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Abstract: The public health goal of onchocerciasis in Africa has advanced from control to elimination.
In this light, accurate diagnosis is necessary to determine treatment endpoints and confirm elimination,
as well as to conduct surveillance for the identification of any possible recrudescence of the disease.
Currently, the monitoring of onchocerciasis elimination relies on the Ov-16 test. However, this
test is unable to discriminate between past and active infections. Furthermore, about 15–25%
of infected persons are reported to be negative for the Ov-16 test, giving a misleading sense of
security to false-negative individuals who might continue to serve as reservoirs for infections.
Therefore, we opted to design and validate a more sensitive and specific chimeric antigen (OvMANE1)
for onchocerciasis diagnosis, using previously reported immunodominant peptides of O. volvulus,
the parasite responsible for the disease. In silico analysis of OvMANE1 predicted it to be more antigenic
than its individual peptides. We observed that OvMANE1 reacts specifically and differentially with
sera from O. volvulus infected and non-infected individuals, as well as with sera from communities of
different levels of endemicity. Moreover, we found that total IgG, unlike IgG4 subclass, positively
responded to OvMANE1, strongly suggesting its complementarity to the Ov-16 diagnostic tool,
which detects Ov-16 IgG4 antibodies. Overall, OvMANE1 exhibited the potential to be utilized in
the development of specific diagnostic tools—based on both antibody capture and antigen capture
reactions—which are indispensable to monitor the progress of onchocerciasis elimination programs.
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1. Introduction

Human onchocerciasis—or “river blindness”—is one of the most devastating yet neglected tropical
diseases caused by a filaria nematode (Onchocerca volvulus) and transmitted by the frequent bites of
infective black flies of the genus Simulium [1]. In 2017, approximately 20.9 million people were infected
with O. volvulus worldwide; 1.15 million had vision loss and about 14.6 million had a skin disease,
with more than 99% living in Africa [2]. The disease contributes to higher rates of epilepsy, lower life
expectancy and consequently higher mortality and great economic loss in the affected populations,
making it a significant public health concern as well as a serious cause of social stigmatism [3,4].

Success registered by the African Program for Onchocerciasis Control (APOC) to reduce morbidity
and transmission rates in endemic areas has led to a shift in the health goal of onchocerciasis in
Africa from control to elimination [5,6]. The Expanded Special Project for Elimination of Neglected
Tropical Diseases (ESPEN) is functioning towards reaching the onchocerciasis elimination milestone
in designated African countries by 2020 and in a minimum of 80% of African countries by 2025 [7].
However, moving from control to elimination is a tedious process, as programs must shift from
identifying communities with symptomatic individuals to pin-pointing communities with infected but
asymptomatic individuals [8]. Thus, diagnostic tests such as palpation of nodules and skin-biopsy
for microfilaria and approaches like Rapid Epidemiological Mapping of Onchocerciasis which were
vital for identifying areas of prime importance for prevention of onchocerciasis activities, may not be
adequate tools for elimination programs [9–11].

The current monitoring of the disease elimination efforts relies on the absence of O. volvulus DNA
in pools of Simulium black flies and the absence of IgG4 antibodies to Ov-16 antigen as approved by
the World Health Organization [12]. However, the Ov-16 serological test—though reported to have
excellent specificity—has moderate sensitivity (80%) for microfilaria positive individuals and is unable
to discriminate between past and active infections [13,14]. Moreover, about 15–25% of infected persons
are reported to be negative, due partly to genetic restrictions [13,15]. This suggests that the Ov-16
test systemically produces a significant number of false-negative individuals who might continue
to serve as reservoirs for infections, ensuring the continuous transmission of the disease following
certification of elimination [13]. Also, to meet the concerns of single-antigen tests such as the Ov-16
test, multi antigenic tests using synthetic peptide mixture have been exploited [16]. However, the
use of a synthetic peptide cocktail often results in the competitive binding of the different peptides
and poor binding of some of them is often observed in solid-phase, which affects the sensitivity and
specificity of the test [17]. Hence, there is a die need to engineer molecular tools of antigen capture
diagnosis for the fight against human onchocerciasis.

Chimeric antigens have been posited to constitute a potential tool for more sensitive and specific
serodiagnosis of diseases [17,18]. Indeed, the use of chimeric antigens for immunodiagnosis has
been reported for many infectious diseases including helminth infection, toxoplasmosis, HIV-1,
Chagas disease and malaria with increased sensitivity and specificity [17,19–25]. On the other hand,
the proteome-wide linear epitope repertoire from microarray studies with onchocerciasis patients have
led to the recognition of immunodominant antigenic peptides that could be further harnessed in the
development of a diagnostic test [26]. Therefore—in our global working strategy aiming at generating
reliable antibodies for the development of antigen capture tests to diagnose onchocerciasis—we opted
in the first step to design and validate a recombinant chimeric antigen, OvMANE1, using previously
reported immunodominant peptides [26] of O. volvulus.
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2. Results

In silico analysis of OvMANE1 chimeric antigen predicted it to be more antigenic than its individual
peptides. We observed that OvMANE1 chimeric antigen reacts specifically and differentially with sera
from O. volvulus infected and non-infected individuals, as well as with sera from communities of different
levels of endemicity. Moreover, we found that total IgG, unlike IgG4 subclass, positively responded to
OvMANE1 chimeric antigen, strongly suggesting its complementarity to the Ov-16 diagnostic tool,
which detects Ov-16 IgG4 antibodies. Overall, OvMANE1 chimeric antigen exhibited convincing
characteristics supporting its potential use in both the development of antibody capture test and
generation of reliable antibodies required for antigen capture diagnostic tool for onchocerciasis.

