker allele homozygous for resistance. Unique line names are indicated in
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the column on the left. The number of individual clones (n) tested per line is indicated in square brackets in the format of [STR4, TR4]. The marker names are
displayed at the top, corresponding to the numeric part of the ‘DH-Pahang’ v1 gene accessions. Recombinations between adjacent markers are indicated by a
solid vertical bar. One-way ANOVA probability (p) and eta-squared (η2) values are displayed at the bottom for each marker–phenotype comparison. Statistically
significant comparisons at p < 0.05 for Foc-STR4 and p < 0.1 for Foc-TR4 are highlighted in bold. (B) Foc-STR4 phenotypes of the recombinants are scored as rhizome
discolouration index (RDI). Red/blue bars indicate Foc-STR4-resistant/susceptible phenotypes, respectively. (C) Foc-TR4 sensitivity was scored as RDI in a subset of
the critical recombinants. Disease incidence (grey) is indicated as a percentage of the number of individuals showing symptoms over the total number of clones (n)
screened per genotype on a scale at the top. Asterisks (*) indicate that resistance was observed where a susceptible phenotype was expected. The respective +/−
controls in the Foc-TR4 screening were the Cavendish cultivar Williams with or without the pathogen. RDI was scored according to a 1–8 scale [33] for Foc-STR4 and
a 1–6 scale for Foc-TR4 [28]. The 95% confidence intervals of the means are plotted as error bars for lines with n > 2. Significant differences at p < 0.05 among groups
were determined using one-way ANOVA. The means were separated by least significant difference at p ≤ 0.05. The subsets are indicated by letters in superscript.
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TR4 phenotyping of a subset of critical recombinants produced a similar result
(Figure 3C). The rhizome discolouration was scored on a scale of 1 to 6, with 1 correspond-
ing to a healthy plant, and 2 through 6 corresponding to the proportion of discoloured
rhizomes of ≤20%, ≤40%, ≤60%, ≤80%, and ≤100%, respectively. The phenotypic dif-
ference between the R and S recombinants were reduced in comparison with the STR4
phenotype (Figure 3C). The marker-defined susceptible lines were generally more resistant
to TR4 than to STR4, with more clones per line that did not show any rhizome discoloura-
tion. The positive control ‘Williams’ showed an average RDI of greater than 60%, indicating
that the inoculation method worked as intended. Separation of the means using Duncan’s
multiple range test produced subsets that were more overlapping than those of STR4. Two
S recombinants, 852-7 and 852-47, did not produce the expected symptoms, and their means
were clustered together with the resistant recombinants and the uninoculated Williams
(Figure 3C). This suggests that sensitivity to TR4 in M. acuminata ssp. malaccensis was not
optimally detected at the current inoculum dosage. However, all susceptible recombinants
except 852-7, 852-47, and 1 showed a disease incidence (number of plants that developed
disease over the total number of clones (n) screened per genotype) between 20–100%. All
critical recombinant phenotypes (except 852-7) were correctly associated with the direction
of the trait locus between 28420 and 29590 (Figure 3A,C). The recombinants 194 and 852-108
also showed the expected association, with the closest flanking markers 28820 and 29460.
Likewise, this region was also associated with the highest η2 values, at 0.17–0.18, p = 0.1
(Figure 3A). The phenotypic variation explained by TR4 at this locus was smaller than that
controlled by STR4 (η2: 0.68–0.73).

2.3. Candidate R Gene Expression Profiling

A set of 24 Population 1 progenies that are homozygous for the resistant ‘A’ or sus-
ceptible ‘B’ for all eleven markers across this region were used to perform a transcriptome
analysis with RNAseq. The phenotype of each of these lines was confirmed in a pot trial
prior to the start of this experiment. The experiment was designed to identify a narrow
transcriptome response that is specifically controlled by the resistance locus in this region.
Genetic effects unlinked to this locus are accounted for by the segregation of these genes in
the genetic background.

Our previous study identified multiple classes of R genes present in the candidate
region [57]. Differential gene expression analysis was performed in a pairwise (R vs. S)
manner at four time points, namely 0, 1, 3, and 7 days post-inoculation (dpi). Markers
28420 and 29590 flanked a 959 kb region containing 125 predicted gene models in ‘DH
Pahang’ v4 (Table S1). Gene Ontology (GO) enrichment analysis of this region revealed
two significantly enriched GO terms (p-adj. < 0.05) that were associated with plant de-
fense under the ontology of ‘Biological Process’, namely ‘defense response to bacterium’
(GO:0042742, 7 genes) and ‘defense response to fungus’ (GO:0050832, 5 genes) (Table S2).
Under ‘Molecular Function’, GO terms were significantly enriched for ‘polysaccharide
binding’ (GO:0030247) and ‘endoribonucleae activity’ (p-adj. < 0.05).

