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Abstract: Salmonella enterica is a major cause of gastroenteritis usually caused by animal-based
contaminated foods. Since the current passive surveillance is not sufficient to detect all infections
and infection sources, we determined the prevalence of Salmonella isolated from sewage influent of
wastewater treatment plants (WWTPs) and compared the characteristics of human and food isolates
to identify the infection sources. Sewage influent samples were collected monthly from two WWTPs
located in the Yamanashi Prefecture, Japan, for three years. Serotypes, antimicrobial resistances,
isolation periods, isolated areas, and pulsed-field gel electrophoresis patterns of six isolates belonging
to five serotypes were consistent with those of the isolates from patients. Real-time PCR for Salmonella
indicated that sewage influents reflect cases of patients infected with Salmonella, including unreported
cases. Serovars Schwarzengrund and Anatum were predominant in sewage, but not in humans,
and their characteristics were closely related or identical to those isolated from poultry heart and liver,
respectively. These results suggest that sewage influent contains Salmonella isolates from humans
and that some originated from unreported human cases infected by poultry-associated products.
Therefore, it is necessary to take countermeasures against Salmonella infection based on the unreported
cases, which would be disclosed by analysis of sewage influent.
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1. Introduction

Salmonella enterica is one of the most important enteropathogenic bacteria, causing approximately
94 million infections and 155,000 deaths annually worldwide [1]. There are more than 1500 serovars
in the subspecies enterica, and 99% of them are responsible for human and animal infections [2,3].
In Japan, Salmonella is the third leading cause of bacterial food poisoning for a number of patients,
as per the Ministry of Health, Labor, and Welfare [4]. As the main reservoir is domestic and wild
animals, foods of animal origin, such as beef, pork, poultry, and eggs, are primary sources of foodborne
illnesses [3,5–8]. Among these foods, the prevalence of Salmonella in poultry meat in Japan is the
highest [7,8]. Since consumption of raw poultry and organ meats is becoming a novel diet in Japan [8],
it is important to identify infection sources by obtaining detailed information concerning strains
isolated from patients and suspicious foods to prevent persistent infections from these foods. However,
the current passive surveillance system is inadequate to collect all these isolates and to observe all
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the cases associated with Salmonella or other pathogens [9], because few asymptomatic cases may be
reported to public health officials [10].

Thus far, many investigations have been conducted to estimate the incidence of patients with
viruses or bacteria by detecting these pathogens from influents of wastewater treatment plants
(WWTPs) [11–23]. While viruses express host specificity, bacteria can grow if adequate conditions (i.e.,
temperature, nutrients, and time) are satisfied. Thus, sources of bacteria isolated from influents cannot
be determined [10], requiring not only the number of pathogens but also the quality of the isolates
from influents to provide an accurate estimate of pathogenic bacterial infections.

This study aimed to determine the prevalence of Salmonella isolated from two WWTP influents
and to compare the characteristics of these isolates with those from humans in the same study areas for
pathogen monitoring and infection source consideration.

2. Results

2.1. Prevalence of Salmonella Isolates from Sewage Influent Samples and Humans
The frequency of Salmonella isolation from sewage influent samples was 99% (71/72),

and 689 isolates were grouped into 38 serotypes and 10 untypable strains. Of 157 representative strains
comprising 73 and 84 isolates from WWTP-A and WWTP-B, respectively, serovar Schwarzengrund
was the most common (11%), followed by Anatum (9%) and then Newport (5%), as presented in
Table 1. There was no apparent difference observed in serotypes between isolates from WWTP-A
and WWTP-B. Consecutive detections of the same serotype were observed in 15 serotypes (40%) in
each WWTP, even in conditions where only one isolate was isolated in 14 serotypes. Six isolates of
untypable strain O13:z29:-, serotyped as Agoueve or Cubana, were detected in 7 months, including
5 consecutive months, in samples from WWTP-B.

Conversely, isolates from humans within the same sewage sampling period were grouped into
26 serotypes and 4 untypable strains. Of 77 isolates comprising 46 isolates from humans living in
area A, 16 isolates from those in area B, and 15 isolates from those in other areas, serovar Agona was
the most common (9%), followed by Stanley (8%), and then untypable strain O4:i:- (8%), which was
recognized as a monophasic variant of serovar Typhimurium (Table 2).

