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Abstract: An outbreak of enteric disease of unknown etiology with 60% morbidity and 8% mortality
in weaning piglets occurred in November 2015 on a farm in Buryat Republic, Russia. Metagenomic
sequencing revealed the presence of rotavirus B in feces from diseased piglets while no other
pathogens were identified. Clinical disease was reproduced in experimentally infected piglets,
yielding the 11 RVB gene segments for strain Buryat15, with an RVB genotype constellation of
G12-P[4]-I13-R4-C4-M4-A8-N10-T4-E4-H7. This genotype constellation has also been identified in the
United States. While the Buryat15 VP7 protein lacked unique amino acid differences in the predicted
neutralizing epitopes compared to the previously published swine RVB G12 strains, this report of
RVB in Russian swine increases our epidemiological knowledge on the global prevalence and genetic
diversity of RVB.
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1. Introduction

Rotaviruses (RVs) were first isolated in 1973 from children in Australia [1,2]. After the
identification in swine two years later [3], RVs were recognized as the major etiological agents of
acute viral gastroenteritis in humans and domesticated livestock worldwide [4–6]. Belonging to the
Reoviridae family, the RV genome is composed of 11 double stranded RNA segments [7]. Eight RV
species (RVA-RVH) and two tentative species (RVI and RVJ) have been identified by sequence-based
classification of inner capsid protein 6 (VP6) [8–10]. RVA, RVB, RVC and RVH have been detected in
both humans and animals while RVD-RVG, RVI, and RVJ have only been found in animals. Five out of
ten RV species have been described in pigs (RVA, RVB, RVC, RVE, and RVH) [11–13].

Of the RV species, RVA is most common and well characterized both in animals and humans
due to its high prevalence and pathogenicity. Porcine RVA was isolated in 1975 [3] followed by
identification of swine RVC [14] and RVB [15,16]. A recent two-year study found RVB in 31.8% of
diarrheic samples from North American swine, indicating higher detection of RVB than previously
observed [16,17]. Similar detection rates of porcine RVB (25.9%) have been identified in Japan [18].
Although identified at lower rates than in North America and Japan, swine RVB has also been detected
in Europe, South Africa, India, and Brazil [19–22].

Despite unexpectedly high detection rates of RVB in swine, RVB pathogenesis has only been
established in gnotobiotic and caesarian-derived colostrum-deprived piglets [16,23]. The inability
to cultivate RVB and limited whole genome sequence data has hampered an understanding of
transmission and evolution within pigs. In order to fill these knowledge gaps, this study used
metagenomic sequencing to identify porcine RVB from an enteric outbreak in a farm from southern
Siberia, determined its disease-causing ability using experimental inoculation experiments, and studied
its phylogenetic relationship with previously characterized swine RVB strains.

2. Results

During late autumn 2015, an outbreak of enteric disease occurred in three-day old suckling piglets
on a farm located in Buryat Republic, Russia. Approximately 60% of litters had watery diarrhea
(lasting 3–5 days), and the mortality rate was approximately 8%. The surviving piglets had reduced
weight gain and a delay of being sent to market. Fecal and intestinal samples from infected piglets
were submitted to the Diagnostic and Prevention Research Institute for Human and Animal Diseases to
identify the cause of the disease. The samples tested negative for TGEV (Transmissible Gastroenteritis
Virus), RVA, ASFV (African Swine Fever Virus), PCV-2 (Porcine Circovirus Type 2), CSFV (Classical
Swine Fever Virus), and PRCV (Porcine Respiratory Coronavirus) using ELISA and PCR commercial
kits from Vetbiochim (Moscow, Russia). Fecal samples were passaged on Vero, ST, and PK-15. Cell
culture was halted after six blind passages since the cytopathic effect (CPE) was not observed. The fecal
and intestinal samples were negative for bacterial pathogens on blood agar plates. Since a pathogen
was not identified as the causative agent of disease, the purified RNA from the intestinal samples
were submitted for Next Generation Sequencing (NGS). De novo assembly of the reads generated two
contigs, which upon BLAST (NCBI) analysis yielded 83% and 86% nucleotide identities to the VP3 and
VP4 genes of porcine RVB strain LS00011_Ohio, respectively. No other pathogens were detected in the
NGS data.