Of all the R genes predicted in this region, seven genes showed differential expression
profiles between R and S at two or more time points at p-adj. < 0.05 (Figure 4). Of the
four receptor-like proteins (RLP), expression of 31310 and 31470 was upregulated at 1 and
3 dpi in R progenies before being downregulated at 7 dpi, although it remained relatively
low in the S progenies throughout the time course (Figure 4A,B). Transcript levels of the
RLP 31460 were significantly higher in R relative to S at all time points (p-adj. < 0.05)
(Figure 4C). The transcript levels of 31460 steadily declined from 0 to 3 dpi in R but were
maintained at a higher level in R than in S across all time points. In contrast, transcripts of
the RLP 31380 were readily downregulated at 1 dpi before a slight recovery at 3 and 7 dpi
in both S and R progenies and with R transcripts significantly higher (p-adj. < 0.01) than
S transcripts at 1 dpi (Figure 4D). The receptor-like protein kinase (RLK) 31320 showed a
similar profile to RLP 3130 and 31470 in that Foc-STR4 rapidly induced an expression peak
at 1 dpi, followed by a gradual downregulation at 3 dpi before returning to a pre-treatment
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level at 7 dpi (Figure 4E). The 31320 transcripts in S genotypes were maintained at a low
level throughout the experiment. Transcript levels of the other RLK gene 32220, a LRK10L
homolog, were significantly upregulated at 1 dpi in R and were then upregulated further
at 7 dpi (Figure 4F). Its transcripts in S remained relatively low at all time points. The
cysteine-rich protein kinase (CRK) 31510 had an expression peak at 3 to 7 dpi in R before a
sharp downregulation to a level comparable to the control at 7 dpi (Figure 4G). Again, the
S transcripts were maintained at a relatively low level. Lastly, the serine/threonine protein
kinase (STK) 32050 showed a strong downregulation in R across all time points (Figure 4H),
whereas the S transcripts started at a similar level to R but were gradually upregulated at 1
to 3 dpi before returning to a pretreatment level at 7 dpi. No intracellular R proteins were
differentially expressed at more than two time points between R and S in this region.
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Figure 4. Differential expression (DE) of candidate genes. DESeq2-normalised gene counts
using median-of-ratios method were calculated for DE genes selected from an RNAseq study
of a seven-day Foc-STR4 infection time course using R- and S-progenies of Population 1.
(A) Macma4_03_g31310.1, a putative LRR RLP protein. (B) Macma4_03_g31320.1, a puta-
tive LRR receptor-like serine/threonine-protein kinase. (C) Macma4_03_g31470.1, a putative
LRR RLP protein. (D) Macma4_03_g31510.1, a putative cysteine-rich receptor-like protein ki-
nase 6. (E) Macma4_03_g32220.1, a putative leaf rust 10 disease-resistance locus receptor-like
protein kinase-like protein (LRK10L). (F) Macma4_03_g31460.1, a putative LRR RLP protein.
(G) Macma4_03_g31380.1, a putative LRR RLP protein. (H) Macma4_03_g32050.1, a putative
serine/threonine-protein kinase/endoribonuclease IRE1a. Replicates (n) per genotype per time point
is 3. Significantly differential expression between R and S progenies was indicated at p-adj. < 0.05 (*),
p-adj. < 0.01 (**), and p-adj. < 0.001 (***). T: time in days; RLP: receptor-like protein; RLK: receptor-like
kinase; CRK: cysteine-rich kinase; STK: serine/threonine protein kinase. Error bars indicate standard
errors of the means (n = 3).
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2.4. Foc-STR4 Resistance and Marker Validation in Population 2

The haplotype analysis across the QTL region showed that the marker loci were all het-
erozygous in the R parents and were susceptible ‘B’ haplotype interrupted by heterozygous
segments in the S parents (Figure 5A). The candidate region ‘B’ for susceptibility defined
by 28820/29460 in the S parents was flanked by heterozygous segments at the proximal
(28220–28420) and distal (29590–29670) ends (Figure 5A). Therefore, the marker haplotypes
of the S parents were consistent with the location of the STR4/TR4 locus as defined by
Population 1.
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Figure 5. Foc-STR4 resistance and marker validation in the ‘Ma850’× ‘Ma848’ population. (A) Marker
haplotypes of the six parental Musa acuminata ssp. malaccensis in the QTL region. Marker allele
annotations are described as in Figure 3A. The position of the Foc-STR4 and Foc-TR4 resistance
locus is indicated. Parental Foc sensitivity, S: susceptible, R: resistant. (B) ‘Ma850’ × ‘Ma848’ F1

individuals screened with Foc-STR4. Foc-STR4-resistant and -susceptible phenotypes are differentiated
by red/blue coded bars, respectively. RDI: rhizome discolouration index. The line (number 5) with
red highlighting was used to generate the self-crossed F2 population. (C) A CAPS marker screening
was performed on the ‘Ma850’ × ‘Ma848’ F1 individuals using the primers ‘28820-SNP8-F2’ and
‘28820-SNP8-R1’, targeting an SNP in gene model GSMUA_Achr3G28820 (‘DH-Pahang’ v1.0) and
PCR conditions as described in Table 1. The dominant band (544 bp) after a BstZ17I digest is associated
with Foc-STR4 resistance. Yellow arrows indicate de-coupling of the dominant marker band with
Foc-STR4 resistance. (D) ‘Ma850’ × ‘Ma848’ F2 individuals screened with Foc-STR4. Individuals with
an RDI score of < 4 are considered resistant (R), and those with an RDI score of ≥ 4 (greater than 20%
discolouration) are considered susceptible (S). Individual x-axis labels are staggered every two lines.
The number of clones (n) tested per line is indicated in brackets.
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To validate the segregation of resistance observed in Population 1, 38 F2 progenies
of the ‘Ma848’ × ‘Ma850’ cross were screened for STR4 resistance (Figure 5B). There were
16 R and 22 S phenotypes observed, while the parents, ‘Ma848’ and ‘Ma850’, showed the
expected STR4 susceptibility and resistance, respectively. The mapping of 28820 in the F1
individuals showed that the dominant allele of 28820 closely segregated with resistance
(Figure 5C). Decoupling of the marker with the trait occurred in F2 individuals ‘16’ and ‘34’,
suggesting that recombination occurred between the resistance gene and the marker locus.
An F3 population was developed using a self-cross of the STR4-resistant F2 individual
‘5‘. Of the 102 F3 individuals screened for STR4 resistance, 67 individuals were resistant
(mean RDI < 4), and 35 individuals were susceptible (mean RDI ≥ 4) (Figure 5D), with
goodness-of-fit statistics showing significant deviation from an expected segregation ratio
of 3 R:1 S (χ2 = 4.71, p = 0.029, df = 1, α = 0.05).