2.1. Peptide Selection and Stage-Specific Expression

Eight peptide sequences that had previously revealed high performance in immunomic assays
with immunodominant motifs, 1PxxTQE6 and 1DGxDK5, sensitivities of 80.0–95.2% and specificities
of 92.2–100.0% were retrieved from previously reported data [26] and used to design the OvMANE1
chimeric antigen (see Table S1). WormBase gene expression data indicate that all the selected peptides
were expressed in all the parasite stages. The eight selected immunodominant peptides (IDP) were
fused to a flexible GSGSG linker which maximized epitope recognition of a fusion protein [27] to
obtain the OvMANE1 chimeric antigen construct. A 6xHis tag was coupled to the C-terminus to aid in
purification and identification (153 amino acids). As a result of the employed pMAL expression vector,
OvMANE1 chimeric antigen was flanked at its N-terminus by the maltose binding protein (MBP) with
a factor Xa cleavage site. The final construct obtained was 560 amino acids in length (see Figure 1).
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Figure 1. Schematic presentation of OvMANE1 chimeric antigen: The 153 amino acid long
antigen sequence consisting of selected immunodominant peptides (IDP) fused using GSGSG linkers
(purple lines). As a result of the expression in a pMAL vector, OvMANE1 chimeric antigen is
flanked with the maltose binding protein (MBP) and a 6x-His-tag was coupled to the C-terminus for
downstream characterization.

2.2. Antigenicity, Physicochemical Properties and Solubility of OvMANE1 Chimeric Antigen

Focusing on OvMANE1 protein without the flanking MBP tag protein, the antigenicity prediction
of the final construct by ANTIGENpro is 0.917040 and by VaxiJen 2.0 server is 0.8524 using a parasite
model at a threshold of 0.5. The results indicate that the generated construct is antigenic in nature.
Furthermore, the OvMANE1 chimeric antigen was predicted to be more antigenic than its individual
peptides that were used for the construct except for OVOC3954 antigen which showed slightly higher
antigenicity than the chimera based on ANTIGENpro server prediction. Notwithstanding, the VaxiJen
2.0 server predicted the chimera to be more antigenic than the OVOC3954 antigen. Also, the antigenicity
of OvMANE1 was similar to that of OvMANE1_MBP on the ANTIGENpro serve but higher on the
VaxiJen 2.0 server (see Table 1).
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Table 1. Antigenicity of OvMANE1 chimeric antigen compared to its individual peptides, as assessed
and scored according to the two indicated servers.

Peptide
Antigenicity

ANTIGENpro VaxiJen 2.0

OvMANE1 0.917040 0.8524
OvMANE1_MBP 0.909324 0.5816

OVOC5897 0.899261 0.5319
OVOC4989 0.798654 0.5678
OVOC5528 0.759612 0.5324
OVOC9141 0.596235 0.4489
OVOC7266 0.898052 0.6243
OVOC1743 0.243291 0.5040
OVOC1920 0.764529 0.5875
OVOC3954 0.953580 0.5964

Various physicochemical properties of OvMANE1 chimeric antigen with and without the MBP
tag were predicted by the Expasy ProtParam online server. The molecular weights of OvMANE1
and OvMANE1_MBP chimeric antigens were predicted to be 15.8 kDa and 60.4 kDa, respectively.
The theoretical isoelectric point (pI) values were 4.81 and 4.96 for OvMANE1 and OvMANE1_MBP,
respectively. Based on these pI values, the protein was predicted to be acidic in nature with
or without the MBP tag. The instability indexes (II) were predicted to be 31.13 and 24.39 for
OvMANE1 and OvMANE1_MBP, respectively, classifying the protein as stable with or without the
MBP tag. The estimated aliphatic indexes were predicted to be 48.43 for OvMANE1 and 70.79 for
OvMANE1_MBP indicating thermostability since higher values of the aliphatic indices are related to
protein thermostability [28]. Thus, MBP was predicted to increase the thermostability of OvMANE1
chimeric antigen. The predicted Grand average of hydropathicity was −0.888 for OvMANE1 and
−0.543 for OvMANE1_MBP which indicates that the protein with or without the MBP tag is hydrophilic
in nature and can interact with water molecules [29]. Protein-Sol server predicted OvMANE1 and
OvMANE1_MBP proteins to be soluble upon expression with a score of 0.890 and 0.604 respectively.