A piglet was infected with the filtered fecal material and commingled with a mock-inoculated
piglet to investigate the etiology and transmission associated with porcine RVB strain Buryat15.
The fecal infected piglet developed diarrhea within 12 h while the mock-inoculated piglet developed
diarrhea 24 h post-inoculation (PI) due to being commingled with the infected piglet. The small and
large intestinal homogenates from the two pigs tested negative by the previously described commercial
ELISA and PCR kits from Vetbiochim. Passage of the small and large intestinal homogenates in the
Vero, ST, and PK-15 cells lacked CPE after six passages. Testing of the intestinal homogenates by NGS
identified the addition of nine gene segments of RVB strain Buryat15. NGS did not identify any other
pathogens in the intestinal homogenates.
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The eleven gene segments of Buryat15 had the highest nucleotide identities with
genes of RVB available through GenBank and were assigned a genotype constellation of
G12-P[4]-I13-R4-C4-M4-A8-N10-T4-E4-H7 based on the whole RVB genome nucleotide cutoff values
proposed by Shepherd et al. (manuscript in review). Thus, phylogenetic analysis focused on
comparison with strains of porcine origin. Phylogenetic analysis of strain Buryat15 revealed a porcine
ancestry of mixed geographic origins (Figure 1A–K).
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Figure 1. Phylogenetic trees for the 11 gene segments of swine RVB (A–K) with bootstrap values 
represented at the nodes (500 replicates). Bootstrap values below 80% are not shown. Selected 
genotype clades were clasped and represented by triangles. Russian strain Buryat15 is represented in 
bolded red. Scale bars represent 10 nucleotide changes per nucleotide site. Genotypes are labeled 
with brackets for all strains except VP7, where G genotypes are listed in the strain name. 

The VP7 gene shared close common ancestors with Japanese strains while the NSP2 gene was 
most closely related to a porcine strain from India. The VP6 gene branched with Japanese strain 
PB-107-G16, but both fell within a larger clade of United States strains. The NSP5 gene was most 
closely related to the cogent gene of a porcine strain from Vietnam. The VP1 gene shared a clade 
with swine RVB strains from Vietnam and United States. The NSP3 gene shared a large clade with 
swine RVB strains from the United States. The tissue culture adapted strain USA/LS00011_Ohio was 
closely related to the Buryat15 VP3 gene segment. The VP4, VP2, and NSP4 genes from Buryat15 
lacked close neighbors in the phylogenetic trees.  

To explore the antigenic diversity of Buryat15, the VP7 amino acid identities were compared to 
previously characterized swine RVB strains of the G12 genotype at predicted antigenic sites [24] 
(Table 1). Buryat15 has an asparagine at the hypervariable residue 65, which is only shared by RVB 
strains isolated in Illinois, USA. Strains Buryat15 and Japanese PB-S24-11 have a glutamic acid at 
residue 91 while all the RVB strains have an alanine residue.

Figure 1. Phylogenetic trees for the 11 gene segments of swine RVB (A–K) with bootstrap values
represented at the nodes (500 replicates). Bootstrap values below 80% are not shown. Selected genotype
clades were clasped and represented by triangles. Russian strain Buryat15 is represented in bolded red.
Scale bars represent 10 nucleotide changes per nucleotide site. Genotypes are labeled with brackets for
all strains except VP7, where G genotypes are listed in the strain name.

The VP7 gene shared close common ancestors with Japanese strains while the NSP2 gene was
most closely related to a porcine strain from India. The VP6 gene branched with Japanese strain
PB-107-G16, but both fell within a larger clade of United States strains. The NSP5 gene was most
closely related to the cogent gene of a porcine strain from Vietnam. The VP1 gene shared a clade with
swine RVB strains from Vietnam and United States. The NSP3 gene shared a large clade with swine
RVB strains from the United States. The tissue culture adapted strain USA/LS00011_Ohio was closely
related to the Buryat15 VP3 gene segment. The VP4, VP2, and NSP4 genes from Buryat15 lacked close
neighbors in the phylogenetic trees.

To explore the antigenic diversity of Buryat15, the VP7 amino acid identities were compared
to previously characterized swine RVB strains of the G12 genotype at predicted antigenic sites [24]
(Table 1). Buryat15 has an asparagine at the hypervariable residue 65, which is only shared by RVB
strains isolated in Illinois, USA. Strains Buryat15 and Japanese PB-S24-11 have a glutamic acid at
residue 91 while all the RVB strains have an alanine residue.
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Table 1. Comparison of the predicted antigenic sites on VP7 [24] for swine RVB G12 strains. Dots represent the same residues compared to the consensus, determined
by the majority amino acid residue of the alignment.

Predicted Epitope Location 33 34 36 37 39 40 65 66 67 89 90 91 92 130 158 159 160 161 179 180 181