2.5. Validation of Marker 29730 for Marker-Assisted Selection of TR4 and STR4

To identify SNPs that may be used in detecting the resistance locus outside of our map-
ping population, we first interrogated the SNPs in the CAPS markers for their association
with resistance in a small set of accessions (namely all our Musa acuminata ssp. malaccensis
parents, ‘DH-Pahang’, ‘Pahang’, ‘SH3362’, ‘FHIA25’, ‘Pisang Jari Buaya’, and ‘Calcutta 4’)
that are known to carry STR4/TR4 resistance. Of all the markers tested, only one marker,
29730, showed an association with STR4/TR4 resistance in a subset of these genotypes.
All the other SNPs interrogated were not correlated with the resistance/susceptibility
of accessions outside of the mapping populations. This marker, along with A-genome
(M. acuminata)-specific primers for 29730-A were subsequently developed (Table 1) and
used to amplify a single PCR product of 686/795 bp (29730/29730A) in a set of 60 banana
wild and cultivated accessions (Figure 6A). This product was then digested with BcoDI to
produce the bi-allelic forms (an undigested dominant band that is putatively associated
with resistance) and digested products linked to susceptibility (Figure 6B). Heterozygotes
carried both variants. The dominant marker allele was detected in the parents, ‘Ma850’,
‘Ma851’, and ‘Ma852’, and six other Musa acuminata ssp. malaccensis accessions, ‘Pahang’,
‘CIRAD 930/DH Pahang’, ‘Malaccensis ITC250’, ‘Malaccensis ITC0399’, ‘Pa Musore no2’,
and ‘Kluai Pal’ (Figure 6B, Table 3). Hybrids and cultivars that had the resistant band
include ‘SH3361’, ‘SH3362’, ‘SH3217’, ‘TMB2×7197-2’, ‘5610S-1’, ‘FHIA3’, and ‘FHIA25’.
Other known resistant lines, such as ‘cv. Rose’, ‘SH-3142’, ‘IV9 Calcutta4’, ‘Pisang Jari
Buaya’, as well as the negative control M. balbisiana, did not produce the dominant band
(Figure 6B, Table 3). This suggests that the resistance source was prevalent among M.
acuminata ssp. malaccensis and its derivatives. Its absence in ‘cv. Rose’, a M. acuminata ssp.
malaccensis known to be resistant to TR4, and other TR4 resistant lines that are not of M.
acuminata ssp. malaccensis origin suggests the presence of resistance sources elsewhere in
the genome.
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Figure 6. Marker validation for marker-assisted selection of Foc race 4 resistance in the diploid
(AA) wild relatives and hybrids from the IITA collection. The SNP marker generated from
GSMUA_Achr3G29730 in ‘DH-Pahang’ reference genome v1 was converted to amplify A-genome-
specific products based on A/B genome discriminating SNPs at the 3’ termini of the primer pair
(Table 1). (A) PCR amplification using 29730-SNP1-F1/29730-SNP1-R1 (Lane or L1-52, mostly
diploids) and 29730-A-SNP1-F2/29730-A-SNP1-R2 (L53-60, mostly polyploids), respectively, ampli-
fied a single PCR product (686/795 bp) in 59 genotypes, as per Table 3. L60 is the Musa balbisiana
(BB), which served as a negative control for the A-genome-specific PCRs. (B) This product was
subsequently digested with BcoDI to reveal a dominant uncut band (686 bp/L1-52, 707 bp/ L53-60),
putatively associated with resistance. The alternatively cut allele (359 bp and 327 bp/L1-52, 366 bp
and 341 bp/L53-60) may indicate the presence of the Foc-susceptible allele. Accessions heterozygous
for the marker locus were predicted to be resistant to Foc-STR4 and Foc-TR4 due to the complete
dominance of the R allele over the S allele at this resistance locus. Resistances were detected in ‘Ma850’
(L1), ‘Ma851’ (L2), ‘Ma852’ (L3), ‘Pahang’ (L7, 20), ‘SH-3362’ (L8, 9, 37), ‘Madang Gaudelope’ (L10),
‘SH-3217’ (L12), ‘Malaccensis-ITC0250’ (15, 38), ‘Malaccensis-ITC0399’ (L19), ‘Pa Musore no2’ (L21),
‘Kluai Pal’ (L22), ‘CIRAD 930/DH Pahang’ (L23), ‘TMB2X7197-2’ (L35), ‘5610S-1’ (L36), ‘SH-3217’
(L39), ‘SH-3361’ (L40), ‘FHIA 3’ (L53), and ‘FHIA 25’ (L54). Resistances were not detected in other
known Foc-resistant M. acuminata ssp., such as M. acuminata ssp. burmannica ‘Calcutta 4’ accessions
(L11, 13), or in cultivated diploid AA varieties, such as ‘Pisang Jari Buaya’ (L14) and ‘cv. Rose’ (L44).
A 1kb DNA ladder from NEB was used as a reference for the size of the amplicons.
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Table 3. Validation of marker 29730 for marker-assisted selection. Collection of diploids, improved
diploids, cultivated diploids, and synthetic polyploids screened for the A-genome-specific marker
29730 (GSMUA_Achr3G29730) linked to both Foc-STR4 and Foc-TR4 resistance on chromosome 3 of
M. acuminata ssp. malaccensis (Figure 6). The subspecies of M. acuminata or genome group is indicated
in brackets next to the names. Het: heterozygous for the marker locus. Samples that form part
of a collection are annotated as the following: a Diploid and cultivated varieties and d polyploid
varieties from the Maroochy Research Facility, Department of Agriculture and Fisheries, Nambour,
Queensland, Australia; b M. acuminata ssp. malaccensis accessions that form part of the core Musa
collection used in a diversity study [59]; c improved diploids and a selected number of breeding lines
from IITA, Uganda. Musa balbisiana (BB genome) served as a negative control for A-genome-specific
amplification of 29730. In the Foc-STR4 and Foc-TR4 columns, resistances were generally defined as R:
resistant, SS: slightly susceptible, S: susceptible, and n/a: data not available. Phenotypic data was
referenced from multiple studies performed as either pot or field trials. ITC numbers are indicated
on accessions where available, while other numbers correspond to accessions in their respective
germplasm collections (MMC—NARO, Uganda; MRF—Maroochy Research Facility, QLD, AUS; and
MUSA—INIVIT, Cuba).

