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Abstract: An adaptive cruise control (ACC) system can reduce driver workload and improve safety
by taking over the longitudinal control of vehicles. Nowadays, with the development of range
sensors and V2X technology, the ACC system has been applied to curved conditions. Therefore,
in the curving car-following process, it is necessary to simultaneously consider the car-following
performance, longitudinal ride comfort, fuel economy and lateral stability of ACC vehicle. The direct
yaw moment control (DYC) system can effectively improve the vehicle lateral stability by applying
different longitudinal forces to different wheels. However, the various control objectives above will
conflict with each other in some cases. To improve the overall performance of ACC vehicle and realize
the coordination between these control objectives, the extension control is introduced to design the
real-time weight matrix under a multi-objective model predictive control (MPC) framework. The
driver-in-the-loop (DIL) tests on a driving simulator are conducted and the results show that the
proposed method can effectively improve the overall performance of vehicle control system and
realize the coordination of various control objectives.

Keywords: advanced driver assistant systems; adaptive cruise control; direct yaw moment control;
extension control; model predictive control

1. Introduction
1.1. Background

An adaptive cruise control system is a key basic function of the advanced driver
assistant systems (ADAS) developed to enhance driving comfort, reduce driving errors,
improve safety, increase traffic capacity and reduce fuel consumption [1]. The ACC system
is developed from the conventional cruise control (CC) system. It measures the distance
and relative longitudinal speed between the host vehicle and preceding vehicle by range
sensors (such as radar, lidar or video camera), then the throttle and brake will be controlled
by ACC algorithm to realize the longitudinal motion control of the vehicle. As the ACC
system takes over the longitudinal motion control of vehicle, the driver workload is largely
reduced.

1.2. Literature Review and Analysis

A lot of research has been done on improving the longitudinal car-following perfor-
mance of ACC vehicles. Moon et al. proposed a multiple-target tracking adaptive cruise
control system to improve the system performance [2]. Martinez and Canudas-de-Wit
proposed a novel reference model-based control approach for automotive longitudinal
control [3]. Ganji et al. proposed an adaptive cruise control for a hybrid electric vehicle
based on a sliding mode controller which can deal with the problem of variable set-point
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of ACC [4]. Lin proposed an adaptive neuro-fuzzy predictor-based control approach to
enhance the fuel efficiency [5]. Althoff proposed an exchangeable nominal controller to
ensure comfort [6].

In recent years, in order to save energy, reduce emission and improve the passenger
comfort, in addition to improving the longitudinal car-following performance of ACC
system, some scholars have also considered the fuel economy, longitudinal ride comfort,
safety into the design of ACC system. Moser proposed a stochastic model predictive
control (MPC) to optimize the fuel consumption in a vehicle following context [7]. Luo et al.
proposed an adaptive cruise control algorithm with multiple objectives based on a model
predictive control framework [8]. Li et al. proposed a novel vehicular adaptive cruise
control system to comprehensively address the issues of tracking ability, fuel economy and
driver desired response [9]. Luo et al. proposed a novel ACC system for intelligent HEVs
to improve the energy efficiency and control system integration [10]. Ren et al. proposed a
hierarchical adaptive cruise control system to get a balance among the driver’s expectation,
collision risk and ride comfort [11]. Asadi and Vahidi proposed a method which used the
upcoming traffic signal information within the vehicle’s adaptive cruise control system to
reduce idle time at stop lights and fuel consumption [12].

Most of the above studies usually assumed that the vehicle was running along the
straight lane. With the development of radar detection range and V2 X technology, it
enables ACC vehicle to detect the preceding vehicle on the curved road. Thus, in order to
expand the application of ACC system, some studies have been done under the condition
that the ACC vehicle runs on a curved road. D. Zhang et al. presented a curving adaptive
cruise control system to coordinate the direct yaw moment control system and considered
both longitudinal car-following capability and lateral stability on curved roads [13]. Cheng
et al. proposed a multiple-objective ACC integrated with direct yaw moment control
to ensure vehicle dynamics stability and improve driving comfort on the premise of car
following performance [14]. Idriz et al. proposed an integrated control strategy for adaptive
cruise control with auto-steering for highway driving [15]. The references above have
considered the car-following performance, longitudinal ride comfort, fuel economy and
lateral stability of ACC vehicle. However, when an ACC vehicle drives on a curved
road, these control objectives usually conflict with each other. For example, in order
to obtain better car-following performance, ACC vehicles usually tend to adopt larger
acceleration and acceleration rate to adapt to the preceding vehicle, which will lead to
poor longitudinal ride comfort. Moreover, in order to ensure vehicle lateral stability, the
differential braking forces generated by the DYC system are usually applied to track
the desired vehicle sideslip angle and yaw rate, whereas the additional braking forces
will make the car-following performance worse, especially when the ACC vehicle is in
an accelerating process. Meanwhile, to ensure the car-following performance when the
additional braking force acts on the wheel, the ACC vehicles will increase the throttle
opening to track the desired longitudinal acceleration, which usually means the increase
of fuel consumption. The traditional constant weight matrix MPC has been unable to
adapt to various complex conditions. In this paper, the extension control is introduced to
design the real-time weight matrix under the MPC framework to coordinate the control
objectives including longitudinal car-following capability, lateral stability, fuel economy
and longitudinal ride comfort and improve the overall performance of vehicle control
system.