Comparing the prevalence of the isolates from sewage samples with that of the isolates from
humans, 105 (67%) of 157 sewage isolates and 56 (73%) of 77 human isolates belonging to 19 serotypes
were shared, and of these serotypes, 13 serotypes, including Agona, Bareilly, Bovismorbificans,
Brandenburg, Colindale, Infantis, Litchfield, Mbandaka, Newport, Saintpaul, Schwarzengrund,
Stanley, and untypable (O8:-:1,5), were isolated within 1-month of each other (Table 3).

2.2. Antimicrobial Susceptibility
Results of antimicrobial susceptibilities of representative strains revealed that 44 (28%) and 27

(35%) isolates from the concurrent sampling of sewage and humans, respectively, were resistant
against at least one antimicrobial agent. Isolates from sewage samples were most frequently resistant
against tetracycline (TC) (25%), followed by streptomycin (SM) (19%), and then kanamycin (KM) (13%),
whereas isolates from humans were most frequently resistant against SM (27%), followed by TC (25%),
and then ampicillin (ABPC) (16%). Resistance against third-generation cephems (ceftazidime (CAZ)
and/or cefotaxime (CTX)) was observed for three (Blockley) and one (Infantis) isolate(s) from sewage
and humans, respectively, whereas no resistance was observed against carbapenems (imipenem (IPM)
and meropenem (MEPM)), fluoroquinolones (ciprofloxacin (CPFX) and norfloxacin (NFLX)), and
colistin (CL). In both sources, serovars Agona, Infantis, and Schwarzengrund exhibited a high rate
of resistance, ranging from 57% to 100%, whereas serovars Stanley, Saintpaul, Bareilly, and Newport
exhibited a lower rate of resistance (0%–40%) (Table 2). The most frequently observed antimicrobial
resistance pattern of serovar Agona was SM and TC resistance; serovar Schwarzengrund was resistant
against KM, SM, sulfamethoxazole/trimethoprim (ST), and TC, whereas serovar Infantis exhibited
variable antimicrobial patterns.
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Table 1. Prevalence of Salmonella spp. isolated from sewage influent samples at wastewater treatment plant (WWTP)-A and WWTP-B.

Serotype
2016 2017 2018 2019

Total (%)
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

Schwarz-engrund B - A - - B B - A A, B A - B B - - - - - - - - - - A - A - A A A - - A, B - - 17 (11)
Anatum A A - A - - A - - - - - - - B B B A - A A - - A, B - - B - - - - - B - - - 14 (9)
Newport - A - - - - B - - - - - - - - - - - - - - - A, B A, B - - - A - - - - - - B - 8 (5)
Saintpaul - - - - A - B - A - - B - B - A - B - - - - - - - - - - - - - - - - - - 7 (5)

Agona - B - - - - - B B A - B - - B - - - A - - - - - - - - - - - - - - - - - 7 (5)
Thompson - - - - B B - - - - - - - - - - - - - - A - - - - - B - B A - A - - - - 7 (5)

Bareilly - - - A - - - - - - - - - - A - - - - - - A - - A - A B - - - B - - - - 7 (5)
Infantis - - - - - - - - - - - - B - - A A - - - - - - - B - - - A - A - - - - - 6 (4)

Braenderup - - - - - - - - - - - - - B - - - - - - - - - - - - - - B B A, B - - - - - 5 (3)
Chester - - - - - B - B B - - A - - - - - - - - - - - - - - - - - - - - - B - - 5 (3)
Stanley - - A - - - A - A - - - - A - - - - - - - - - - - - - - - - - - - - - - 4 (3)

Mikaw-ashima - - - - - - - - - B - - - - - - - - - - - - - - - B B - - - - B - - - - 4 (3)
Corvallis - - - - - - A - A - - - - - - - - - - - - - - - A B - - - - - - - - - - 4 (3)

Hvittingfoss - - B - - - - - - - A - A - - - - - - - - - - - - - - - - - - - - - - - 3 (2)
Blockley - - - - - - - - B B B - - - - - - - - - - - - - - - - - - - - - - - - - 3 (2)
London - - - B - - - - B - - - - - - - - - - - - B - - - - - - - - - - - - - - 3 (2)