Line Name (Subspecies/Genome) Accession 29730 Marker Locus Foc-STR4 Foc-TR4

1 a ‘Ma850’ (malaccensis) MRF850 +(Het) R [33] R [33,58]
2 a ‘Ma851’ (malaccensis) MRF851 +(Het) R [33] R [58]
3 a ‘Ma852’ (malaccensis) MRF852 +(Het) R [33] R [58]
4 a ‘Ma845’ (malaccensis) MRF845 - n/a n/a
5 a ‘Ma846’ (malaccensis) MRF846 - S [33] n/a
6 a ‘Ma848’ (malaccensis) MRF848 - S [33] S [33,58]
7 a ‘Pahang’ (malaccensis) MRF1649 + R [33] R [33,45]
8 a ‘SH-3362’ (AA) MRF2010 +(Het) R [33] R [33,43]
9 a ‘SH-3362’ (AA) MRF2013 +(Het) R [33] R [33,43]
10 a ‘Madang Guadeloupe’(malaccensis) MRF655 + R [33] R [33]
11 a ‘Calcutta 4’ (burmannica) MRF1642 - R [33] R [33,45]
12 a ‘SH-3217’ (AA) MRF2005 + R [33] R [33,43]
13 a ‘IV9 Calcutta4’ (AA) MRF526 - R [33] R [33]
14 a ‘Pisang Jari Buaya’ (AA) MRF1244 - R [33] R [33,45]
15 a ‘Ma-ITC0250’ (malaccensis) MRF826 +(Het) R [33] R [33]
16 a ‘M61 Guadeloupe’ (AA) MRF654 - SS [33] R [33]
17 a ‘CAM-020’ (AA) MRF1657 - S [33] R [33]
18 a ‘SH-3142’ (AA) MRF1984 - R [33] R [33,43]
19 a M. a. malaccensis ITC0399 +(Het) n/a n/a
20 a ‘Pahang’ (malaccensis) ITC0609 + R [33] R [33,40,45,60]
21 b ‘Pa Musore no2’ (M. acuminata spp.) ITC0668 +(Het) n/a n/a
22 b ‘Kluai Pal’ (malaccensis) ITC0979 +(Het) n/a n/a
23 b ‘DH Pahang’ (malaccensis) ITC1511 + n/a R [45,46]
24 b M a. malaccensis ITC0074 - n/a n/a
25 b ‘Pa Musore no3’ (M. acuminata spp.) ITC0406 - n/a n/a
26 b ‘Pa_Songkhla’ (M. acuminata spp.) ITC0408 - n/a n/a
27 b ‘Selangor 2’ (malaccensis) ITC0629 - n/a n/a
28 b ‘Pisang Raja Udang’ (AA) ITC0976 - n/a n/a
29 b ‘THA018’ (malaccensis) ITC1067 - n/a n/a
30 b ‘Pisang Kra’ (malaccensis) ITC1345 - n/a n/a
31 b ‘Pisang Serun 403’ (malaccensis) ITC1347 - n/a n/a
32 b ‘Pisang Serun 404’ (malaccensis) ITC1348 - n/a n/a
33 b ‘Pisang Serun 400’ (malaccensis) ITC1349 - n/a n/a
34 b ‘IB-99’ ITC1447 - n/a n/a
35 c ‘TMB2×7197-2’ (AA) - +(Het) n/a n/a
36 c ‘5610S-1’ (AA) - +(Het) n/a n/a
37 c ‘SH-3362’ (AA) MUSA214 +(Het) R [33] R [33]
38 c ‘Malaccensis 250’ (malaccensis) ITC0250 +(Het) R [33] n/a
39 c ‘SH-3217’ (AA) MMC218 + R [33] R [43]
40 c ‘SH-3361’ (AA) - +(Het) n/a n/a
41 c ‘TMB2×8075-7’ (AA) - - n/a n/a
42 c ‘Hutishamba’ (AA) MMC486 - n/a n/a
43 c ‘Mshare Laini’ (AA) - - n/a n/a
44 c ‘cv. Rose’ (AA) ITC0712 - n/a R [40,41]
45 c ‘Mularu’ (AA) MMC465 - n/a n/a
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Table 3. Cont.

Line Name (Subspecies/Genome) Accession 29730 Marker Locus Foc-STR4 Foc-TR4

46 c ‘Kamunyila’ (AA) MMC479 - n/a n/a
47 c ‘Mlelembo’ (AA) ITC1544 - n/a n/a
48 c ‘Njuru’ (AA) MMC418 - n/a n/a
49 c ‘Kahuti’ (AA) ITC1468 - n/a n/a
50 c ‘Mbwazirume’ (AAA) ITC0084 - n/a R [45]
51 c ‘Sukari Ndiizi’ (AAB) MMC167 - n/a n/a
52 c ‘Nshonowa’ (AA) ITC1466 - n/a n/a
53 d ‘FHIA-3’ (AABB) MRF1941 +(Het) S [33,61] SS [33], S [41], R [43]
54 d ‘FHIA-25’ (AAB) MRF1960 + R [33] R [33,43,45]
55 d ‘FHIA-21’ (AAAB) MRF1205 - n/a S [41], R [45]
56 d ‘FHIA-23’ (AAAA) MRF1207 - S [33] SS [33], S [41]
57 d ‘GCTCV-119’ (AAA) MRF1860 - R [33] R [33,41]
58 d ‘FHIA-2’ (AAAB) MRF1933 - S [33,61] R [33,43], S [41]
59 d ‘FHIA-1’/’Goldfinger’ (AAAB) MRF1959 - R [33] R [33,43], S [62]
60 d Musa balbisiana (BB) MRF1593 - S [33] S [62]

To further test this marker and aid the marker-assisted selection of Foc-STR4- and
Foc-TR4-resistant lines, we screened 72 accessions from the IITA collection (Uganda) and
46 accessions from the IITA’s M. acuminata ssp. banksii collection (Nigeria). Of the 11 ‘Ma-
tooke’ tetraploid parents screened, two of them, ‘1438K-1’ and ‘376K-7’, were positive for
the resistant band (Table S3). Of all the ‘NARITA’ triploids that were assessed for yield
stability in Uganda and Tanzania [63], line numbers 1, 5, 6, 7, 8, 9, 13, 15, 16, 17, 19, 22,
23, and 25 carried the dominant allele. In the ‘NARITA’ triploids and the other triploid
hybrids screened, the presence of the dominant allele in the heterozygous state (H) was
most likely inherited from their male diploid parents, namely ‘SH3362’, ‘5610S-1’, ‘TMB2
× 7197-2’, ‘SH3217’, and ‘Malaccensis_250’ (Table S3). Heterozygotes were detected in
6 out of the 18 hybrid triploids that used ‘Malaccensis_250’ as the male parent. This is
consistent with the heterozygous genotype of ‘Malaccensis_250’ at this locus. The screening
of 46 accessions from a cultivated and wild M. acuminata ssp. banksii collection did not
detect the dominant allele, with the positive control being ‘SH3362’ (Table S4).