Extension control is developed from the extension theory founded by Wen Cai. It is a
new type of intelligent control that combines extenics and control. It can imitate people’s
ability to summarize, study and solve the incompatible issue [16]. Its basic idea is to deal
with the control problems from the perspective of information conversion. In other words,
the qualified degree (dependent degree) of control input information is used as the basis to
determine the correction value of control output, then the controlled information will be
converted to the qualified range [17]. Extension control is a cross-discipline method which
has been applied into various engineering control domain. Currently, the extension control
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has also been applied into vehicle stability control [18–20], and these studies showed that
the extension control could improve the performance of control system effectively. In
this paper, the extension control is used to supervise the control effect of longitudinal
car-following distance error and the risk of losing vehicle lateral stability and then adjust
the weight matrix in the MPC framework.

1.3. Contribution and Organization

The main contribution of this paper is as follows.
The extension sets are designed to supervise the control effect of longitudinal car-

following distance error and the risk of losing vehicle lateral stability. Both the control
effect and the risk can be reflected by the corresponding extension distance. Then, the
control system is designed by the following purpose. That is, on the premise of ensur-
ing longitudinal car-following performance and lateral stability, the fuel economy and
longitudinal ride comfort should be improved as much as possible.

Based on the system integrating ACC with DYC, this paper introduces the extension
control to design the real-time weight matrix under a multi-objective MPC framework
to solve the contradiction among the control objectives above. It can coordinate various
control objectives and improve the comprehensive performance of vehicle control system
under different conditions. Then, the DIL tests are carried out to validate the effectiveness
of the proposed control strategy.

The rest of this paper is organized as follows: the vehicle models are established in
Section 2. The design of control system is presented in Section 3. The DIL tests and results
are shown in Section 4, and the conclusions are drawn in Section 5.

2. Vehicle Models
2.1. Longitudinal Dynamics Model

Newton’s second law is applied to establish the vehicle longitudinal dynamics model.
As shown in Figure 1, the longitudinal forces acting on the vehicle are expressed as the
acceleration, rolling, gravitational, and drag [4]. The longitudinal dynamics equation is
shown in Equation (1).

Fd = max + mg f cos θ + mg sin θ + Fw, (1)

where Fd represents the net traction force, m is the vehicle mass, ax is vehicle longitudinal
acceleration, g is the gravitational acceleration, f denotes the rolling coefficient, θ is the
grade of road, and Fw is the aerodynamic drag as shown in Equation (2).

Fw =
1
2

ρCD Av2
x, (2)

where ρ is the air density, CD is the drag coefficient, A is the windward area of the vehicle,
and vx represents vehicle longitudinal speed.
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2.2. Four-Wheel Vehicle Dynamics Model

In this paper, the longitudinal, lateral and yaw motion of vehicle are considered, and
the pitch, roll and vertical motion of the vehicle are neglected. The simplified four-wheel
vehicle dynamics model [14] is established as shown in Figure 2, where Fxi and Fyi are the
longitudinal and lateral forces of the four wheels respectively, and the subscript i is 1, 2, 3,
and 4, representing the front-left, front-right, rear-left and rear-right wheel respectively; δf
is the front wheel steering angle, lf and lr are the distance from vehicle gravity center to
the front axle and rear axle, respectively; l is the wheelbase, and T is the track width. The
longitudinal, lateral and yaw motion are presented as follows:

m
( .
vx − vyω

)
= Fx3 + Fx4 −

(
Fy1 + Fy2

)
sin δ f + (Fx1 + Fx2) cos δ f (3)

mvx(
.
β + ω) = Fy3 + Fy4 +

(
Fy1 + Fy2

)
cos δ f + (Fx1 + Fx2) sin δ f , (4)

Iz
.