Mbandaka - - - - - - - - - - - - - - - - - - - B - - A - - - - - - - - - B - - - 3 ( 2)
Cerro - - - - - - - - - - - - - A A - - - - - - - - - - A - - - - - - - - - - 3 ( 2)

Altona - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A A - B - 3 ( 2)
Rissen - - - - - A - - - - - B - - - - - - - - - - - - - - - - - - - - - - - - 2 ( 1)
Vitkin - - - - - - - - - - - - - - - - - - - - - B B - - - - - - - - - - - - - 2 ( 1)

Colindale - - - - - - - - - - - - - - - - - - - - - - - - - A, B - - - - - - - - - - 2 ( 1)
Brande-nburg - - - - - - - - - - - - - - - - - - - - - - - - - - - - A - - - - A - - 2 ( 1)

Bovismo-rbificans - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A, B 2 ( 1)
Litchfield - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 ( 1)
Aberdeen - - - - - - B - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 ( 1)

Typhim-urium - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A - - - - 1 ( 1)
Derby - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B - - - - 1 ( 1)
Ebrie - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B - - 1 ( 1)

Javiana - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A - - 1 ( 1)
Untypable (O13:z29:-) - - - - - - - - - - - - - - - - - - B - B A, B B B B - - - - - - - - - - - 7 ( 5)
Untypable (O7:HNM) - - - - - - - - - - - - - - - - B B - - - - - - - - - - A - - - - - - - 3 ( 2)
Untypable (O8:-:1,5) - - - - - - - - - - - - - B - - - - - - - - - - - - - - - - - - - - - - 1 ( 1)

Others - - A - - - B - - B - A B - - - - B B - A - - B A - - - - A, B - B B B A A 17 (11)

Total 2 3 5 3 2 4 8 2 8 6 3 5 4 6 4 3 3 4 3 2 4 5 5 6 6 5 5 2 6 5 4 7 4 7 3 3 157

A shows isolation from WWTP-A; B shows isolation from WWTP-B. Total is not 100% due to the approximation of values.
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Table 2. Antimicrobial resistance of the isolates from sewage influents and humans.

Serotype

Sources

Sewage Human

No. of
Isolates (%)

No. of Antimicrobial-Resistant
Isolates

(Rate of Resistance; %)

No. of
Isolates (%)

No. of Antimicrobial-Resistant
Isolates

(Rate of Resistance; %)
Agona 7 (5) 4 (57) 7 (9) 4 (57)
Stanley 4 (3) 0 6 (8) 0

Saintpaul 7 (5) 0 5 (7) 2 (40)
Brandenburg 2 (1) 0 5 (7) 0

Thompson 4 (3) 1 (25) 4 (5) 0
Typhimurium 1 (1) 1 (100) 4 (5) 2 (50)

Enteritidis 0 (0) 0 4 (5) 0
Bareilly 7 (5) 0 4 (5) 0
Infantis 6 (4) 4 (67) 4 (5) 3 (75)
Nagoya 0 (0) 0 3 (4) 0

Newport 8 (5) 2 (25) 3 (4) 1 (33)
Blockley 3 (2) 3 (100) 2 (3) 2 (100)

Mikawashima 1 (1) 0 2 (3) 0
Litchfield 1 (1) 0 2 (3) 1 (50)

Bovismorbificans 2 (1) 0 2 (3) 0
Give 0 (0) 0 1 (1) 1 (100)

Havana 1 (1) 1 (100) 1 (1) 0
Weltevreden 0 (0) 0 1 (1) 0
Braenderup 5 (3) 1 (20) 1 (1) 0
Manhattan 0 (0) 0 1 (1) 1 (100)

Schwarzengrund 17 (11) 16 (94) 1 (1) 1 (100)
Mbandaka 3 (2) 0 1 (1) 0
Colindale 2 (1) 0 1 (1) 0
Narashino 0 (0) 0 1 (1) 1 (100)

Senftenberg 0 (0) 0 1 (1) 0
Willemstad 0 (0) 0 1 (1) 1 (100)

Untypable (O4:i:-) 0 (0) 0 6 (8) 6 (100)
Untypable (O8:-:1,5) 1 (1) 0 1 (1) 0
Untypable (O8:e,h:-) 0 (0) 0 1 (1) 0

Untypable (OUT:r:1,5) 0 (0) 0 1 (1) 1 (100)
Others 75 (48) 11 (15) 0 0

Total 157 44 (28) 77 27 (35)

Highlighted serotypes show common isolations between sewage and humans. Total is not 100% due to the
approximation of values.
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Table 3. Isolation months and number of isolates of shared serotypes.