2.3. Secondary and Tertiary Structures

The final construct without the MBP tag was predicted to contain 12% alpha-helix, 2% beta-strand
and 84% coil (see Figure 2A). Moreover, concerning solvent accessibility, 4% of the residues were exposed,
84% in the medium while 9% were predicted to be buried. A total of 153 amino acid residues (100%)
were predicted as disordered by the RaptorX Property server (see Figure 2B). Five three-dimensional
(3D) models of the chimeric antigen were predicted by I-TASSER based on 10 threading templates,
top amongst which have protein data bank identifications; 6emkG, 3jbmA, 1dd3A, 5aftV and 5n8pA.
Seven of the ten chosen templates showed good alignment as qualified by their Z-score values. The five
predicted models had C-score values ranging from −4.29 to −3.12. The model with the lowest C-score
from the homology modelling was selected for further refinement (Figure 3A). This model had
an estimated TM-score of 0.36 ± 0.12 with an estimated root mean squared deviation (RMSD) of
11.9 ± 4.4 Å. Subsequent refinement of the initial antigen model on the ModRefiner server followed
by GalaxyRefine server yielded five models. Based on model quality scores for all refined models,
the second model was found to be the best based on different parameters including GDT-HA (0.9477),
RMSD (0.421) and MolProbity (2.454) (see Figure 3B). The quality and potential errors in a crude 3D
model were verified by ProTSAV. The final protein model was selected with the RMSD in the range
2–5 Å (see Figure 3C).
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Figure 3. Protein modelling, refinement and validation. (A) The final 3D model of OvMANE1 chimeric
antigen gotten after homology modelling on I-TASSER. (B) Refined 3D structure overlay (colored) on
the ‘crude model’ (gray) by GalaxyRefine. (C) Refined model validation using ProTSAV predicted the
refined structure to be within the range of 2–5 Å estimated root mean squared deviation (RMSD).
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2.4. Mass Expression and Purification of Recombinant OvMANE1 Chimeric Antigen from Bacterial Cells

OvMANE1 chimeric gene was synthesized and cloned into pMAL-c5X expression vector by
GenScript (Leiden, The Netherlands). The recombinant plasmid was used to transform NEB® Express
Competent E. coli cells (New England Biolabs, Ipswich, MA, USA). Expression as a maltose binding
protein (MBP) fusion protein (OvMANE1_MBP, 60.4 kDa) was subsequently induced in transformed
bacterial cultures. The full recombinant chimeric protein (green arrow, Figure 4A) was purified using
amylose resin (New England Biolabs, Ipswich, MA, USA). In order to eliminate degradation products
(black arrow), an additional purification step was performed using the Ni++-immobilized-metal affinity
chromatographic (IMAC) (see Figure 4B). The molecular weight and purity of OvMANE1_MBP
(60.4 kDa of which 44.6 kDa is contributed by the MBP tag and factor Xa cleavage site) were assessed
by Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western blot using
anti-MBP monoclonal antibodies (see Figure 4C).
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Figure 4. Expression and purification of OvMANE1 chimeric antigen. OvMANE1_MBP initially
purified on amylose resin (A) and further purified using Ni++-IMAC column (B), was resolved on a
12.5% Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) gel and stained with
Coomassie blue. (C) Anti-MBP monoclonal antibody detected the protein on nitrocellulose membranes
at a molecular weight of approximately 60.4 kDa corresponding to the expected size of OvMANE1_MBP
chimeric antigen. Green and black arrows indicate the positions of OvMANE1_MBP chimeric antigen
and degradation products respectively. M = protein ladder, U = uninduced, F = flow-through,
W = wash, E = Eluate, PA = purified from amylose resin.

2.5. The Humoral Response to OvMANE1 Chimeric Antigen Divulges Its Diagnostic Potentials

In order to validate OvMANE1 chimeric antigen as a putative diagnostic tool, the humoral
immune response against its constitutive epitopes was assessed in patients. Total IgG responses were
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screened by indirect ELISA in sera from infected and non-infected individuals. A discriminatory
immune response to the constituents of OvMANE1 chimeric antigen was observed between serum
samples from infected and non-infected individuals. The mean optical density (OD) read at 450 nm for
O. volvulus infected sera (OVS) was significantly different from that of hypo-endemic sera (HES) from
Rwanda—which is reported as a low-risk zone for O. volvulus infection [30]—and European control
sera (ECS), with p < 0.0001 and p = 0.0049 for HES and ECS, respectively (see Figure 5). The area under
the receiver operating curve (AUC) was found to be very high, with a value of 0.9952 and a p < 0.0001
(see Table 2) indicating both high sensitivity and specificity. As expected, total IgG responses to the
purified MBP used as negative control were very low and could not discriminate between sera from
the infected and uninfected persons.Pathogens 2020, 9, x FOR PEER REVIEW 8 of 20 
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Figure 5. Humoral immune response to OvMANE1 chimeric antigen by enzyme-linked immunosorbent
assay (ELISA). Purified OvMANE1_MBP chimeric antigen or MBP (control) was used to coat microtiter
plates. The microtiter plates were blocked and incubated with serum from either OVS, HES or ECS,
followed by incubation with goat anti-human IgG peroxidase conjugate. The microtiter plates were
revealed using TMB and the optical density (OD) was read at 450 nm. The OD values were plotted
against the different serum types. OVS = O. volvulus serum (n = 52), HES = Hypo-endemic serum
(n = 20), ECS = European control serum (n = 03). A Kruskal-Wallis test was used to compare the groups.