Consensus D D N D K Q X N Y K Y A Y D P D R R S N N

Russia/Buryat15/2015 . . . . . . N . . . . E . . . . . . . . .
JPN/PB-S24-11/2002 . . . . E . D . . . . E . . . . . . . . .
JPN/PB-S40-1/2003 . . T E . . V S . . . . . . . . . . . . .
CAN/11/2016 . . T . . . D Q . . . . . . . N . . . S .
USA/PA-30/2012 . . T . . K D . . . . . . . . . . . . . .
USA/MN-129/2015 . . T . . K D . . . . . . . . . . . . . .
USA/MN-128/2015 . . . . . . E . . . . . . . . N . . . . .
USA/IL-13/2012 . . T . . K N D . . . . . . . . . . . . .
USA/IL-5/2011 . . T . . K N D . . . . . . . . . . . . .
USA/IL-6/2011 . . T . . K N D . . . . . . . . . . . . .
USA/IL-4/2011 . . T . . K N D . . . . . . . . . . . . .
USA/IL-14/2012 . . T . . K N D . . . . . . . . . . . . .
USA/IN-140/2015 . . . . . . G . . . . . . . . . . . . . .
USA/OH-119/2014 . . . . . . Q . . . . . . . . . . . . . .
USA/PA-34/2013 . . . . . . E . . . . . . . . N . . . . .
USA/IA-25/2012 . . . . . . D . . . . . . . . N . . . . .
USA/NE-115/2014 . . . . . . E . . . . . . . . N . . . . .
USA/MS-76/2013 . . . . . . E . . . . . . . . N . . . . .
USA/PA09-10/2009 . . T . . K D . . . . . . . . . . . . . .
USA/MO09-21/2009 . . T . . K D . . . . . . . . . . . . . .
USA/OK09-50/2009 . . . . . . E . . . . . . . . N . . . . .
USA/MN09-54/2009 . . . . . . Q . . . . . . . . . . . . S .
USA/MN09-30/2009 . . . . . . I . . . . . . . . . . . . . .
USA/MN09-27/2009 . . . . . . Q . . . . . . . . . . . . . .
USA/MN09-24/2009 . . . . . . E . . . . . . . . N . . . . .
USA/MN09-68/2009 . . . . . . E . . . . . . . . N . . . . .
USA/LS00011_Ohio/XXXX . . T . . K S D . . . . . . . . . . . . .
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3. Discussion

Limited information is available for non-RVA species in human and domesticated livestock from
Russia. A single manuscript described RVC in humans from the Novosibirsk and Omsk regions of
Russia [25] while RVB in Russia has so far not been reported. Until recently, RVB was not considered an
important pathogen in pigs, although early research demonstrated pathogenesis of RVB in gnotobiotic
piglets [16]. While RVC infections are common in neonatal piglets, outbreaks of RVB in neonatal
piglets are not typically reported as RVB infections are predominantly identified in older pigs [11].
Our results indicate that RVB is capable of causing enteric disease in conventionally raised, neonatal
piglets and highlight the ability of RVB to cause and replicate clinical disease in piglets. These results
further improve our understanding of the complexity associated with RVB as a swine pathogen.

The clinical disease reproduced by in conventionally raised piglets induced severe watery diarrhea
12 h PI. While the samples were negative for other bacterial and viral pathogens by traditional detection
methods and NGS, it is still possible that RVB infection may cause disease in concert with other RV
species or bacteria. However, several factors suggest RVB was the causative agent of enteric disease
in the piglets. First, no other pathogens were identified in the NGS data, suggesting that RVB was
the main disease-causing pathogen in the sample. Moreover, the purified fecal sample used to infect
the piglet did not contain bacteria, and RVB RNA was detected in the mock-inoculated, commingled
piglet, suggesting transmission of RVB. However, IHC staining or in situ hybridization is necessary to
confirm this hypothesis and were not available at the time of the study.

RVB strains from different host species are genetically different from one another [26–28], which
was consistent with our analysis since Buryat15 had the highest nucleotide identity with swine RVB
strains. The long branches with Buryat15 in the VP2, VP4, and NSP4 phylogenetic trees indicate a
lack of information on the genetic diversity of porcine RVB strains. The Buryat15 gene segments
clustered closely with porcine RVB strains from different countries including Vietnam, India, Japan,
and the United States. Reassortment is a common event within RV species [27,29–31], and swine RVB
strains from India and the United States share recent common ancestors with Japanese porcine RVB
strains [20,31]. A similar genetic relationship between Japanese and North American swine RVC has
been demonstrated as well [32].

The genotype constellation of Buryat15 has not been identified in swine before but is closely related
to constellations previously identified in swine from the United States (Shepherd et al., manuscript
in review). Buryat15 and tissue culture strain LS00011_Ohio share the same genotypes for all genes
except for NSP3 (T4 versus T6, respectively) while Buryat15 and United States strains IL11, IL13, IL5,
and IL7 share genotypes for all genes besides VP7. The Russian strain was also related to United States
swine based on its similarity at the predicted antigenic site to swine RVB strains from the USA [24].
However, the number of RVB gene segments available for comparison is limited, especially for several
of the NSP gene segments, and a finer resolution of RVB evolution and antigenic diversity may be
obtained with sequencing additional RVB strains.