Serotype Sources
2016 2017 2018 2019

Total
6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7

Agona Sewage - - 1 - - - - - 1 1 1 - 1 - - 1 - - - 1 - - - - - - - - - - - - - - - - - - 7
Human 1 - - - - - - - - - - 1 - 1 - 1 - - - - - - - - - - - - - - - - - 1 - - 1 1 7

Bareilly Sewage - - - - 1 - - - - - - - - - - 1 - - - - - - 1 - - 1 - 1 1 - - - 1 - - - - - 7
Human - - - - - - - - - - - - - - - - - 1 - 1 - - - - - 1 - - - - - - - - - - 1 - 4

Bovismorbificans
Sewage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - 2
Human - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - 2

Brandenburg Sewage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 1 - - - 2
Human - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - 4

Colindale
Sewage - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - 2
Human - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 1

Infantis
Sewage - - - - - - - - - - - - - 1 - - 1 1 - - - - - - - 1 - - - 1 - 1 - - - - - - 6
Human - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - 1 3

Litchfield
Sewage - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
Human - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - 2

Mbandaka
Sewage - - - - - - - - - - - - - - - - - - - - 1 - - 1 - - - - - - - - - 1 - - - - 3
Human - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - 1

Newport Sewage - - 1 - - - - 1 - - - - - - - - - - - - - - - 2 2 - - - 1 - - - - - - 1 - - 8
Human - - - 1 - - - - - - - - - - - - - - - - - 1 - - - - - 1 - - - - - - - - - - 3

Saintpaul Sewage - - - - - 1 - 1 - 1 - - 1 - 1 - 1 - 1 - - - - - - - - - - - - - - - - - - - 7
Human - - 2 - - - - - - - - - - - 2 - - - - - - - - - - - - - 1 - - - - - - - - - 5

Schwarzengrund Sewage - 1 - 1 - - 1 1 - 1 2 1 - 1 1 - - - - - - - - - - 1 - 1 - 1 1 1 - - 1 - 1 - 17
Human - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - 1

Stanley Sewage - - - 1 - - - 1 - 1 - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 4
Human - - - - - - - - - 1 - - - - 1 2 - - - - - - - - 1 - - - - - - - - - - - - 1 6

Untypable
(O8:-:1,5)

Sewage - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1
Human - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 1

Highlighted numbers show the isolates within a 1-month period from each other.
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2.3. Pulsed-Field Gel Electrophoresis (PFGE) Analysis

PFGE analysis of representative strains of the 13 shared serotypes among humans, isolated within
a 1-month period, revealed 12 PFGE patterns, belonging to serovars Agona, Bareilly, Bovismorbificans,
Brandenburg, Infantis, Mbandaka, Newport, Stanley, and Schwarzengrund; among the same serotypes,
isolates from sewage were indistinguishable from those from humans, but strains isolated in the other
periods (2000–2011) were not identical to any isolates. Additionally, among these isolates, two each of
Agona and Bovismorbificans and one each of Brandenburg, Infantis, Mbandaka, and Newport were
isolated within a 1-month period from those from humans (Figure 1a, c–g); furthermore, the isolated
area and antimicrobial resistance pattern of two Bovismorbificans and one each of Brandenburg,
Infantis, Mbandaka, and Newport were in agreement with those from humans. In serovar Colindale,
the PFGE patterns of two isolates from sewage were indistinguishable from each other. Although
isolates did not have identical PFGE patterns, the pattern difference between isolates from sewage and
humans was only two bands, and their similarity was 90%.