3. Discussion

Conventional breeding is typically constrained in banana because polyploid cultivars
are sterile and parthenocarpic [64]. Development of large segregating populations can be
achieved using highly fertile banana diploids. The underlying genetics in banana are still
challenging due to their long growth cycles, the logistics of performing high-throughput
screenings, and the high variability in the phenotypic data, as reflected in this study. Despite
these difficulties, the availability of the Musa draft genome assemblies and lower whole
genome genotyping/sequencing costs have facilitated studies in SNP discovery, genome
evolution, and population genetics in banana [65–69]. With Foc-TR4 edging closer to the
major banana growing regions of Latin America [70], it becomes ever more important to
dissect host resistance against Foc-TR4 and, in doing so, to identify potential resistance
genes that underpin the Foc-TR4 resistance per se. This would allow resistance to be
deployed in elite cultivars by gene editing or through a transgenic approach. Molecular
markers that are closely linked to TR4-resistant QTLs can fast-track resistant alleles in
banana-breeding programs.

By using transcriptome sequencing on S or R progenies carrying contrasting haplo-
types in the QTL region, candidate R genes underlying resistance were identified. Segregant
analysis is a powerful approach when combined with the positional information from ge-
netic mapping. Firstly, the candidate region was confirmed in Population 1. The marker
haplotype in the susceptible parents and the segregation of Foc-STR4 further indepen-
dently confirmed the candidate region in Population 2. The closely linked marker 28820
segregated with STR4 resistance, although not completely, but the phenotypic variation
explained at marker loci 28820 and 29460 was the highest in this genetic interval for both
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STR4 and TR4. Within this region, 32220, a leaf rust 10 disease-resistance locus receptor-like
protein kinase-like protein 2.1 (LRK10L-2.1) was related to the wheat LRK10 gene [71].
Transcripts of 32220 were gradually and consistently upregulated in R progenies during the
time course, peaking at 7 dpi. This response was not detected in the S progenies. The 32220
predicted protein belongs to the LRK10L-2 subfamily of receptor-like kinases [72,73] and
has a cysteine-rich ectodomain, a transmembrane domain, and a predicted intracellular
serine/threonine kinase at its C-terminus. Members of this class of RLKs have been shown
to be important for mediating resistance responses to stripe rust fungus and powdery
mildew in wheat [74,75], and they are involved in ABA-mediated signaling and drought
resistance in Arabidopsis [76].

The genetic Interval closest to the STR4 resistance locus is between 28820 and 29590.
It is not well-defined at this stage. Only two individuals were identified with crossovers
between these markers. More recombinants are needed to narrow this interval more
precisely. In the larger region between markers 28840 and 29590, multiple recombinants
consistently confirmed the direction of the trait locus on either side. Although one critical
recombinant (852-7) did not produce any symptoms in the TR4 screening, the phenotypic
data were generally concordant with the genetic interval defined for both STR4- and TR4-
resistant loci. Within this interval, there was a cluster of receptor-like kinases (LRR XII
subfamily) and receptor-like proteins (LRR RLP subfamily) positioned in an interspersed
arrangement [57]. They, respectively, belong to the LRR XII and LRR RLP subfamilies
of pattern recognition receptors [72,77]. Two RLPs showed a very rapid upregulation of
transcripts at 1 dpi, consistent with their roles in the recognition of pathogen effectors at the
onset of infection [78]. These RLPs are similar to the tomato LeEIX1 and LeEIX2 resistance
proteins that directly interact with an ethylene-inducible xylanase (Eix) effector protein
from Trichoderma viride [79]. Similarly, an Eix-like effector (VdEIX3) from Verticillium dahlia
was recognised by the Nicotiana benthamiana LRR RLP NbEIX2 [80], inducing an innate
immunity response and increasing the resistance to other oomycete and fungal pathogens
in N. benthamiana.

A gene encoding a cysteine-rich protein kinase was also strongly upregulated during
the onset of infection in the R but not in the S genotypes. Cysteine-rich protein kinases
contained DUF domains and a kinase domain. Such genes have been found to confer
resistance against Septoria tritici blotch and leaf rust in wheat [81,82]. Overexpression of an
Arabidopsis CRK homolog led to enhanced resistance against Pseudomonas syringae [83]. In
addition, an LRR RK gene (Macma4_03_g31320.1) was differentially expressed between the
S and R genotypes and exhibited an expression peak at 1 dpi in R, similar to the profiles of
the three LRR RLPs. Plants, in general, have an abundant amount of RLKs and RLPs as part
of their surveillance system to cope with the evolution and detection of pathogens [84]. The
LRR ectodomain of pattern recognition receptors binds to proteins and peptides through
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns
(DAMNs) and is important for the recognition function. In Arabidopsis, FLAGELLIN
SENSING2 (FLS2) recognises an elicitor epitope from the bacterial flagellin [85], and PEP
RECEPTOR 1 (PEPR1) and PEPR2 recognise plant elicitor peptides, or peps, to activate
a defense against Pythium irregulare [86,87]. In rice, LRR RK Xa21 recognises a highly
conserved protein, RaxX, from Xanthomonas species to trigger immune responses [88].

Overall, there are multiple resistance genes differentially expressed between the S and
R banana progenies with similar temporal expression profiles. All of them are indicative
of a rapid response in the induction of resistance gene transcripts at the onset of STR4
infection. This suggests that these genes may act in close proximity to one another or even
belong to the same gene network. Co-expression gene networks will be constructed from
RNA sequencing data to identify co-expression modules. This information can then be
integrated with the QTL region to characterize the candidate genes [89].