Table 2. Receiver operating curve (ROC) values for IgG responses to OvMANE1 chimeric antigen and
diagnostic accuracy parameter.

Total IgG

ROC Curve Analysis
ROC curve area (AUC) 0.9952

95% CI of AUC 0.9845 to 1.006
p-value (against AUC = 0.5) <0.0001

Diagnostic Accuracy Parameter
Cut off value 0.456

Sensitivity (%) (95% CI) 98.08 (89.74% to 99.95%)
Specificity (%) (95% CI) 100 (83.16% to 100%)
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2.6. Analysis of Total IgG Responses to OvMANE1 Chimeric Antigen in Communities of Different Levels
of Endemicity

In order to assess if OvMANE1 chimeric antigen can be used as a possible biomarker for monitoring
the success of elimination programs, we investigated by ELISA the correlation between the humoral
immune response to OvMANE1 chimeric antigen in different onchocerciasis endemic communities.
As shown in Figure 6, OvMANE1 chimeric antigen significantly discriminated between OVS from
the hyperendemic region of Kombone and ivermectin treated persons (ITS) of the onchocerciasis-near
elimination region of Bandjoun. As expected, responses to the MBP tag protein were low and
could not discriminate between these two communities. These results suggest that anti-OvMANE1
chimeric antigen immune response could be employed in distinguishing communities of different
levels of endemicity.
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Figure 6. Analysis of IgG responses to OvMANE1 chimeric antigen in communities of different
levels of endemicity. Purified OvMANE1_MBP chimeric antigen or MBP (control) was used to coat
microtiter plates. Microtiter plates were blocked and later incubated with serum from O. volvulus serum
(OVS) or Ivermectin treated serum (ITS) followed by incubation with goat anti-human IgG peroxidase
conjugate. The microtiter plates were revealed using TMB, the optical density (OD) read at 450 nm and
OD values were plotted against the different serum types. OVS, n = 52, ITS, n = 47. Mann-Whitney U
test was used to compare the responses.

2.7. Cross-Reactivity Test with Related Nematode

Possibility of cross-reaction with OvMANE1 chimeric antigen in individuals infected with other
related nematodes was investigated using serum samples from patients infected with Brugia malayi,
Mansonella perstans, Ascaris lumbricoides and Wuchereria bancrofti by ELISA. In contrast to our previous
observed cross-reaction of this set of serum samples with Ov28CRP/OvGM2AP, an excretory secretory
product of O. volvulus [31] OvMANE1 chimeric antigen significantly discriminated onchocerciasis sera
from that of related nematodes (see Figure 7A).
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Figure 7. Analysis of the humoral immune responses of related nematode sera to OvMANE1
chimeric antigen. (A) Purified OvMANE1_MBP chimeric antigen or MBP (control) was used to coat
microtiter plates. Microtiter plates were blocked and later incubated with serum from OVS, BMS, MPS,
ALS or WBS followed by incubation with goat anti-human IgG peroxidase conjugate. The microtiter
plates were revealed using TMB, the optical density (OD) was read at 450 nm and OD values were
plotted against the different serum types. OVS = O. volvulus serum (n = 52), BMS = B. malayi serum
(n = 03), MPS = M. perstans serum (n = 06), ALS = A. lumbricoides serum (n = 06) and WBS = W. bancrofti
serum (n = 06). (B) OvMANE1_MBP antigen recognition patterns. Western blotting experiments were
performed to address the reaction patterns of OvMANE1_MBP with pools of serum samples form O.
volvulus patients and related nematodes samples, using the MBP-tag as a control. Serum pools were
made as follows: OVS = O. volvulus serum (n = pool of 10 serum samples), ITS = Ivermectin treated
serum (n = pool of 10 serum samples), HES = Hypo-endemic serum (n = pool of 10 serum samples),
ECS = European control serum (n = pool of 3 serum samples), MPS = M. perstans serum (n = pool of 6
serum samples), BMS = B. malayi serum (n = pool of 3 serum samples), ALS = A. lumbricoides serum
(n = pool of 6 serum samples) and WBS = W. bancrofti serum (n = pool of 6 serum samples). The black
arrow indicates the position of OvMANE1 chimeric protein on the strip.
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In order to investigate if IgG responses to OvMANE1_MBP correlated with antigen
recognition profile, Western blotting experiments were carried out using specific nematodes serum
samples. As shown in Figure 7B, we observed one single band on OvMANE1_MBP strip with O.
volvulus serum (OVS) pool, ivermectin treated serum (ITS), hypo-endemic serum (HES), M. perstans
serum (MPS) and W. bancrofti serum (WBS) but no band was observed with European control serum
(ECS), B. malayi serum (BMS) and A. lumbricoides serum (ALS). No band was observed for the MBP strip.