To estimate the sources of the isolates from sewage, the serovar Agona strain, designated as
14-8, which was isolated from a human in 2014 and clustered with strains isolated from broilers
using PFGE analysis and whole-genome sequencing [24,25], was also analyzed. The PFGE pattern
of the 14-8 strain was closely related to those of two and four isolates from sewage and humans,
respectively, and the antimicrobial resistance pattern was consistent with these six isolates (Figure 1a).
Additionally, the PFGE pattern of strain 16-95 isolated from retail poultry heart and belonging to
serovar Schwarzengrund, which was the most frequent serotype isolated from sewage, showed high
similarity to PFGE patterns of 10 isolates from sewage and one from human, and the antimicrobial
resistance pattern was consistent with two isolates from sewage and one isolate from human (Figure 1h).
Moreover, the PFGE pattern of the 16-76 strain, isolated from retail poultry liver and belonging to
serovar Anatum, which was the second frequent serotype isolated from sewage, was identical to
those of 13 isolates from sewage, and no antimicrobial resistance was observed among these isolates
(Figure 1b).
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Figure 1. Dendrograms of pulsed-field gel electrophoresis (PFGE) patterns digested with XbaI. Area
A and area B, where WWTP-A or WWTP-B is located, respectively; area O, areas other than areas A
and B; area U, unknown area. Black squares show resistance against antimicrobial agents. (a), Agona;
(b), Anatum; (c), Bovismorbificans; (d), Brandenburg; (e), Infantis; (f), Mbandaka; (g), Newport;
(h), Schwarzengrund.
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2.4. Quantification of Salmonella from Sewage Influent Samples

The Salmonella-specific gene (invA) was detected by real-time PCR in all but three WWTP-B
samples. The average invA concentration of samples from WWTP-A was significantly higher than
that from WWTP-B samples (p < 0.01). Correlations between invA concentration and the number of
human isolates in each month were not significant (p = 0.83 in WWTP-A, 0.62 in WWTP-B) (Figure 2a).
Although the seasonal trend of invA concentration was not observed, fluctuation in invA concentration
was significantly observed in a comparison with that of sfmD (p < 0.01), which is a specific gene of
Escherichia coli (Figure 2b).
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Figure 2. Concentration of invA in sewage influent from WWTP-A and WWTP-B determined by
real-time PCR and the number of isolates from humans in 2 years (a). Concentration of invA and sfmD
in sewage from WWTP-A and WWTP-B (b).

3. Discussion

It is important to compare the characteristics of isolates derived from the same region since
there are differences in the reported serotypes among the continents [3,26], or even within Japan. For
example, the most frequent serotypes isolated from humans were untypable strain O4:i:-, followed by
Infantis, Manhattan, and Typhimurium, in the Hokkaido Prefecture (northern area) in 2014–2015 [27],
whereas Thompson, followed by Corvallis, and then Schwarzengrund, was the most prevalent in the
Miyazaki Prefecture (southern area) in 2013–2014 [28].

In this study, 19 serotypes of Salmonella isolated from sewage from WWTP-A or WWTP-B were
also isolated from humans living in the region or visiting hospitals where WWTP-A or WWTP-B was
located; antimicrobial resistance, isolation periods, isolated area, and PFGE patterns of six isolates
belonging to five serotypes were consistent with those from humans (Figure 1c–g). This result suggests
that isolates from sewage are strongly related to those from humans.

Serovar Colindale, which was rarely isolated from humans in Japan [29] but was isolated from
enteric infection cases < 5 years in Gambia [30] and lettuce in Burkina Faso [31], had never been
isolated from humans from 1985 to 2017 in the Yamanashi Prefecture, mainly area A and area B, in
previous studies on more than 3200 Salmonella strains in total [32,33] (unpublished data). However, we
concurrently isolated this serotype in August 2018 from two isolates of sewage and human origins, and
the PFGE pattern of these isolates showed a high similarity (Table 3). Besides, serovar Bovismorbificans,
which caused outbreaks from contaminated fresh sprouts and ham products in Germany [34] and
the Netherlands [35], respectively, was rarely identified from humans in Japan [29], and only five
strains, out of more than 3300 strains, were isolated from humans in the Yamanashi Prefecture between
1985 and 2018 [32,33] (unpublished data). Here, all isolates from two each of sewage and human
samples, belonging to this serotype, were concurrently identified in June 2019 (Table 3), and their
PFGE patterns were indistinguishable from each other (Figure 1c). Moreover, serovar Agona strain
14-8, which was isolated from human and clustered with the isolates from broilers in the Yamanashi
Prefecture using whole-genome sequencing [24], was closely related to the isolates from two sewage
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and four human samples (Figure 1a). Murakami et al. [36] and Torii et al. [25] pointed out that the
strains clustered with strain 14-8 were rarely obtained from broilers, other retail poultry, or humans
in other regions. Furthermore, serovar Mbandaka, which caused an outbreak linked to cereal in the
United States between March and August 2018 [37,38], was detected from sewage and humans in
May and June 2018, respectively, although the relationship to the outbreak strain was not accounted
for. This serotype is also hardly isolated in the Yamanashi Prefecture [32,33] (unpublished data), and
isolate characteristics were found to be consistent (Figure 1f). It seems unlikely that these non-usual
serotypes from human and geographically distinctive strains would be detected in the same period
coincidentally if there was no correlation between the isolates from sewage and those from humans.