In this study, we demonstrated that SNP loci/trait associations can produce markers
useful for marker-assisted selection. Unlike traditional bi-parental mapping, the wild
subspecies of Musa are highly heterozygous, which render it challenging for genetics to
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be undertaken. The resistance source identified in this population was dominant, which
is consistent with the mode of inheritance of a race 1 and, to a lesser extent, TR4-resistant
QTLs located on chromosome 10 of a different Musa acuminata ssp. malaccensis [54]. The
dominance of these loci can offer full TR4 protection, which is a desirable genetic solution
to the TR4 pandemic since only one copy of the gene(s) is required to confer full resistance
against TR4/STR4. Resistances that are not completely dominant may not be useful since
partial resistance cannot offer protection against TR4 in the long term [90].

In marker-assisted selection, we used a marker closely linked to the resistance locus
to detect lines potentially carrying this locus from several germplasm collections. Initial
screening clearly suggested that this marker could identify some of the resistant individuals
in the diploid collection, specifically detecting resistance in wild relatives or derivatives
of M. acuminata ssp. malaccensis origin (Figure 6, Table 3). The power of detection did not
extend to other M. acuminata subspecies or derivatives that were not of M. acuminata ssp.
malaccensis origin. This was evident in that this marker failed to detect resistance in the M.
acuminata ssp. banksii collection (Table S4). Furthermore, the M. acuminata ssp. burmannica
genotype ‘Calcutta 4’ has been reported to be highly resistant not only to STR4/TR4 [33,43]
but also to the Sigatoka leaf spot disease [91]. ‘Calcutta 4’, as a source of resistance, has
already been used extensively in IITA-NARO’s breeding program. It was used as a male
parent to derive seven tetraploid ‘Matooke’ hybrids, which were used to derive the triploid
‘Matooke’ NARITAs [92,93] (Table S3). Despite being TR4-resistant, ‘Calcutta 4’ was not
detected as resistant in the marker screening in our study. Taken together, this highlights the
presence of other sources of resistance in the germplasm collection as well as the limitation
of this marker to detect resistance sources outside of M. acuminata ssp. malaccensis, possibly
reflecting the phylogenetic divergence of the M. acuminata subspecies in the core Musa
collection [59]. Overall, the marker was positive in 35 of 72 individuals in the IITA collection,
exhibiting a detection frequency of 47.9%. This predicted that the chromosome 3 resistance
source was already present in the IITA-NARO’s breeding program.

The genotype screen also produced consistent results in the diploids, specifically
‘Pahang’, ‘DH-Pahang’, and ‘Malaccensis-ITC0250’. These are known TR4/STR4-resistant
genotypes. In the hybrids, ‘SH3362’ and ‘SH3217’, are positives for the dominant band.
‘SH3362’ was derived from crossing ‘SH3217’ and ‘SH3142’, with the latter derived from a
cross between two cultivars of ‘Pisang Jari Buaya‘ ‘https://www.promusa.org/NARITA+
16’ (accessed on 12 March 2023). Despite being resistant to TR4, ‘Pisang Jari Buaya’ was
a negative in our marker screen. The parentage of ‘SH3217’ can be further traced back
to a cross between ‘SH2095’ and ‘SH2766’. ‘SH2095’ was derived from a cross between
‘Sinwobogi’ (AA) and ‘Tjau Lagada’ (AA), whereas ‘SH2766’ was derived from ‘Tjau Lagada’
(AA) and the progeny of a cross between M. acuminata ssp. malaccensis and ‘Guyod’ (AA)
‘https://www.promusa.org/NARITA+16’ (accessed on 12 March 2023). Therefore, the
source of resistance potentially can be traced back to a M. acuminata ssp. malaccensis origin,
although validation is not possible without these progenitors or their DNA. ‘SH3362’ and
its progenitor ‘SH3217’ were the male parents of 13 hybrids in the IITA collection (Table S3).
Ten of these thirteen hybrids were heterozygous for the STR4/TR4 marker locus. Despite
the common presence of this resistance source in the IITA-NARO’s breeding program,
further phenotypic screening in the IITA germplasm is required to validate this marker.
Breeding programs around the world can now use this as a tool to identify potential
TR4-resistant genotypes in their collections. This is a first-ever report on PCR-based marker-
assisted selection in a banana-breeding program. It will assist efforts towards curbing the
TR4 pandemic.

The genetic mapping using 435 individuals of Population 1 delimited the QTL to a 959
kb region containing 125 predicted gene models between 28420 and 29590 in ‘DH Pahang’
v4 (Table S1). Due to the sheer volume of the population and the number of clones that
would have to be multiplied in vitro, phenotyping the entire population was never the goal.
A targeted strategy was used to define the QTL region, and only recombinants were tested.
It allowed ‘walking’ along the chromosome to define the direction of the marker–trait

https://www.promusa.org/NARITA+16
https://www.promusa.org/NARITA+16
https://www.promusa.org/NARITA+16
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association. Validation was achieved through testing multiple independent recombinants
defining a single marker interval. Technical bottlenecks included slow multiplication
of clones in the diploid (AA) lines, as they sometimes have reduced shoot proliferation
potentials compared with the triploids. Furthermore, the dominant mode of inheritance
means that phenotypic distinction can be made only between H/A and B and vice versa.
Individuals containing cross-over events between A and H marker alleles cannot be used
unless progeny testing is performed at the next generation. Important A/H recombinants
can be tested this way, although it is a labor-intensive task.

Given that it takes 3 months for sufficient clones to be multiplied, 1 month for the
plants to be hardened off in a glasshouse, and an additional 3 months post-inoculation for
symptoms to develop, this type of screening where genotypes are consistently processed in
batches in an optimized and high-throughput manner is just not achievable with field-based
trials. Future work will focus on optimizing high-throughput setups in glasshouses [94] or
growth chambers where relatively young plants in small pots and trays can be screened
with Foc. Screening in a controlled environment can reduce variance in the symptoms.
Lab-based soil-free hydroponic systems have been explored for TR4 screening [95,96] and
have been used to assay Fusarium root rot in other plant species, such as alfalfa [97]. High-
throughput screening methodology from other plant/Fusarium pathosystems, such as
Medicago truncatula/F. oxysporum f. sp. medicaginis, can potentially be adopted to screen for
TR4 resistance in banana seedlings [98].