ω =
(

Fy1 + Fy2
)
l f cos δ f +

(
Fy1 − Fy2

) T
2 sin δ f −

(
Fy3 + Fy4

)
lr + (Fx1+

Fx2)l f sin δ f − (Fx1 − Fx2)
T
2 cos δ f − (Fx3 − Fx4)

T
2 ,

(5)

where vy represents vehicle lateral velocity, β and ω represent vehicle sideslip angle and
yaw rate respectively, and Iz represents the inertia moment.
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2.3. Tire Model

In this paper, Pacejka’s magic formula [21] is used to describe the dynamics of tire.
The longitudinal and lateral tire force can be calculated by Pacejka’s magic formula. It can
be depicted as follows:

y = D sin[Carctan{Bx− E(Bx− arctanBx)}]
Y(X) = y(x) + SV

x = X + SH

, (6)

where Y represent longitudinal force Fx, lateral force Fy or aligning torques Mz, X is wheel
slip ratio or wheel sideslip angle, B is stiffness coefficient, C is shape coefficient, D is peak
value, E is curvature coefficient, SH is horizontal offset, and SV is vertical offset.

3. Control System Design

In the car-following process, the host vehicle sometimes needs to consider the lateral
stability. For example, when the preceding vehicle drives away from the curve and accel-
erates into the straight lane, the host vehicle may still run on the curve, and it will also
be accelerated to ensure the car-following performance. At this moment, the acceleration,
steering and high longitudinal speed of host vehicle will increase the risk of losing lateral
stability. Thus, it is necessary to consider the car-following performance and lateral stability
simultaneously. Moreover, to improve driver satisfaction and reduce fuel consumption,
the longitudinal ride comfort and fuel economy should also be considered into the control
system design.
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The extension control is introduced to design the weight matrix under the multi-
objective MPC framework to coordinate the above control objectives and improve the
overall performance of vehicle control system. The framework of control system is shown
in Figure 3.
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This paper mainly focuses on the design of coordinated control system and there are
many studies have been done on estimation of the key variables [22–24]. Therefore, it is
assumed that vehicle states such as sideslip angle, sideslip angle rate and road friction
coefficient can be estimated accurately.

The purpose of the vehicle control system in this paper is as follows:

1. On the premise of ensuring vehicle lateral stability, the additional yaw moment
should be as small as possible to reduce the impact on longitudinal car-following
performance and improve the fuel economy.

2. On the premise of ensuring the longitudinal car-following performance, the longitu-
dinal acceleration and its change rate should be as small as possible to improve the
longitudinal ride comfort.
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3.1. Predictive Model
3.1.1. Longitudinal Car-Following Model

The function of ACC is to take over the longitudinal motion control of host vehicle
to make it run at the driver’s preset longitudinal speed or car-following distance. The
longitudinal kinematic diagram of host vehicle and preceding vehicle is shown in Figure 4.
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The desired car-following distance between the host vehicle and the preceding vehicle
is calculated by using the constant time headway, as shown in Equation (7).

ddes = Thvx + d0, (7)

where ddes is the desired car-following distance, Th is the time headway, vx is the lon-
gitudinal speed of host vehicle, and d0 is the static inter-vehicle distance. Here, Th = 2,
d0 = 10.

Usually, the longitudinal car-following performance can be represented by relative
speed ∆v and the car-following distance error ∆d between the actual car-following distance
d and the desired car-following distance ddes, as shown in Equation (8).

∆d = d− ddes
∆v = vp − vx

, (8)

where vp is the longitudinal speed of the preceding vehicle. The derivative of Equation (8)
can be derived as follows:

∆
.
d = ∆v− Thax
∆

.
v = ap − ax

, (9)

where ap is the longitudinal acceleration of preceding vehicle.
The relationship between the desired acceleration and the actual longitudinal accel-

eration can be described by the first-order inertial system [13], as shown in the following
Equation (10).

ax =
1

Taxs + 1
ades, (10)

where ax and ades are the actual longitudinal acceleration and desired longitudinal accelera-
tion of host vehicle respectively, Tax is time-constant and Tax = 0.45.

3.1.2. Lateral Dynamic Model

A 2-DOF vehicle model is usually used to design the lateral stability controller [25], as
shown in Equation (11).