Here, consecutive detections of isolates belonging to the same serotype appeared from months
2 to 5 (Table 1). We reason that consecutive detection is mainly due to human sources based on the
following three reasons: First, the excretion periods of this pathogen from humans would be longer
than 1 month even if the administration of antimicrobial agents were conducted [39]. Second, the
amount of Salmonella discharged from other sources, such as contaminated foods, including poultry,
which is the most contaminated in Japan, is estimated to be much lower (<10 is the most probable
number/g) [40] than that from patients (105–107 colony-forming units/g) [41]. Third, according to
Diemert et al. [16], it is unlikely that persistent detections occurred due to the formation of biofilms
inside sewage pipes for months.

Real-time PCR for Salmonella showed that the invA concentration in sewage at WWTP-A was
significantly higher than that at WWTP-B and that fluctuation of concentration was significantly higher
in invA than in sfmD as an indicator of human fecal concentration (Figure 2b). A higher concentration
of invA at WWTP-A was consistent with more isolates from humans in area A, and the fluctuation of
concentration could be interpreted as a Salmonella outbreak in the community. These results suggest that
the concentration of invA in sewage reflects the number of humans infected with Salmonella, including
unreported cases. It is impossible to estimate the number of humans infected with Salmonella because
of non-human sources in sewage [42]; however, a considerable number of unreported human cases
seems to contribute to the invA concentration given the lack of correlation between invA concentration
and the number of reported human cases. Our result that no seasonal trend was observed conflicts
with those reported by Kacprzak et al. [20] and Yan et al. [15], who reported the concentration of
Salmonella to be highest in autumn and summer in Poland and Hawaii, respectively; this could be due
to food culture, geographical circumstance, and hygiene conditions. In Yamanashi, Japan, unreported
cases of Salmonellosis were detectable in all seasons.

Concurrent detection of rare serotypes or isolation of rare strains in sewage and human, consecutive
detections of the same serotype, and quantification of invA indicate that sewage contains Salmonella
isolates from humans and has the ability to provide an estimate of the epidemic. These results are
consistent with the results reported by Yan et al., who demonstrated that Salmonella isolates from
municipal wastewater were identical to the clinical isolates in terms of isolation periods and PFGE
patterns in Hawaii [15]. However, there are gaps in the serotype of isolates between sewage and humans.
For example, serovars Schwarzengrund and Anatum were predominant among the isolates from
sewage; however, of these serotypes, only one isolate of Schwarzengrund was identified from human
(Tables 1 and 2). It is possible to consider that these isolates from sewage originated from unreported
human cases including clinical and non-clinical cases infected by poultry-associated products for
the following three reasons. First, Berge et al. stated that more variability in serovars isolated from
wastewater suggests that the sources of Salmonella isolates from wastewater include both unreported
clinical and non-clinical cases [10], and Diemert et al. reported that statistically dominant serotypes in
municipal wastewater should be representative of clinical cases or asymptomatic shedding [16]. Here
we demonstrated that more kinds of serotypes were detected in sewage, and that Schwarzengrund and
Anatum were the predominant serotypes (Table 1). Second, real-time PCR revealed that no seasonal
trend was observed, and the concentration of invA in sewage did not correlate with that in human
isolates (Figure 2a). Third, the PFGE and antimicrobial resistance patterns of serovars Schwarzengrund
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and Anatum isolated from sewage were closely related or identical to those of these two serotypes
isolated from poultry heart and poultry liver retailed in area A, respectively (Figure 1b,h).