The STR4 screening produced clear-cut phenotypic differences between resistant and
susceptible individuals. A hybrid inoculation method was used with spore suspension
and an extra layer of millet added on top of the soil. This was implemented to increase
the inoculum dosage and achieve uniformity with the infection. This allowed genotypic
sensitivity to Foc to be detected reliably and the genetic interval to be defined. The TR4
screening also produced consistent results and identified the same genetic interval, although
the plants, in general, did not produce symptoms as severe as STR4. The TR4 symptoms
were slow to manifest, indicating that M. acuminata ssp. malaccensis were generally more
resistant to TR4 than to STR4 in pot trials. The weaker correlation could be due to the
presence of the chromosome 10 QTL for TR4 resistance in a fixed state in our resistant
parents [54], which may also explain the segregation distortion we observed in the analysis
of the F3 progenies from Population 2. Image-based detection of symptoms can assist
in the quantification of rhizome discolouration [40]. The issue with the TR4 screening
was not the subtle differences in the level of discolouration but rather obtaining false
negatives when symptoms were expected. Symptom severity was able to be elevated by
an increase in the inoculum dosage. That, in turn, reduced the variance in the symptom
development. Overall, this highlights the challenge of detecting a plant’s sensitivity to Foc
in a reliable manner.

4. Materials and Methods
4.1. Musa acuminata ssp. Malaccensis Populations

Three Foc race 4-resistant and three susceptible M. acuminata ssp. malaccensis parents
were used in this study. The progenies of the R (resistant) parents ‘Ma850’, ‘Ma851’, and
‘Ma852’ segregated for Foc-STR4 and Foc-TR4 resistance [57,58], whereas the S (susceptible)
parents ‘Ma845’, ‘Ma846’, and ‘Ma848’ were uniformly susceptible to Foc-STR4 (Figure 1A).
Three close-pollinated F2 populations, collectively called Population 1 and consisting of
435 individuals, were developed for mapping. They consisted of two self-crosses of ‘Ma851’
and ‘Ma852’ as well as an inter-cross between these two lines (Figure 1B). Segregation of
STR4 resistance was further validated in Population 2 (38 F2 and 102 F2 individuals), which
was derived from an inter-cross between ‘Ma850’ and ‘Ma848’.

4.2. Fungal Isolates

For the Foc-STR4 screening, three monoconidial VCG0120 isolates (BRIP63488, BRIP43781,
and BRIP42331) from the Queensland Plant Pathology Herbarium were used as a combined
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inoculum at the University of Queensland. For the Foc-TR4 screening, a VCG01213/16 iso-
late from the culture collection of Stellenbosch University’s Department of Plant Pathology
was used.

4.3. Foc-STR4 Pot Trial

Foc-STR4 pot trials were conducted in temperature-controlled glasshouses at the
University of Queensland, St Lucia campus, QLD, Australia. The temperatures were
controlled at 26 ◦C day/22 ◦C night for the entire duration of the experiments. Humidity
was maintained at 60%. The amount of 50mL of 2.0 × 106 conidia/mL solution was poured
directly into potted plants with a stem height of 30 cm, followed by spreading a layer
of Foc-STR4-infested millet (20–30 g) on the surface of the soil. Protocols for preparing
Foc-infested millet and conidia suspensions were previously described [33,99]. The soil
surface was then topped with a thin layer of potting mix. The plants were watered lightly.
Internal disease symptoms were scored 3 months post-inoculation. A 1–8 rhizome scale
was used to score internal rhizome discolouration [33].

4.4. Foc-TR4 Pot Trial

Foc-TR4 pot trials were performed in a quarantined glasshouse at the University
of Stellenbosch. Plants were hardened off for 2–3 months before the screening. The
experimental setup for the pot trial was as previously described [100]. A millet inoculation
technique was used, and disease incidences and internal discolouration of the rhizome
(1–6 scale) were scored as per a previous study [101]. The positive and negative controls
were uninoculated and Foc-TR4-inoculated Williams, respectively.

4.5. Molecular Marker Development

SNPs were initially identified using a sequencing approach. The 100 bp paired-end
sequencing was performed using the Illumina Genome Analyzer IIx platform (Illumina, San
Diego, CA, USA) at the Australian Genome Research Facility, VIC, Australia, to produce
10x coverage for individually sequenced S and R libraries. There were 6 S libraries prepared,
consisting of each of the 3 susceptible parents, ‘Ma845’, ‘Ma846’, and ‘Ma848’, as well as a
pool of 34 susceptible progenies of ‘Ma845’, a pool of 3 susceptible progenies of ‘Ma851’, and
a pool of 8 susceptible progenies of ‘Ma852’. Six R libraries were prepared. They consisted
of each of the 3 resistant parents, ‘Ma850’, ‘Ma851’, and ‘Ma852’, and 3 DNA pools of 11, 17,
and 24 resistant progenies (either homozygous or heterozygous for resistance), respectively,
derived from ‘Ma850’, ‘Ma851’, and ‘Ma852’. Data generated from individual libraries
were used to align to ‘DH Pahang’ v1 using SOAPaligner v2.21 [102], and SNPs were called
using SGSautoSNP (Second-Generation Sequencing AutoSNP) [103]. SNP profiles were
visualised in an aligned format using the Integrative Genomics Viewer [104], and gene
models from ‘DH-Pahang’ v1 ‘https://banana-genome-hub.southgreen.fr’ (accessed on
5 March 2023) were used to identify genes and SNPs suitable for marker development.
Restriction enzyme-cutting sites covering the SNP site were identified using ‘NEB cutter
v2.0’ ‘https://nc2.neb.com/NEBcutter2/’ (accessed on 5 March 2023). Enzymes that had
multiple restriction sites within a 400 bp region flanking the SNP on each side were
avoided. Primers flanking a 344–795 bp amplicon were designed using ‘Primer 3’ [105] and
further checked for binding specificity using ‘Oligoanalyzer’ ‘https://sg.idtdna.com/calc/
analyzer’ (accessed on 5 March 2023).

