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Abstract: This paper discusses the design and manufacturing of a thin polymer spherical adaptive
reflector of diameter D = 200 mm, controlled by an array of 25 independent electrodes arranged
in a keystone configuration actuating a thin film of PVDF-TrFE in d31-mode. The 5 µm layer of
electrostrictive material is spray-coated. The results of the present study confirm that the active
material can be modelled by a unidirectional quadratic model and that excellent properties can be
achieved if the material is properly annealed. The experimental influence functions of the control
electrodes are determined by a quasi-static harmonic technique; they are in good agreement with
the numerical simulations and their better circular symmetry indicates a clear improvement in
the manufacturing process, as compared to a previous study. The low order optical modes can
be reconstructed by combining the 25 influence functions; a regularization technique is used to
alleviate the ill-conditioning of the Jacobian and allow to approximate the optical modes with
reasonable voltages.

Keywords: space reflector; adaptive shell; shape control; electrostrictive thin film; spray coating;
PVDF-TrFE

1. Introduction

Large aperture deployable spherical reflectors have for long been identified as neces-
sary for the future of telecommunication and monitoring the Earth environment [1,2]. This
brings numerous challenges associated with the launch: volume and weight constraints,
harsh vibratory environment, and the in-orbit operation: deployment, surface figure ac-
curacy after deployment, under thermal gradients and gravity gradients. Concepts with
low areal density (<3 kg/m2) and high stowability are of particular interest. Lenticular,
pressure stiffened membranes are discussed in Reference [3]; inflatable space antennas
are prone to gas leakage due to micrometeorites, which hinders the application of long
duration missions; besides, their wavefront error tends to be dominated by the spherical
aberration [4]. Doubly curved, form stiffened elastic shells are explored in References [5,6];
the reflector unfolds on its own strain energy once released to form its final shape. A com-
bination of a proven lightweight deployable mesh antenna with a high precision polymer
membrane reflector is considered in Reference [7]; the membrane is controlled actively by
a set of electrostatic actuators.

In all cases, a high figure accuracy will require some sort of active shape control. This
can be realized in various methods depending on the configurations: with a group of
thermal actuators for a truss antenna [8], with electrostatic actuators (acting out of plane)
on a mesh supported antenna [7] or with an array of piezoelectric orthotropic actuators
(acting in plane) glued on the back of the reflector [9]. The present work is a follow-up
to Reference [10]; it is concerned with adding a thin film of electrostrictive copolymer mate-
rial (PVDF-TrFE) on a polymer spherical shell substrate; an array of independent electrodes
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form a set of strain actuators (acting in plane). Two ways of application of copolymer
have been investigated—spin-coating and spray-coating. PVDF-TrFE is electrostrictive and
behaves quadratically; it is isotropic and, with an appropriate bias electric field, it allows to
achieve an excellent piezoelectric constant up to d31 ' 15 pC/N.

Strain actuators are very efficient for to deform flat plate structures and deformable
mirrors with active layers of piezoelectric actuators are widely used in Adaptive Optics
(AO), for example, Reference [11]. However, the study on the strain actuation of an ultra-
thin spherical shell shows the morphing behavior is very different from that of a flat plate,
because the rigidity of a spherical shell depends very much on the mode of solicitation
(achieving a defocus with a given amplitude will be much more difficult than astigmatism).
Besides, the accurate shape control with an array of independent electrodes requires that
the electrode size $ (estimated by $ = 4A/Lc, A is the electrode area and LC is the perimeter
of the electrode profile) be such that

$ < (Rc t)1/2, (1)

where Rc is the radius of curvature and t is the thickness of the shell [12,13]. Significant
departure from the condition of Equation (1) will lead to a steep and wavy transition of the
deformed shape between electrodes excited with different actuating strains (i.e., different
voltages in the case of electrostrictive materials). According to the foregoing constraints,
an adaptive reflector of diameter D = 10 m with a radius of curvature of Rc = 200 m and a
thickness of t = 175 µm would require more than 2000 independent electrodes, and the
same reflector with Rc = 20 m requires 10 times more. Controlling the shape of structures
with such a large number of actuators will require a sophisticated metrology and special
control algorithms, because of the ill-conditioning of the Jacobian of the system [13,14].