Although the NGS data strongly suggest that RVB was responsible for the diarrhea outbreak in
the Buryat Republic, immunofluorescent staining for the RVB antigens and in situ hybridization of
the nucleic acid in fixed enterocytes from clinical and experimental animals would confirm infection
and viral replication. Nevertheless, this study demonstrates the ability of an RVB strain to cause
disease within conventionally raised piglets and illustrates the potential of reassortment within the
evolutionary history of RVB in swine. Future epidemiological studies should be performed to continue
characterizing the prevalence and diversity of Russian and global RVB strains in swine.

4. Materials and Methods

In November 2015, severe watery diarrhea was reported in newborn piglets (3–5 days of
age). Samples were submitted to Diagnostic and Prevention Research Institute for Human and
Animal Diseases for diagnostic testing. ELISA and PCR diagnostic kits were used to detect the
following: TGEV and RVA, ELISA; ASFV, ELISA and PCR; PCV2, PCR; CSFV, PCR; and TGEV/PRCV,
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PCR; were used according to manufacturer recommendation (Vetbiochim, Moscow, Russia). RNA
extraction was performed with GeneJET Viral DNA/RNA Purification Kit (Thermo Scientific,
Waltham, MA, USA). Once RVB was identified by NGS, subsequent samples were tested using
RVB primers by PCR (VP4-I-823-842-F: CGTATCCAAAGCCAACGGGA and VP4-I-1008-1028-R:
TGGGCCCTTATTTTCCAGTGT), which were designed using the primer-BLAST online software and
Buryat15 VP4 sequence KU744407. Synthesis of cDNA was performed according to a random primer
protocol using RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific). PCR was
carried out using True-Start DNA polymerase with 10 mM dNTPs mix (Thermo Scientific) according
to the manufacturer’s protocols.

Fecal samples from diarrheic piglets were diluted 1:10 in minimal essential medium (MEM)
containing 1% actinomycin and 1% non-essential amino acids (Gibco, Grand Island, NY, USA) and
clarified by centrifugation. Supernatants were filtered through 0.8 µm, 0.45 µm and 0.2 µm syringe
filters sequentially, serial diluted, and added to five-day old monolayers of Vero, Swine testicular
cells (ST) and porcine kidney 15 (PK-15). Six blind passages were performed with the cell lines and
supernatants were saved at −70 ◦C.

To establish pathogenicity of the unknown virus, a single ten-day-old conventionally raised piglet
was infected with 0.2 µm filtered, 1:10 diluted fecal sample while a single piglet was mock-infected
with MEM. The two piglets were comingled to demonstrate transmission of pathological agent
between piglets under experimental conditions. The sample was tested for the absence of bacterial
contamination by seeding the filtered dilutions on blood agar plates. Piglets were monitored every
30 min for clinical signs of diarrhea. The piglets were sacrificed after the onset of diarrhea, and
intestinal samples were collected.

For NGS, previously extracted RNA underwent cDNA synthesis according to random primer
protocol was performed on RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo scientific).
PCR was carried out using True-Start DNA polymerase with 10 mM dNTPs mix and 10 pmol specific
primers per reaction (Thermo Scientific), according to manufacturer’s protocols. TruSeq Stranded Total
RNA Library Prep Kit was used with 1 µg total RNA for the construction of libraries according to the
manufacturer’s protocol. For rRNA-depleted library, rRNA was removed from 2.5 µg total RNA using
Ribo-Zero rRNA Removal Kit (mixture 1:1 Human/Mouse/Rat probe and Bacteria probe), according
to the manufacturer’s protocol (with probe concentration for epidemiology kit protocol). All cDNA
libraries were sequenced using an Illumina HiSeq2000 (Illumina, San Diego, CA, USA), producing
101 × 7 × 101 bp paired-end reads with multiplexing. Reads were trimmed using default parameters
with CLC Genomics Workbench 8.5.1 (Qiagen Bioinformatics, Redwood City, CA, USA). Trimmed
reads were de novo assembled using a word size of 64, bubble size of 100, and minimum contig length
of 300. The contigs were subject to the BLASTN search. RVB sequences were deposited into GenBank
with the accession numbers KU744406 (VP3), KU744407 (VP4), KX869730-KX869737 (VP1, VP6, VP7,
NSP1-NSP5), and MH093644 (VP2).

The newly generated RVB sequences were aligned using MUSCLE in Geneious (version 9.6.1,
Newark, NJ, USA) [33] with porcine RVB sequences that had at least 80% of the open reading frame
available in GenBank (Supplementary Tables S1–S11). Maximum likelihood phylogenetic trees were
made with the RAxML method using a Generalized Time Reversible gamma model of nucleotide
substitution and 500 bootstrap replicates. The swine RVB G12 strains were translated and aligned with
Buryat15 to compare the 21 predicted antigenic sites of RVB VP7 [24].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/7/2/46/s1,
Tables S1–S11: Genbank accession numbers of swine RVB strains used in phylogenetic analysis.
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