4.6. DNA Extraction and PCR

DNA extraction was performed using a hexadecyltrimethylammonium bromide
(CTAB)-based method [106], with modifications as follows: At the washing step, the
DNA pellet was washed three times with 8 mL of 70% ethanol to reduce residual salt
contaminants and finally resuspended in 400 µL of nuclease free water. The DNA was
quantified on a NanoDrop UV/Visible spectrophotometer for a single absorbance peak
at 260 nm, with a 260 nm/280 nm absorbance ratio of 1.8 to 2.0. DNA was then checked

https://banana-genome-hub.southgreen.fr
https://nc2.neb.com/NEBcutter2/
https://sg.idtdna.com/calc/analyzer
https://sg.idtdna.com/calc/analyzer
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using the broad-range Bradford assay on a Qubit machine and finally visualised on a
0.7% (w/v) agarose gel to check for band shearing and/or contamination with either RNA
or polysaccharide.

PCR was performed using 80–100 ng of DNA template and Dreamtaq (Thermo Fisher
Scientific, Waltham, MA, USA). Running conditions were set according to the manufac-
turer’s recommendations. The primers and the corresponding annealing temperatures were
optimized (Table 1). Forty cycles of PCR were used per reaction. Restriction enzyme digest
was performed on 10 µL PCR product and 2 µL enzymatic mix consisting of 2 units of the
enzyme and an appropriate 10× buffer (Table 1). The digested products were visualised
on a 2% agarose gel with a 1 Kb ladder (New England Biolabs, MA, USA). The markers
were scored in a co-dominant manner, with restriction band patterns differentiating one
homozygous allele from the other. The heterozygotes contained both allelic forms.

4.7. Digital Gene Expression Analysis on Candidate Genes

A transcriptome study was performed by using 12 R and 12 S progenies from Pop-
ulation 1. These progenies were tested against STR4, and their resistance/susceptible
phenotypes were confirmed prior to the start of this experiment. A root-dipping method
using Foc spore suspension was used to inoculate the plants [33], and whole roots in
triplicates (n = 3) were harvested at 0, 1, 3, and 7 days post-inoculation (dpi). Samples
were snap-frozen in liquid nitrogen and then ground to powder using a mortar and pes-
tle. SpectrumTM Plant Total RNA kit (Sigma-Aldrich, MO, USA) was used to extract
RNA. Here, 24 cDNA libraries corresponding to the R and S progenies harvested at the
4 time points were prepared and then sequenced using the Hiseq 4000 platform (Genewiz,
Suzhou, China), generating approximately 48 Mb of 150 bp paired-end reads for each
sample. Adaptor sequences and low-quality reads were filtered out using ‘Fastp’ [107].
Clean paired-end reads were then aligned to ‘DH-Pahang’ v4 reference genome using
‘STAR’ v2.7.10a and default parameters for all except ‘-outFilterMismatchNmax 6’ and
‘-alignIntronMax 10000’ [108]. Non-normalized read counts were tabulated with ‘Feature-
Counts’ software (option: -M -g ID -t gene -p) [109] and then normalised to account for
differences in sequencing depth among samples using the median-of-ratios method [110].
This value was calculated as the gene counts divided by a size factor specific to a sample,
determined by the median ratio of gene counts relative to geometric mean of the gene
counts per gene. DEGs were identified from pairwise comparisons between resistant and
susceptible progenies at each time point using the ‘DESeq2’ R package [111]. Multiple
testing was corrected using the Benjamini and Hochberg method [112]. The p-values were
adjusted (p-adj.) to have a false discovery rate (FDR) cut-off of 0.05.

4.8. Statistical Analyses

The statistical software SPSS v28.0.1.0 (142) (IBM Corp., Armonk, NY, USA) was used
to perform the statistical analysis described in this study. One-way ANOVA was performed
in a pair-wise manner, with phenotype set as a dependent variable and marker-defined
genotypes (B/H) as factors, to compare the means of STR4 and TR4 sensitivity at these loci.
Any ‘A’ alleles were considered as ‘H’ for the purpose of statistical analysis, as resistance
is completely dominant over susceptibility at this locus. The eta-squared (η2) values on
the phenotype were estimated on the basis of the fixed-effects model and reflected the
phenotypic variation explained at each marker-defined locus. To analyze the STR4 and TR4
phenotypes of the recombinants, Waller–Duncan’s multiple range testing was performed
as a post hoc test to separate the means of the recombinants into subsets by least significant
difference (LSD). Recombinants with n < 2 were excluded from the analysis. The harmonic
mean sample size was estimated and used to account for the unequal variances associated
with the uneven sample sizes (n) of the recombinants. The type 1/type 2 error seriousness
ratio (k-ratio) was set to 100 (α = 0.05).
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5. Conclusions

This study is the first-ever report of marker-assisted selection of STR4- and TR4-
resistant Musa accessions. The availability of molecular makers closely linked to the
resistance locus can now facilitate the rapid screening of potentially TR4-resistant genotypes
and thereby reduce the generation time required for phenotypic and field trials. However,
this marker can detect resistances originating from M. acuminata ssp. malaccensis at this
locus only. Given the prevalence of TR4 now threatening the entire banana industry
worldwide, identification of candidate receptors, such as proteins and kinases with strong
transcriptional evidence linking them to resistance at this locus, provides the first step
towards molecular dissection of resistance mediated by these R genes in banana.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12060820/s1, Table S1: ‘DH Pahang’ v4 gene models
within the candidate region; Table S2: Enrichment of Gene Ontology (GO) terms detected in the
candidate region using p and q cutoffs of 0.05 and 0.1, respectively; Table S3: Screening of the IITA
germplasm collection (Uganda) using the A-genome-specific marker 29730-A; Table S4: IITA Musa
acuminata ssp. banksii collection from Ibadan, Nigeria, screened with the CAPS marker, 29730.
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