This paper reports on a small-scale technology demonstration project called “Multi-
layer Adaptive Thin Shell Reflectors for Future Space Telescopes” (MATS) developed on
behalf of European Space Agency (ESA) in the framework of the General Support Technol-
ogy Programme (GSTP) program. Preliminary results were published in Reference [10],
with a demonstrator of diameter D = 100 mm, spin-coated, controlled with 7 indepen-
dent electrodes. The present paper considers a reflector of D = 200 mm controlled with
25 independent electrodes. The PVDF-TrFE is spray-coated rather than spin-coated in the
smaller one, because it is more representative of what can be used on a large reflector. Nu-
merical simulations have been reported in Reference [15]; the present paper reports on the
experiments; it is organized as follows—Section 2 recalls the basic equations describing the
behavior of an electrostrictive material and summarizes the methods used in Reference [10]
to determine the main material properties of PVDF-TrFE thin films. Section 3 discusses
the manufacture of the demonstrator. Section 4 reports experimental results on control
authority, showing the various influence functions of individual electrodes; they can be
combined to approximate low order optical modes. Section 5 concludes the paper.

2. Electrostrictive Materials
2.1. Material Model

In the previous part of this study [10], it was found that the behavior of the thin film
of PVDF-TrFE can be accounted for with a linear dielectric model:

D3 = Ps + ε1E3 (2)

and the quadratic unidirectional material model:

S3 = Q33D2
3 = Q33P2

s + 2ε1PsQ33E3 + ε2
1Q33E2

3. (3)

In these equations, D3 is the electric displacement, Ps is the remnant (spontaneous)
polarization, ε1 = ε0εr is the dielectric constant (ε0 = 8.85 × 10−12 F/m) and E3 the
electric field. S3 is the strain along the polarization direction and Q33 is the electrostrictive
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coefficient. Q33P2
s is the poling strain which takes place during the polarization. Q33 and

Ps are material properties that must be determined experimentally. The strain in the poling
direction induces isotropic in-plane strains according to

S1 = −νS3 = −ν(Q33P2
s + 2ε1PsQ33E3 + ε2

1Q33E2
3), (4)

where ν is the Poisson’s ratio. It follows that the piezoelectric coefficient d31 is given by

d31 =
∂S1

∂E3
= −2ν(ε1PsQ33 + ε2

1Q33E3). (5)

This equation indicates that a bias electric field increases the piezoelectric coefficient.
Thus, any (electrostrictive) material can be made piezoelectric by applying a bias electric
field [16]. From the foregoing equation,

d(d31)

dE3
= −2νε2

1Q33. (6)

2.2. Material Properties

The method for determining the material properties (ε1, d31, Q33, Ps) has been de-
scribed extensively in Reference [10] for the spin-coated film. In the present study, it was
decided to substitute the spin-coating of the PVDF-TrFE by spray-coating which can be
easily scaled-up to reflectors of large size. The dielectric constant ε1 was obtained from
capacitance measurements; the piezoelectric constant d31 was obtained for various bias elec-
tric field E3 from modal analysis on small cantilever beams (Figure 1). The electrostrictive
constant Q33 was deduced from the slope of the curve d31(E3) according to Equation (6).
Typical values obtained on small samples are given in Table 1.

0 10 20 30 40 50
0

10

20

15

5

Piezoelectric constant [pC/N]d31

Bias electric field [MV/m]E
B

Measurement

Fitting

Figure 1. Piezoelectric coefficient d31 as a function of the bias electric field EB. The electrostrictive
constant Q33 can be obtained from the slope according to Equation (6).

The remnant polarization was obtained in two different ways: (i) From Equation (5)
after determining d31 and Q33 and (ii) from the analysis of the structural response to a quasi-
static harmonic excitation E3 = EB + E0 cos(2π f0t). Because of the quadratic behavior of
the electrostrictive material, the structural response exhibits contributions at the excitation
frequency f0 and also at the harmonic 2 f0. Ps can be deduced from the relative amplitudes
of these contributions [10]. The two methods lead to consistent results as one can see in
the last two lines of Table 1. Surprisingly, the values of the dielectric constant εr have been
found consistently smaller for the spray coated samples than for the spin coated ones.



Actuators 2021, 10, 7 4 of 12

Table 1. Estimation on material parameters (PVDF-TrFE) .

Deposition Technique Spin Coating Spray Coating

Dielectric constant εr [/] 11.86 9.6

Piezoelectric constant d31 [pC/N] (EB = 0) 13.54 12.54

Electrostrictive constant Q33 [m4/C2] −12.65 −13.81

Remnant polarization Ps [C/m2]
0.0152 0.0157

0.0163 0.0144

According to Equation (4), once Q33 and Ps are known, the poling strain is given by

Sp = −νQ33P2
s . (7)

In Reference [10], a direct measurement was obtained by monitoring during the poling
process the curvature of a thin sample of glass covered by PVDF-TrFE and comparing with
a finite element simulation; the experiment led to a value of Sp consistent with Equation (7).