Aside from these reasons, there is a unique circumstance in Japan; although there is a law by
the Food Sanitation Act prohibiting serving raw meats except for raw poultry including raw organ
meats, such as beef without a heating surface, raw beef liver, raw pork, and raw pork organ meats at
restaurants, it is reported that the prevalence of Salmonella in retail poultry and poultry organ meats was
higher than that of beef, pork, and beef organ meats [7,8]. Therefore, the consumption of contaminated
raw or undercooked poultry is recognized as a major route of Salmonella infection [5]. This means
people in Japan have more opportunities to consume more Salmonella-contaminated foods, including
raw poultry and poultry organ meats. Thus, it is essential to serve poultry and poultry organ meats,
which are well heated with considerable care.

Additionally, serovar Agona, which was closely related to the isolate from humans with
broiler-related characterization in six isolates, predominated in both sewage and human samples.
The prevalence differences in humans between serovar Agona and serovars Anatum and
Schwarzengrund suggest that serovar Agona possesses higher pathogenicity. According to the
Ministry of Health, Labor, and Welfare [3], no contaminated poultry, or poultry organ meats were
responsible for Salmonella-associated foodborne outbreak in 2016–2018 in Japan, but some infections
were suggested in our study. These results indicate that the actual number of infected humans with
relatively mild pathogenicity serotypes, which may include serovars Anatum and Schwarzengrund, is
much higher than expected from the current passive surveillance system.

Reilly et al. [17] explained that asymptomatic cases may result from adequate immunity in the
hosts or the lack of contamination degree, which is present in infection sources. There is a possibility
that an increase in the number of asymptomatic cases causes a proportional increase in the number
of symptomatic cases. Additionally, the isolates showing identical characteristics, such as serovars
Anatum (18-134, 18-138) (Figure 1b), Bovismorbificans (19-112, 19-119) (Figure 1c), Colindale, and
Newport (18-132, 18-136) (Figure 1g), were detected in the same month from sewage in both WWTP-A
and WWTP-B; this indicates that the number of humans infected with these strains was more than one
and that the infection widely occurred by the same source at the same time, which may be referred to as
an outbreak, even though there was no outbreak reported for the duration. Therefore, it is inadequate
to take countermeasures against Salmonella infections by considering only the reported cases. Although
it is impossible to identify these infection sources clearly, foods including poultry-associated products
are one of the most suspicious sources.

Limitations of our study are the relatively low frequency of sewage sampling and the small
number of isolates from foods. Further investigation for comparing the characteristics of isolates from
sewage with isolates from suspicious infection sources should be conducted to understand actual
infections and to take an appropriate countermeasure against hidden infection sources for preventing
Salmonella infections.

4. Materials and Methods

4.1. Sample Collection

Sewage influent samples were collected monthly from WWTP-A and WWTP-B in the Yamanashi
Prefecture, Japan, for 3 years between July 2016 and June 2019. These WWTPs serve a population
of ~350,000 (corresponding to ~40% of the population in the Yamanashi Prefecture) and treat
~180,000 m3/day of waste in total. All samples were collected under normal weather conditions, stored
at 4 ◦C after sampling, and tested within 24 h.

4.2. Isolation of Salmonella

Four hundred milliliters of each sample was concentrated by centrifugation at 21,000× g for 25 min
to prepare 2 mL suspensions; 0.1 mL of each suspension was added to 10 mL of Rappaport–Vassiliadis
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broths (Eiken Chemical, Tokyo, Japan) and incubated at 42 ◦C for 20–24 h. The culture was inoculated
onto CHROMagar Salmonella (CHROMagar, Paris, France) and Salmonella–Shigella agar plates (Eiken
Chemical) and incubated at 35 ◦C. Ten suspected colonies were isolated and confirmed as Salmonella
species by biochemical examinations using triple sugar iron medium and lysine–indole-motility
medium; the isolates were serotyped using a commercial Salmonella O and H antiserum set (Denka
Seiken, Tokyo, Japan).