2.8. Total IgG but Not the IgG4 Subclass Responded Positively to OvMANE1 Chimeric Antigen

For onchocerciasis, measurements of IgG isotypes in filarial infections has revealed that IgG4
accounts for up to 95% of the IgG response to these infections [32] rendering IgG4 a marker of
onchocerciasis infection. Thus, the IgG4 humoral immune response to OvMANE1 chimeric antigen
was evaluated by ELISA using serum pools from infected and non-infected individuals. We observed
that OvMANE1_MBP chimeric antigen failed to react with IgG4 subclass as testified by the serial
dilution curves (see Figure 8A) as well as to discriminate between sera pools from infected and
non-infected individuals. In contrast, when total IgG was tested in the same serially diluted serum
samples, OvMANE1 chimeric antigen, as expected, reacted strongly with serum pool from O. volvulus
infected individuals and could discriminate the serum pools from infected and non-infected individuals
(see Figure 8B).
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Figure 8. Analysis of humoral immune response to OvMANE1 chimeric antigen using sera pools
from infected and non-infected individuals. Purified OvMANE1_MBP chimeric antigen was used to
coat microtiter plates. Microtiter plates were blocked and incubated with serum pools from either
OVS or ECS at a dilution from 1:250 to 1:32,000 followed by incubation with (A) mouse monoclonal
anti-Human IgG4 (HRP) or (B) goat anti-human IgG peroxidase conjugate as the secondary antibody.
The microtiter plates were revealed using TMB, the optical density (OD) was read at 450 nm and OD
values were plotted against the different serum types. OVS = O. volvulus serum (n = pool of 10 infected
serum samples), ECS = European control serum (n = pool of 3 control serum samples).

3. Discussion

For ESPEN to achieve its goal of elimination of onchocerciasis in at least 80% of African
countries by 2025, there is a need for accurate diagnosis for complete disease elimination mapping,
routine monitoring and evaluation of mass drug administration programs [33]. Currently, the
monitoring of elimination efforts for onchocerciasis relies on the entomological evaluation of the
parasite in the vector using the O-150 PCR poolscreen technique and serological evaluation of the
parasite in children below 10 years using the Ov-16 test [12]. However, the Ov-16 test is based on
antibody capture and cannot discriminate past from active onchocerciasis infection. Moreover, it has
inadequate sensitivity to allow its optimal use in low prevalence settings [8] and reports indicate that a
test composed of a single antibody for epidemiological surveillance purposes is not fully sufficient to
determine true infection prevalence [26,34]. Furthermore, 15–25% of infected persons are reported
to be negative due to genetic restrictions [15], suggesting that the Ov-16 test produces false-negative
individuals who might continue to transmit the disease [13].

To circumvent these shortcomings, OvMANE1 chimeric antigen was designed and validated as a
potential biomarker for the development of a diagnostic tool for human onchocerciasis. The designed
chimeric antigen was predicted to be antigenic using the ANTIGENpro and Vaxijen v2.0 servers.
Overall, this chimeric antigen proved to be a better antigen than each of the individual peptides used
in the chimeric construct. Notwithstanding, the superior antigenicity of OvMANE1 chimeric antigen
needs to be validated biochemically via Western blot and/or ELISA. Also, the predicted characteristics
of OvMANE1 chimeric antigen make it a good candidate for use in the production of antibodies against
target antigens of O. volvulus, which could be applied in an antigen-capture test to discriminate past
from ongoing O. volvulus infections. These predicted properties of the chimeric antigen are consistent
with the profile observed during the expression and purification of the antigen.
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Secondary structure analyses of OvMANE1 chimeric antigen revealed that the protein consists
predominantly of coils (84%), with 100% of its residues being disordered. Natively unfolded protein
regions and alpha-helical coiled-coils peptides are of significant importance for the design of new
peptide-based diagnostic tests. Indeed, synthetic peptides with these two structural forms have the
ability to fold into their native structure and be identified by antibodies naturally induced by infectious
agents [35]. On the other hand, disordered proteins fulfill essential biological functions. For example,
the increased plasticity of disordered proteins favor their binding to numerous and structurally distinct
targets [36]. Moreover, the 3D structure model of the chimeric antigen improved profoundly after
refinement. Nevertheless, this structure needs to be validated via crystallization of the chimeric antigen.

The patients’ humoral immune responses to the constituents of the designed OvMANE1 chimeric
antigen were validated using the recombinant protein expressed in bacterial cells, OvMANE1_MBP.
Analysis of the total IgG response to OvMANE1 chimeric antigen revealed its ability to differentiate
between infected and non-infected individuals. The specificity of a test is of high importance [37]:
thus, a cutoff value of 0.456 was defined for OvMANE1 chimeric antigen that corresponds to 100%
specificity and 98% sensitivity. With these settings, the chimeric antigen discriminated between
ongoing infections and treated cases. This finding is beneficial in the framework of the evaluation of
onchocerciasis elimination programs. Also, one of the essential components for an excellent diagnostic
antigen is its ability to uniquely detect a target parasite species, a very challenging daunting task owing
to the high sequence homology amongst genes from related nematodes [38]. OvMANE1 chimeric
antigen did not cross-react with sera of closely related nematodes. Therefore, OvMANE1 chimeric
antigen may have a potential application in the specific diagnosis of human onchocerciasis based on our
findings herein. Responses to the MBP tag that was linked to OvMANE1 chimeric antigen were quite
low for all the tested samples and could not discriminate between sera from infected and uninfected
persons. This result suggests that the humoral immune responses detected to the constituents of
recombinant OvMANE1_MBP antigen were not contributed to by the MBP tag.