3. Manufacturing of the Demonstrator

The flowchart of the manufacturing of the demonstrator and the stacking sequence
are shown in Figure 2. The starting point is a flat amorphous PET film with a thickness
of 175 µm. The PET film is a commercial product (Luminor 4001) with a low roughness
(Ra = 9 nm; Rz = 220 nm) which guarantees a good reflectivity of the mirror; it is also free
of topcoat (acrylic) which induces significant stresses during the subsequent annealing
process. The glass transition temperature and the melting temperature are respectively
Tg = 85.4 ◦C and Tf = 263 ◦C. A 200 nm Aluminum (Al) layer of patterned electrode is
deposited by Pulse DC Magnetron Sputtering (PDCMS). Figure 3 shows the keystone layout
of the electrodes and the tracks allowing to place all the electrical connections on the edge
of the reflector; the mask is obtained by lithography; all electrical connections have a width
of 200 µm with gaps of 200 µm. After numerical simulations of the control performances,
the radially uniform electrode size was selected.

The second step is the shaping of the reflector; it is achieved by placing the PET
substrate in a spherical mold with a radius of curvature Rc = 2.5 m (Figure 2b), heating
to a temperature of 140 ◦C during 2 h with an external pressure of 2 bars, and cooling to
room temperature before demolding. The next step (Figure 2d) consists of spray coating
the film of PVDF-TrFE of 4–5 µm (coating by spray is preferred to spin coating because it
can be easily scaled-up to large areas). The electrostrictive copolymer is the PVDF-TrFE
FC25 of Piezotech, already used with spin coating in the previous study [10]; however,
in order to maximize the thickness homogeneity when applied by spray, the copolymer
concentration and the solvent mixture (MEK-MIBK) had to be re-optimized; a solution
of 6 g/L in MEK-MIBK 75:25 was adopted. Annealing is performed by placing again the
reflector in the mold (Figure 2e); it is essential to develop the β-phase which is piezoelectric.
Annealing must be performed at a temperature Ta such that Tg < Ta < Tf ; various tests
conducted on samples showed that annealing at Ta = 140 ◦C for 2 h leads to the best
piezoelectric properties. The sample is cooled down to room temperature, taken out of
the mold and a layer of 200 nm of Al is applied by PDCMS for the ground electrode
(Figure 2f). Notice that placing the segmented electrode between the PET substrate and
the electrostrictive film provides a good electrical insulation and prevents possible arcing
between electrodes at different potentials. Next, a 100 nm Al reflecting layer is deposited
on the front side. Finally, the reflector is clamped in its support frame and the PVDF-TrFE
is polarized by applying a ramp of 1 V/min up to 250 V and then constant during 120 min,
inducing the poling strain Ps discussed above (Figure 2g).

The reflector of 200 mm developed in this study is shown in Figure 4, together with
the smaller one developed earlier [10].
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PRESSUREPET (175 µm)

Al. (200 nm)

PVDF FE-Tr (4 - 5 µm)
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Al. (200 nm)

Patterned electrodes deposition
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High temperature T Tg> (PET)

Al. (100 nm)

Al. (200 nm)

Shaping the substrate
Spraying of PVDF-TrFE layer
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(1) Shape refining
(2) Annealing of PVDF-TrFE

Ground electrode
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Figure 2. Flow chart of the manufacturing sequence of the Multilayer Adaptive Thin Shell Reflectors for Future Space
Telescopes (MATS) demonstrator.
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Figure 4. Demonstrators developed in the MATS project, mounted in their support. (Left) Spin coated reflector discussed
in Reference [10]. (Right) Spray coated reflector of the present study.

4. Shape Control
4.1. Influence Functions

In absence of a dedicated system for the metrology of a spherical mirror of D = 200 mm,
the influence functions were determined from dynamic measurements using a laser vi-
brometer Polytec PSV-400. The methodology and the experimental set-up are explained
in detail in Reference [10]. The principle consists of covering the reflector surface with a
scattering powder (Ardrox developer spray) and exciting it harmonically in the quasi-static
range with the segmented electrodes. The amplitude of the harmonic response will follow
closely the static shape of the deformation for the selected electrode. The frequency of
15 Hz was selected, well below the first resonance at f1 = 85 Hz. The harmonic amplitude
is 50 V with a bias of 65 V; the shape reconstruction involves 1921 scanned nodes.