.
β = −C f +Cr

mvx
β + (

lrCr−l f C f

mv2
x
− 1)ω +

C f
mvx

δ f

.
ω =

lrCr−l f C f
Iz

β−
l2

f C f +l2
r Cr

Izvx
ω +

l f C f
Iz

δ f +
Mdes

Iz

, (11)

where Cf and Cr are the cornering stiffness of the front wheel and rear wheel, respectively,
and Mdes is the desired additional yaw moment.
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The desired values of yaw rate ωd and side slip angle βd are defined according to
vehicle parameters, longitudinal speed, and front steering angle δf directly manipulated by
driver’s steering action [26], as shown in Equation (12).

ωd = vx l
l+m(l f /Cr−lr/C f )v2

x
δ f

βd =
lr−

l f mv2
x

2Cr(l f +lr)

l f +lr+
mv2

x(lrCr−l f C f )
2C f Cr(l f +lr)

δ f

, (12)

Considering the road friction limitation, the desired yaw rate and side slip angle are
modified as follows:

ωd = min
(

vx l
l+m(l f /Cr−lr/C f )v2

x
δ f , µg

vx

)

βd = min

 lr−
l f mv2

x

2Cr(l f +lr)

l f +lr+
mv2

x(lrCr−l f C f )
2C f Cr(l f +lr)

δ f , tan−1(0.02 µg)

 , (13)

The yaw rate error and the vehicle sideslip angle error can be calculated by
Equation (14).

∆β = β− βd
∆ω = ω−ωd

, (14)

The error between the desired value and the actual value reflects the stability of the
vehicle. When the error of yaw rate or vehicle sideslip angle is small, the vehicle is in a
steady status. When the error is large, it means that the vehicle is out of control or loses its
stability.

3.1.3. Model Discretization

By combining (7)–(10), the state-space equation can be obtained as shown in
Equation (15).

.
x = Ax + Bu + Dω1, (15)

where x = [β ω ∆d ∆v ax]
T , u = [Mdes ades]

T , ω =
[
δ f ap

]T
, and the matrix expression

is shown in Equations (16)–(18).

A =


−C f +Cr

mvx

lrCr−l f C f

mv2
x
− 1 0 0 0

lrCr−l f C f
Iz

−
l2

f C f +l2
r Cr

Izvx
0 0 0

0 0 0 1 −τh
0 0 0 0 −1
0 0 0 0 − 1

τax

, (16)

B =


0 0
1
Iz

0
0 0
0 0
0 1

τax

, (17)
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D =



C f
mvx

0
l f C f

Iz
0

0 0
0 1
0 0

, (18)

In order to get the numerical solution of rolling optimization, the Taylor expansion
method is applied to discretize Equation (15) to obtain the discrete state-space equation as
shown in Equation (19).

x(k + 1) = Adx(k) + Bdu(k) + Ddω(k), (19)

where Ad, Bd, Dd can be calculated by Taylor expansion method, as shown in Equation (20).
Ad = I + Ts · ∂ f (x, u, ω)/∂x

Bd = Ts · ∂ f (x, u, ω)/∂u
Dd = Ts · ∂ f (x, u, ω)/∂ω

, (20)

where Ts is the sampling time and I is the unit matrix.

3.2. Performance Index
3.2.1. Longitudinal Car-Following Performance

The longitudinal car-following performance of ACC system is usually evaluated by
the distance error and relative speed between host vehicle and preceding vehicle. To
ensure the longitudinal car-following performance, the distance error and relative speed
are used to build the cost function for longitudinal car-following capability, as shown in
Equation (21).

JACC = w∆d

(
∆d− ∆dre f

)2
+ w∆v

(
∆v− ∆vre f

)2
+ wae

(
ax − ax,re f

)2
+

wades a2
des,

(21)

where the reference value of ∆dref, ∆vref, ax,ref are set as zero.

3.2.2. Lateral Dynamics Stability

Vehicle yaw rate error and sideslip angle error are usually used to describe vehicle
lateral stability. When the error is small, it means that the vehicle status is in a stability area;
when the error is large, it means that the vehicle loses control or loses the stability. The DYC
system is usually applied to ensure the lateral stability of vehicle. However, the additional
yaw moment required by DYC system is usually generated by the braking pressure of
different wheels, the additional yaw moment will affect the longitudinal car-following
performance and fuel economy of ACC vehicles. Therefore, on the premise of ensuring the
vehicle lateral stability, the additional yaw moment is expected to be as small as possible.
The quadratic form of ∆ω, ∆β and the additional yaw moment Mdes is used to form the
cost function for lateral stability, as shown in Equation (22).