The antigen recognition pattern of OvMANE1_MBP revealed by Western blot correlates with the
observed humoral immune responses to the constituents of OvMANE1_MBP chimeric antigen. Thus,
the ELISA signals were from OvMANE1_MBP reactions and not of any contaminant. The singled bands
observed in OVS, ITS and HES were expected since these serum samples come from onchocerciasis
hyper or hypo endemic zones. Single bands were also found with MPS and WBS consistent with the
ELISA result—which showed some high responders in ELISA experiments—and suggesting that these
serum samples might have been obtained from patients co-infected with O. volvulus. No band was
observed for ECS, BMS and ALS suggesting no cross reactivity with OvMANE1_MBP chimeric antigen.
Finally, it was observed, as expected that strips coated with MBP-tag as control revealed no signal
with all the different serum pools tested, strongly suggesting that signals obtained were specific to
OvMANE1 antigen. Overall, OvMANE1 chimeric antigen appears suitable for further characterization
in terms of specificity as a serodiagnostic candidate for human onchocerciasis.

Reports indicate that the humoral immune response against parasitic antigens is frequently
dominated by IgG4 responses [37,39]. Thus, IgG4 responses to the constituents of OvMANE1 chimeric
antigen were evaluated using serum pools from infected and non-infected individuals. The humoral
immune response of IgG4 to OvMANE1 chimeric antigen was weak and could not discriminate
between pooled sera from infected and non-infected individuals. This is consistent with the results
obtained when the individual peptides were used, as the IgG4 levels in response to the different
individual peptides were low or absent in all tested individuals [26]. A possible explanation why there
is no IgG4 response to the chimeric antigen might be due to the difference between conformational
epitopes on intact surface antigens. This hypothesis is in line with reports from other studies on Ov-20
immunodominant antigen, where only the intact protein could be recognized by IgG4 antibodies,
while IgG1, IgE and IgM antibodies were shown to also bind smaller fragments of the antigen [40].
On the other hand, IgG1 and IgG3 were reported to be the dominant isotypes of the individual peptides
used to construct OvMANE1 chimeric antigen [26]. Thus, IgG1 and IgG3 humoral immune responses
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to OvMANE1 chimeric antigen need to be evaluated. Nevertheless, total IgG immune response to the
constituents of recombinant OvMANE1 chimeric antigen could discriminate between the serum pools
of infected and non-infected individuals.

The findings of the present study should be interpreted within its limitations. First, we did not
validate biochemically that OvMANE1 chimeric antigen is more antigenic than its component peptides.
Secondly, we did not provide any data regarding the seroreactivity against individual peptides and
OvMANE1 as well as binding of different isotypes like IgG and IgM, which is important in determining
the early/late infection condition. Thirdly, given the small sample size in some of the subgroups, it is
possible that our study was not sufficiently powered to guarantee the superior specificity of OvMANE1
chimeric antigen.

In conclusion, OvMANE1 chimeric antigen is immunogenic with higher sensitivity and specificity
as compared to its individual constituent peptides. The chimeric antigen may therefore be developed
for use as a field-deployable diagnostic test for onchocerciasis and for monitoring the success of
onchocerciasis elimination programs.

4. Materials and Methods

4.1. Ethical Considerations

The study was done in adherence to the set of principles of the Helsinki Declaration and the
protocols adopted were reviewed and approved by the Cameroon Bioethics Initiative (CAMBIN)
Ethics Review and Consultancy Committee (ERCC) (N CBI/443/ERCC/CAMBIN). Administrative
authorization was sought from the Cameroon Ministry of Public Health (N 631–1315). Informed
consent forms were provided and well explained to all participants who took part in the study. All the
participants willingly signed the consent form prior to participation in the study. Participation was
entirely voluntary and individuals were free to withdraw at their discretion. Participants’ confidentiality
was respected during data collection, analysis and reporting.

4.2. Serum Samples

Trained medical personnel examined all the participants involved in the study and blood samples
were obtained from patients residing in the endemic region of Kombone Health Area within the Mbonge
Health district in the South West Region of Cameroon. These onchocerciasis patients (OVS, n = 52)
were chosen on the basis of a confirmed presence of clinical manifestation of onchocerciasis and/or
presence of microfilaria in skin biopsies. Blood samples were also collected from an onchocerciasis-near
elimination region—ivermectin treatment serum (ITS, n = 47)—in the Bandjoun Health District in the
West Region of Cameroon. In the West Region of Cameroon, treatment of the disease has been ongoing
for more than fifteen years [41]. Kamga, et al. [42] evaluate the parasitological status of individuals
in Bandjoun in 2017 and characterized the infection status of the individuals. We collected blood
samples from patients who were microfilaria negative and did not have any clinical manifestation of
onchocerciasis. Blood samples obtained from individuals residing in an onchocerciasis hypo-endemic
region (HES, n = 20) of Huye, Rwanda—considered a low-risk zone for onchocerciasis [30]—and
from European subjects (ECS, n = 3), were used as controls. The blood samples were processed to
obtain serum by employing an established protocol [43], diluted 1:2 in glycerol and stored at −20 ◦C.
Serum samples from individuals infected with other nematode infections such as Brugia malayi (BMS,
n = 3), Mansonella perstans (MPS, n = 5), Ascaris lumbricoides (ALS, n = 6) and Wuchereria bancrofti (WBS,
n = 6), were obtained from the filarial repository, thanks to the laboratory of Dr. Steven Williams.