Figure 5 shows the influence functions of one electrode of each row (E1, E2, E8 and E15)
for a voltage normalized to 100 V. The figure shows also cross-sections at 45◦ of the reflector
shape. Figure 6 compares the cross sections of the influence functions of the 6 electrodes of
the same row (successively rotated by 60◦, together with a numerical simulation using a
piezoelectric d31 = 10 pC/N; this value gives the best fit between the experiments and the
simulations (comparing with the values of Table 1 obtained on small samples suggests that
the annealing of the demonstrator may be imperfect).

We now examine how the influence functions can be used to construct the optical
(Zernike) modes within a given pupil.

4.2. Optical Modes

Let φi be the influence function of electrode i, that is the vector of the surface displace-
ments at n points within the pupil, for a unit voltage applied to electrode i. An optical
mode z can be reconstructed within the pupil by solving the equation

z =
25

∑
i=1

xiφi (8)

or
z = Jx, (9)

where z is the vector containing the amplitudes of the optical mode at the n points in the
pupil and J is the Jacobian, a rectangular matrix of order (n, 25) in this case (the columns of
J are the influence functions φi). x is the vector containing the voltages of the 25 controlled
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electrodes. The solution minimizing the fitting error is given by the Moore-Penrose pseudo
inverse:

x = (JT J)−1 JTz. (10)
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Figure 5. Experimental influence functions of electrodes E1, E2, E8 and E15 for a voltage normalized to 100 V and cross
section at 45◦ of the reflector shape.
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However, the Jacobian tends to be ill-conditioned, leading to unnecessary voltages
for some electrodes located outside the pupil. To alleviate this, we perform a Tikhonov
regularization, also called Damped Least Squares (DLS) [17]. The pseudo inverse becomes

x = (JT J + α2 I)−1 JTz. (11)

The damping factor α2 handles the conflicting requirements of minimizing the fitting
error and limiting the control actuator budget, that is the voltage range ∆V. The procedure
is illustrated for the Trefoil mode in a pupil of 120 mm in Figure 7a. The L-curves express
the trade-off between the voltage range and the RMS fitting error. For small values of α2,
the voltage range decreases significantly without affecting significantly the fitting error.
Figure 7b,c show the result based respectively on numerical and experimental influence
functions, for α = 2× 10−7.

Figure 8 compares the mirror shape obtained with the experimental influence functions
with the target for six optical modes: defocus (10 µm), astigmatism, trefoil, and coma
(5 µm).
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Figure 7. Trefoil mode with a Peak to Valley (PV) amplitude of 5 µm in a pupil of 120 mm. (a) L-curves showing the
trade-off between the voltage budget and the fitting error. (b) Reflector shape in the pupil, fitting error and voltage map
using the numerical influence functions and α = 2× 10−7. (c) Same with the experimental influence functions.
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PV = 5 µm

Defocus
PV = 10 µm

Astig. vertical
PV = 5 µm

Trefoil. vertical
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Coma. horizontal
PV = 5 µm

Coma. vertical
PV = 5 µm

Err. RMS = 264 nm Err. RMS = 331 nmErr. RMS = 331 nm

Err. RMS = 183 nm Err. RMS = 185 nmErr. RMS = 141 nm

Figure 8. Six optical modes in a pupil of 120 mm. From top to bottom: Target, RMS fitting error, Reconstructed surface from
the experimental influence functions.

5. Conclusions

This paper discusses the design and manufacturing of a thin polymer spherical adap-
tive reflector of diameter D = 200 mm, controlled by a set of 25 independent electrodes
arranged in a keystone configuration actuating a thin film of PVDF-TrFE in d31-mode. The
electrostrictive material is spray coated. The results of the present study confirm that
the active material can be modelled by a unidirectional quadratic model. The material
has excellent properties if properly annealed; however, the dielectric constant εr and the
piezoelectric constant d31 of the material obtained by spray coating appear to be slightly
lower than those obtained earlier by spin coating. The experimental influence functions
of the control electrodes are in good agreement with the numerical simulations and their
better circular symmetry indicates a clear improvement in the manufacturing process, as
compared to a previous study (comparing to Figure 15 of Reference [10]). Thanks to a
special procedure to alleviate the ill-conditioning of the Jacobian, the reconstructed opti-
cal modes are achieved with reasonable voltages (∆V < 100 V, compliant with the ESA
specifications).

Overall, the performances of the demonstrator are well in line with the expectations
and compliant with the requirements of the ESA-MATS project, showing that the technology
is a good candidate for controlling the surface figure of large lightweight reflectors.
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MIBK Methyl isobutyl ketone
PDCMS Pulse DC Magnetron Sputtering
PET Polyethylene terephthalate
PV Peak to Valley
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