JVLS = w∆ω∆ω2 + w∆β∆β2 + wMdes M2
des, (22)

3.2.3. Longitudinal Ride Comfort

In order to improve driver satisfaction and ensure the longitudinal ride comfort, the
absolute value of longitudinal acceleration and jerk caused by the change of longitudinal
acceleration are used to describe the longitudinal ride comfort performance index of ACC
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vehicle. Therefore, the absolute value of longitudinal acceleration and jerk are set as the
constrains to ensure the longitudinal ride comfort, as shown in Equation (23).

|ax| ≤ amax
|ax(k)− ax(k− 1)| ≤ jmax

, (23)

3.2.4. Cost Function Design

By combining Equations (21) and (22), the cost function for the multi-objective control
is formed as shown in Equation (24).

J = w∆d

(
∆d− ∆dre f

)2
+ w∆v

(
∆v− ∆vre f

)2
+ wae

(
ax − ax,re f

)2
+ wades a2

des+

w∆ω∆ω2 + w∆β∆β2 + wMdes M2
des,

(24)

Then, the predictive expression of the cost function can be obtained, as shown in
Equation (25).

J =
Np−1

∑
n=0
||x(k + n|n )− xre f (k + n|n )||2Q(k) +

Nc−1

∑
n=0
||u(k + n|n )||2R(k) (25)

where Np and Nc denote the predictive horizon and control horizon, respectively. Q(k) and
R(k) are non-negative weight matrices, as shown in Equation (26). xref is the reference value
of MPC, and xref = [βd ωd 0 0 0]T.{

Q(k) =
[
w∆β w∆ω w∆d w∆v wae

]
R(k) =

[
wMdes wades

] , (26)

Then the desired longitudinal acceleration and additional yaw moment can be ob-
tained by minimizing the cost function as shown in Equation (25) subject to the car-
following model, vehicle dynamics model, and the constraints as shown in Equation (23).

3.3. Extension Control Design

In order to improve the performance of MPC and make it adapt to various conditions,
that is, the deceleration process, constant speed process and acceleration process of host
vehicle in the curve. The extension control is introduced to design the real-time weight
matrix under the framework of MPC. The design process is as follows:

3.3.1. Extracting Character Variable

In terms of the longitudinal car-following performance, due to the drivers are more
sensitive to the distance error than the relative speed during the car-following process [13],
this paper selects the car-following distance error to adjust the weight w∆d of the distance
error, and sets the weight w∆v of the relative speed as a constant, then the distance error is
selected to form the longitudinal car-following feature status S(∆d).

In terms of vehicle lateral stability, the phase plane method composed of the sideslip
angle and the sideslip angle rate is usually used to judge the lateral stability of vehicle [25]
because its good identification of vehicle stability condition. The phase plane method can
be expressed as Equation (27).

Xregion =
∣∣∣B1

.
β + B2β

∣∣∣ ≤ 1, (27)

where B1 and B2 are the parameters related to the road friction coefficient µ, here B1 = 0.064
and B2 = 0.214 [27].

The vehicle phase plane can be divided into ‘stability region’ and ‘instability region’
by Equation (27), as shown in Figure 5. The area ‘stability region’ means vehicle status in
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this area is safe and stable, while the remaining area is ‘instability region’, which means
vehicle status in this area is risky in losing stability and unsafe [25].

It is also a challenge to ensure vehicle lateral stability when the driver desired yaw
rate is in a large range. Thus, the value of Xregion and the desired yaw rate ωd are selected
as the character variables of lateral stability to form the feature status S(Xregion, ωd).
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3.3.2. Dividing the Extension Set

The one-dimensional (1-D) extension set of the longitudinal car-following distance
error is shown in the Figure 6, where ∆d1 and ∆d2 are the boundaries of the classic domain
and the extension domain, respectively. The distance error should be in driver’s permissible
longitudinal car-following range to reduce the driver intervention. The boundary of
extension domain reflects the boundary of permissible region and impermissible region.
Therefore, ∆d2 is set to the driver’s maximum permissible value. The driver’s permissible
longitudinal car-following range [13] is shown in Equation (28).

− ∆dmax·SDE−1 ≤ ∆d ≤ ∆dmax·SDE−1, (28)

where SDE is the driver’s sensitivity to distance error. The boundary of extension domain
is calculated as ∆d2 = ∆dmax·SDE−1. The SDE−1 is calculated as follows:

SDE−1 = kSDEvx + dSDE, (29)
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The parameters in Equations (28) and (29) are identified by driver experiment data
in highway and city road traffic conditions [13]. Here, ∆dmax = 7.2 m, kSDE = 0.06, and
dSDE = 0.12. The boundary of classic domain ∆d1 is set to a relatively small value and
∆d1 = 0.1 × ∆d2.