4.3. Peptide Selection, Stage-Specific Expression and Construction of OvMANE1 Chimeric Antigen

Peptides were selected based on previous studies carried out on the O. volvulus peptide
repertoire [26]. Protein sequences for the selected peptides were assessed on WormBase (https:
//www.wormbase.org) for stage-specific expression. A flexible linker (GSGSG) was used as a spacer

https://www.wormbase.org
https://www.wormbase.org


Pathogens 2020, 9, 495 14 of 18

between epitope sequences [44]. A 6xHis tag was coupled to the C-terminus of the chimeric antigen to
get the final antigen construct. Consistent with the employed pMAL expression vector, the chimeric
construct was flanked at its N-terminus by MBP with a factor Xa cleavage site.

4.4. Prediction of Antigenicity, Physicochemical Properties and Solubility of OvMANE1 Chimeric Antigen

ANTIGENpro and VaxiJen v2.0 servers were used to predict the antigenicity of OvMANE1 chimeric
antigen. ANTIGENpro (http://scratch.proteomics.ics.uci.edu/) is a sequence-based, alignment-free and
pathogen-independent predictor of protein antigenicity. It is the first predictor of the whole protein
antigenicity trained using reactivity data obtained by protein microarray analysis [45]. VaxiJen v. 2.0
server uses a new alignment-independent method, according to an auto cross-covariance (ACC)
transformation of protein sequences into uniform vectors of principal amino acid properties. The
accuracy of VaxiJen v. 2.0 varies from 70% to 89%, depending upon the organism targeted [45].
Different physicochemical properties of OvMANE1 chimeric antigen were determined using the Expasy
ProtParam online server (http://web.expasy.org/protparam/) [46]. It computes various physicochemical
properties such as amino acid composition, theoretical pI, instability index, aliphatic index, molecular
weight and grand average of hydropathicity. The solubility of the chimeric antigen was evaluated
using the Protein-Sol server (https://protein-sol.manchester.ac.uk/). The server uses available data
for Escherichia coli protein solubility in a cell-free expression system, to predict the solubility of a
protein [47].

4.5. Prediction of Secondary and Tertiary Structures

The secondary structure of the chimeric antigen was predicted by the PSIPRED server (http:
//bioinf.cs.ucl.ac.uk/index.php?id=779). PSIPRED uses a simple and accurate secondary structure
prediction method, incorporating two feed-forward neural networks that perform an analysis on
output obtained from PSI-BLAST and it determines the percentage of helix, stands and coils [46].
The RaptorX Property web server (http://raptorx.uchicago.edu/StructurePropertyPred/predict/) was
later used to predict properties of the secondary structure of OvMANE1 chimeric antigen. The server
employs the deep convolutional neural fields to predict secondary structure, solvent accessibility and
disorder regions simultaneously [48].

Homology modelling of OvMANE1 chimeric antigen was performed using the Iterative
Threading ASSEmbly Refinement (I-TASSER) server (https://zhanglab.ccmb.med.umich.edu/I-TA
SSER/). I-TASSER generates 3D atomic models from multiple threading alignments and iterative
structural assembly simulations starting from an amino acid sequence [1]. A two-step refinement
of the 3D model obtained for OvMANE1 chimeric antigen was done on ModRefiner (https:
//zhanglab.ccmb.med.umich.edu/ModRefiner/) followed by the GalaxyRefine server (http://galaxy.seo
klab.org/cgi-bin/submit.cgi?type=REFINE). The ModRefiner server does construction and refinement
of protein structures from Cα traces based on a two-step, atomic-level energy minimization, resulting
in overall improvements in both global and local structures with more accurate side-chain positions,
fewer atomic overlaps and better hydrogen-bonding networks [1]. Refinement using the GalaxyRefine
server was achieved by subsequent overall relaxation and repeated structural perturbation by molecular
dynamics simulation [49]. The refined model was validated using ProTSAV server.

4.6. Codon Optimization, Cloning, Expression and Purification of OvMANE1 Chimeric Antigen

To express OvMANE1 chimeric antigen in E. coli (strain K12), the Java Codon Adaptation Tool
(JCat) server (http://www.jcat.de) was used to reverse translate and optimize the codon since codon
usage of E. coli differs from the native host—O. volvulus—where the sequence of OvMANE1 chimeric
antigen is derived. The codon optimized gene sequence of OvMANE1 chimera was synthesized and
cloned into pMAL-c5X vector by GenScript (Leiden, The Netherlands).