4.3. Strains

Representative Salmonella strains isolated from each sample were selected based on their serotypes
and biochemical characteristics. Then, 93 isolates from humans mainly living in the areas where
WWTP-A and WWTP-B were located, designated as area A and area B, respectively, which were
provided by hospitals and inspection institutes between September 2000 and July 2019 and serotyped as
described above, and seven isolates obtained between November 2015 and September 2016 from poultry
organ meats retailed in area A in a previous report [43] were analyzed for comparison. No outbreak
strain of Salmonella was included.

4.4. Antimicrobial Susceptibility Test

Representative strains were tested for their antimicrobial susceptibility patterns based on the
Kirby–Bauer disc diffusion method using BBL Sensi-Disc susceptibility test discs (BD, Tokyo, Japan)
on Mueller–Hinton II agar (BD). The results of the following antimicrobials against the isolates were
interpreted in accordance with the Clinical and Laboratory Standards Institute criteria [44]: ABPC,
cefoxitin, CTX, CAZ, IPM, MEPM (β-lactams), fosfomycin (fosfomycin), CL (polypeptides), SM,
KM, amikacin, gentamicin (aminoglycosides), TC (tetracyclines), chloramphenicol (phenicols), ST
(sulfonamides and trimethoprim), nalidixic acid, NFLX, and CPFX (quinolones). E. coli ATCC25922
was used as the quality control strain.

4.5. PFGE Analysis

To evaluate the similarities between the representative strains, PFGE was performed as described
previously by Ribot et al. [45] with some modifications. Briefly, cell suspensions were prepared from
plates directly, and agarose plugs were solidified using 1% gold agarose (Seakem, Cambrex, NJ) and
treated with 1 mg/mL proteinase K solution with 1% N-lauroylsarcosine. Bacterial DNA was digested
with 30 U of XbaI (Takara Bio, Kusatsu, Japan) for 4 h at 37 ◦C, and PFGE was conducted using the
CHEF Mapper apparatus (Bio-Rad, Tokyo, Japan). The PFGE patterns were analyzed with Quantity
One (Bio-Rad), and dendrograms were constructed based on the unweighted pair group method using
arithmetic average algorism.

4.6. Quantification of Salmonella

Bacterial DNA was extracted from 250 µL of concentrated samples collected between July 2016 and
June 2018 using the QIAamp PowerFecal DNA Kit (Qiagen, Tokyo, Japan) as per the manufacturer’s
protocol. The quantification of bacterial DNA was performed by real-time PCR using the Thermal
Cycler Dice Real Time System TP 800 (Takara Bio). The amplification of invA and sfmD was carried out
with primer pairs as described previously by Iijima et al. [46] and Kacilikova et al. [47], respectively.
Each 25 µL reaction mixture contained 2.5 µL of template DNA, 12.5 µL of 2× probe qPCR mix with
UNG (Takara Bio), 0.1 µL each of 100 pmol/µL forward and reverse primers, and 0.05 µL of 100 pmol/µL
TaqMan probe. PCR was conducted under the following conditions: initial denaturation at 95 ◦C
for 30 s, followed by 45 cycles at 95 ◦C for 5 s, and 60 ◦C for 30 s. A standard curve was obtained
using artificially synthesized plasmid DNA containing amplification region sequences of invA or sfmD,
which was diluted serially by tenfold. All samples were tested in duplicate, and the average cycle
threshold values were used for calculation.
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4.7. Statistical Analysis

Differences between the number of invA copies extracted from sewage samples collected from
WWTP-A and WWTP-B or the concentration of invA and sfmD were compared using the t-test and
F-test. Tests for homogeneity of variance to compare the fluctuation of invA and sfmD concentrations
were conducted using common logarithms. The correlation between the concentration of invA in
sewage and the number of human isolates was analyzed using regression analysis. P values < 0.01
were considered significant.

5. Conclusions

In conclusion, by analyzing the isolates from sewage at two WWTPs, we revealed that the
unreported cases, including clinical and non-clinical cases, occur more frequently than expected from
the current passive surveillance. Moreover, the expected infection sources contain contaminated
poultry organ meats, which are not prohibited to be served for raw consumption at restaurants in
Japan. Therefore, it is necessary to take countermeasures against Salmonella infection by considering
unreported cases, which could be disclosed by the analysis of sewage influent.
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