The lateral stability is represented by a two-dimensional (2-D) extension set, including
classic domain, extension domain and non-domain. In the classic domain, it indicates the
vehicle is stable; in the extension domain, it indicates the vehicle is transiting from stability
to instability, and the vehicle state can be converted into the stable state by control; while
in the non-domain, the vehicle is instable. The x-axis is desired yaw rate, and the y-axis is
Xregion, as shown in the Figure 7, where ω1 and ω2 are the boundaries of the classic domain
and the extension domain in the x-axis direction, Xregion1 and Xregion2 are the boundaries
of the classic domain and the extension domain in the y-axis direction, respectively. Here,
Xregion1 and Xregion2 are set to 0.1 and 1 respectively. The extension boundary ω2 in the x-axis
direction reflects the boundary under large steering condition. Based on the experience and
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previous works [25], 0.2 µrad/s is set as the threshold of large steering condition. Therefore,
the boundary ω2 is set as 0.2 µrad/s. The classic boundary ω1 is set as 0.1 × ω2.
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Here, the “classic domain” and “extension domain” correspond to the stability region,
and the “non-domain” corresponds to the instability region of vehicle. The “extension
domain” can be understand as a transition domain.

3.3.3. Calculating Dependent Degree

Compared with the result of whether the vehicle status is in the stable region or not,
it will help to improve the performance of control system if more detailed information,
i.e., the degree of vehicle lateral status is known, and then we can design the control
method according to that degree. In extension control, the “degree” above was defined
as “dependent degree”. The ideal point in the extension set is the original point O which
represents the longitudinal car-following distance error, Xregion and ωd are zero. The point
Q is supposed as a point in the extension domain. Connecting the point O with the point
Q, the intersection points of the line OQ and the domains’ boundaries are the points Q1
and Q2, respectively. Obviously, in 1-D extension set of car-following distance error, the
points Q1 and Q2 correspond to ∆d1 and ∆d2 respectively. As shown in the Figure 7, the
line segment OQ is the shortest distance for the point Q to approach the ideal point O.
In the extension sets, the extension distance is defined as the distance from a point to a
set, which is defined in a 1-D coordinate system. Therefore, it is required to convert the
extension distance of 2-D extension set of lateral stability to a 1-D extension form, as shown
in Figure 8.
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Set the classic domain <O, Q1> = Xc, the extension domain <Q1, Q2> = Xe. The
extension distance from the point Q to classic domain is represented as ρ(Q, Xc), and
the extension distance from point Q to extension domain is represented as ρ(Q, Xe). The
extension distance can be calculated as follows:

ρ(Q, Xc) =

{
−|OQ1|, Q ∈ 〈O, Q1〉
|OQ1|, Q ∈ 〈Q1,+∞〉 , (30)

ρ(Q, Xe) =

{
−|OQ2|, Q ∈ 〈O, Q2〉
|OQ2|, Q ∈ 〈Q2,+∞〉 , (31)

Thus, the dependent degree K(S), also known as correlation function, can be calculated
as follows: {

K(S) = ρ(Q,Xe)
D(Q,Xe ,Xc)

D(Q, Xe, Xc) = ρ(Q, Xe)− ρ(Q, Xc)
, (32)
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3.3.4. Identifying Measure Pattern

The dependent degree of any point Q in the extension set can be described quantita-
tively by the dependent degree K(S). The measure pattern can be divided as follows:

M1 = {S|K(S) > 1}
M2 = {S|0 ≤ K(S) ≤ 1}

M3 = {S|K(S) < 0}
, (33)

The classic domain, extension domain and non-domain correspond to the measure
pattern M1, M2 and M3, respectively.

3.3.5. Weight Matrix Design

After the dependent degree K(S) is calculated, it is used to design the real-time weight
matrix because it can reflect the degree of longitudinal car-following distance error and the
risk of losing lateral stability. The weights for w∆β, w∆ω and w∆d are set as the real-time
weights which are adjusted by the corresponding values of the dependent degree K(S), and
the other weights w∆v, wae, wMdes, wades are set as constants.