The recombinant OvMANE1_PMAL-c5X plasmid was used to transform NEB® Express Competent
E. coli cells (New England Biolabs, Ipswich, MA, USA). Expression was induced using 0.3 mM Isopropyl

http://scratch.proteomics.ics.uci.edu/
http://web.expasy.org/protparam/
https://protein-sol.manchester.ac.uk/
http://bioinf.cs.ucl.ac.uk/index.php?id=779
http://bioinf.cs.ucl.ac.uk/index.php?id=779
http://raptorx.uchicago.edu/StructurePropertyPred/predict/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://www.jcat.de
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β-d-1-thiogalactopyranoside at 37 ◦C for 2 h with shaking at 200 rpm and the protein was expressed
as a fusion with MBP. The bacterial cells expressing protein were pelleted from the culture medium,
resuspended in column buffer (per liter: 20 mL 1.0 M Tris-HCl, pH 7.4, 11.7 g NaCl, 2.0 mL 0.5 M
EDTA and 0.7 mL β-mercaptoethanol) and frozen overnight at −20 ◦C. Thereafter, the sample was
placed in an ice-water bath and lysed by sonication in short pulses of 10 s at 40% amplitude for 3 min.
Centrifugation at 20,000× g for 20 min was then performed and the supernatant diluted to 1:6 with
column buffer. This was followed by protein purification using the amylose resin (New England Biolabs,
Ipswich, MA, USA), according to the standard protocol. Due to the presence of degraded proteins,
a second round of purification for pooled amylose resin purified fractions was achieved by using
Ni++-IMAC columns (GE Healthcare, Diegem, Belgium) following standard protocol. The purified
protein was resolved on SDS-PAGE and its identity confirmed by Western blot using anti-MBP
monoclonal antibodies (New England Biolabs, Ipswich, MA, USA). The concentrations of purified
proteins were determined using the Bio-Rad protein assay kit (Bio-Rad, Carlsbad, CA, USA).

For Western blots, 2 µg of protein samples were run on a 12% Tris-glycine polyacrylamide
gel (Bio-Rad, Carlsbad, CA, USA) and subsequently transferred to Hybond-C Extra nitrocellulose
membranes (GE Healthcare, Diegem, Belgium). Blocking was done using 5% non-fat dry milk in
TBS-NP40 overnight at 4 ◦C followed by incubation with anti-MBP monoclonal antibodies (1:5000) for
1 h 30 min. After three changes of wash buffer (TBS + 0.005% NP40) at 5 min intervals each, membranes
were incubated with ALP-conjugated secondary antibodies (1:5000) for 1 h 30 min and detected with
nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (Sigma, St. Louis, MI, USA). All antibody
incubation steps were done at room temperature. The chimeric antigen recognition pattern was
evaluated as described above except for pooled sera from onchocerciasis patients, ivermectin treated
patients, people from hypo-endemic regions, European control participants, M. perstans patients,
B. malayi patients, A. lumbricoides patients or W. bancrofti patients that were used as primary antibody.

4.7. Serological Characterization of OvMANE1 Chimeric Antigen

IgG response to OvMANE1 chimeric antigen was investigated by indirect ELISA using infected
and non-infected sera. Optimal antigen/antibody concentrations were determined by the checkerboard
titration method. Maxisorp 96 well microtiter plates (Nunc, Roskilde, Denmark) were coated with
2 µg/mL of purified OvMANE1_MBP chimeric antigen overnight at 4 ◦C. Plates were washed three
times with wash buffer (PBS + 0.05% Tween 20) and blocked with TBS supplemented with 3% Bovine
Serum Albumin (BSA) (Sigma, St. Louis, MI, USA) for 1 h 30 min at room temperature. The plates
were then washed and incubated with the various serum samples as the primary antibody at a dilution
of 1:2000 for 2 h at room temperature. Thereafter, plates were washed and incubated with goat
anti-human IgG (Fc Specific) peroxidase conjugate (Sigma, St. Louis, MI, USA) as the secondary
antibody at a dilution of 1:5000 for 1 h 30 min at room temperature. After a final wash, the chromogenic
substrate 3,3’,5,5’-tetramethylbenzidine (TMB, Sigma, St. Louis, MI, USA) was added for 10 min at
room temperature. The reactions were stopped with 3 M hydrochloric acid after which the OD was
read at 450 nm using the iMark microplate reader (BIORAD, Irvine, CA, USA). All antibody dilutions
were done in a blocking buffer (TBS supplemented with 3% BSA).

IgG4 responses were determined using serum pools from ten infected patients or three European
control. ELISA was performed as described above with the exception of incubating the pooled sera as
primary antibodies at a dilution from 1:250 to 1:32,000 and using mouse monoclonal anti-human IgG4
Fc (HRP) antibody (Abcam, Cambridge, UK) as the secondary antibody.

4.8. Data Analyses

The normality of distributions was assessed using a Shapiro-Wilk test. Comparisons of two
groups were done using Mann-Whitney U test and for three or more groups using Kruskal-Wallis test.
The discriminatory performance of total IgG was assessed using receiver operating curve analyses.
The area under the receiver operating curve (AUCs) were evaluated using the trapezoid method.
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Standard errors of AUCs were calculated as previously described [50]. Exact 95% confidence intervals
for the AUCs were determined using a binomial approach. An optimal cutoff value was selected
according to the highest Youden’s index and the sensitivities, specificities with 95% confidence intervals
were then calculated for the selected cutoff value. Scatter plots were generated using Graph Pad Prism
7.0 (La Jolla, CA, USA) and data were expressed as median with interquartile range. A p-value < 0.05
was considered statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/6/495/s1,
Table S1: Selected peptide sequences and their corresponding sensitivity and specificity.
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