When the car-following distance error belongs to the measure pattern M1, it means that
the distance error is in a small range, and it is not necessary to increase the corresponding
weight. When the car-following distance error belongs to the measure pattern M2, the
distance error is in a relatively large range, and it is possible to exceed the driver’s sensitivity
limit of the distance error if the corresponding weight is not adjusted timely. When the
car-following distance error belongs to the measure pattern M3, the distance error exceeds
the driver’s sensitivity limit, and the corresponding weight should be maximized to reduce
the distance error by control. The real-time weight for longitudinal car-following distance
is designed as follows:

w∆d =


0.3, KACC(S) > 1
0.3 + 0.4·kACC, 0 ≤ KACC(S) ≤ 1
0.7, KACC(S) < 0

, (34)

where kACC = 1− KACC(S), kACC and KACC(S) are defined as the adjustment factor and
dependent degree for vehicle longitudinal control.

Similarly, when the lateral stability status belongs to the measure pattern M1, it
indicates that the vehicle lateral stability status is in a stability region, and it is not necessary
to adjust the corresponding weight. When the lateral stability status belongs to the measure
pattern M2, the lateral stability status is in the area between stability region and instability
region and the vehicle may lose stability if the corresponding weight is not adjusted
timely. When the lateral stability status belongs to the measure pattern M3, the lateral
stability status is in the instability region, the corresponding weight should be maximized
to maintain vehicle lateral stability by control. The real-time weights for lateral stability are
designed as follows:

w∆β, w∆ω =


0, KVLS(S) > 1

0.5·kVLS, 0 ≤ KVLS(S) ≤ 1
0.5, KVLS(S) < 0

, (35)

where kVLS = 1− KVLS(S), kVLS and KVLS(S) are defined as the adjustment factor and
dependent degree for vehicle stability control.

The real-time weight matrices of the proposed control are designed as follows:{
Q(k) =

[
w∆β w∆ω w∆d 1 1

]
R(k) = [0.001 2]

, (36)
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To show the effectiveness of the proposed control, a constant weight ACC and a
constant weight ACC&DYC are used for comparison. The constant weight matrices of
conventional ACC are shown in Equation (37).{

Q(k) = [0 0 0.5 1 1]
R(k) = [0.001 2]

(37)

The constant weight matrices of conventional ACC&DYC are shown in (38).{
Q(k) = [0.5 0.5 0.5 1 1]

R(k) = [0.001 2]
, (38)

3.4. Lower Layer Design

After the desired longitudinal acceleration and additional yaw moment are obtained
from MPC in the upper layer, the lower layer of the control system is to realize these
objectives by the throttle opening and brake pressure. The desired longitudinal force on
rear wheels can be obtained by Equation (39).{

F3 + F4 = Fd
(F4 − F3)·T/2 = Mdes

, (39)

Simplifying the power-train, consider the constant efficiencies at final drive, transmis-
sion, torque converter and neglecting the slip in wheels [4].

The fuel consumption is shown in Figure 9a. The desired longitudinal acceleration is
realized by the engine map which is shown in Figure 9b. The throttle opening is determined
through the look-up table by utilizing engine speed and desired engine torque. The brake
pressure of rear wheel is calculated by inverse brake system. As ACC and DYC system
usually does not need too large braking deceleration, it can be considered that there is a
linear relationship between the brake pressure Pb and braking torque Tb at the wheels [28],
as shown in Equation (40).

Tb = 150·Pb (40)
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The relationship between Fd and engine output torque Te is as follows [14].

R·Fd = η f (ωt/ωe)igioTe (41)

where η represents mechanical efficiency, f (ωt/ωe) is the torque characteristic function
of torque converter, and ig and io denote the transmission ratio of the gearbox and main
reducer, respectively.
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4. DIL Test Results and Analysis

As ACC and DYC systems always work with the driver, a closed DIL evaluation
would be more effective than the open-loop simulations because of the real action of
drivers’ steering behavior [13]. Therefore, a driving simulator is used in the DIL tests for
coordinated multi-objective ACC, as shown in Figure 10. In the simulator, the vehicle model
is built in the vehicle simulation software, CarMaker. The coordinated multi-objective ACC
controller is implemented with MATLAB/Simulink.
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The driving simulator contains the steering wheel, monitor, brake pedal, accelerator
pedal and a road feeling motor. The driver’s steering angle signal is obtained by steering
wheel, the virtual scenario in CarMaker is displayed on the monitor. Due to the ACC system
takes over the longitudinal control, the brake pedal and accelerator pedal are not used
here. The road feeling motor can make the driver perceive the road feeling information of
the vehicle through the steering wheel. The simulation hardware platform contains the
controller hardware, board card, CAN card, NI PXI real-time processor and the platform is
used to simulate all the input signals required by the normal operation of the controller to
be tested, and collect the control commands from the controller.

The traditional constant weight ACC and the constant weight ACC and DYC are
denoted as “ACC” and “ACC&DYC” in the simulation results, respectively. The pa-
rameters in the simulation model are shown in Table 1. The type of tire model used in
CarMaker is magic formula tire model “MF_205_60R15”. The values “205”, “60” in name
“MF_205_60R15” represent the tread width and flat ratio of tire. The letter “R15” indicates
that the tire is a radial tire and “15” is the outer diameter of rim.
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Table 1. Parameters in the simulation model.

Parameter Symbol Value

Vehicle mass m 1301 kg
Gravitational acceleration g 9.8 m/s2

Inertial of z axis Iz 1600 kg·m2

Track width T 1.544 m
Distance from vehicle gravity center to front axle lf 0.97 m
Distance from vehicle gravity center to rear axle lr 1.567 m

Road adhesion coefficient µ 0.6
Maximum acceleration amax 2.5 m/s2

Maximum jerk jmax 0.5 m/s3

A common scenario is conducted to show the effectiveness of the proposed controller.
The preceding vehicle and host vehicle go through a curved path which is shown in Figure 11.
Before entering the curve, the preceding vehicle drives at a constant speed 110 km/h. Then
the preceding vehicle slows into the curve with a deceleration of –1 m/s2 and drives at a
low constant speed 54 km/h in the curve, as shown in Figure 12a. Finally, the preceding
vehicle speeds up with an acceleration of 1 m/s2 to drive away from the curve. During
the driver in the loop test, in order to reduce the influence of driver’s subjective factors on
the results, the driver is not told what kind the controller is, and the steering wheel angle
from driver is shown in Figure 12b. It can be seen that the driver’s steering angle under the
three controllers is almost the same as a whole, and the driver’s steering wheel angle is
little different with the different three controllers.
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The longitudinal car-following errors, lateral stability error and phase plane of errors
are shown in Figures 13–15, respectively.
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It can be seen from Figure 13 that for the constant weight ACC&DYC, when the host
vehicle decelerates, the additional braking force will make the longitudinal car-following
errors smaller than the constant weight ACC and proposed control, but when the host
vehicle is in an accelerating process, the additional braking force will make the longitudinal
car-following capability worse. When the distance error is close to the limit value, the
proposed control will increase its weight according to the degree of approaching the limit
value to keep the distance error within the limit value as far as possible. As can be seen in
Figure 13a, the distance error with the proposed control is kept within the driver sensitivity
limit, while the errors with the other two controllers exceed the limit value.

In terms of lateral stability control, as can be seen in Figure 14, the maximum yaw rate
errors with constant weight ACC, constant ACC&DYC and the proposed control are about
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0.091 rad/s, −0.045 rad/s and 0.067 rad/s, and the maximum sideslip angle errors with
constant weight ACC, constant ACC&DYC and the proposed control are about 0.023 rad,
−0.023 rad and 0.021 rad. With the proposed control, the maximum yaw rate error and
sideslip angle error are both in a small range. As shown in Figure 15, in the aspect of
lateral stability errors, ACC&DYC has the best control effect. However, in the aspect of
longitudinal tracking errors, the maximum distance error with ACC&DYC has exceeded
20 m which is too large for driver’s sensitivity limit. Although the lateral stability errors
are smaller with ACC&DYC, it sacrifices too much longitudinal car-following performance.
By supervising the risk of losing lateral stability and then apply the corresponding control
strength of DYC system, the proposed control realized coordination of car-following
performance and lateral stability, so as to ensure that the car-following errors and lateral
stability errors are both in a relatively acceptable range.

The proposed control determines the weight of the distance error by the dependent
degree KACC(S) which can reflect the control effect of the longitudinal control. The proposed
control determines the weights of sideslip angle error and yaw rate error by the dependent
degree KVLS(S) which can reflect the risk of losing vehicle lateral stability. As can be
seen from Figure 16b, when the longitudinal distance error increases, the KACC will be
increased to adjust the weights and ensure the longitudinal car-following capability; when
the value of driver steering wheel angle and Xregion increase, the KVLS will be increased to
adjust the weights and ensure the lateral stability. The maximum errors and Xregion with
three controllers are shown in Table 2. Obviously, the overall performance of the control
system is improved. The proposed control can intelligently determine the weight matrices
by the control effect of the longitudinal distance error and the risk of losing lateral stability.
Thus, on the premise of ensuring the car-following performance and lateral stability, the
fuel economy and longitudinal ride comfort are improved as much as possible.
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Table 2. Maximum errors and Xregion with the three controllers.

ACC ACC&DYC Proposed Control

∆d (m) 12.539 20.836 9.311
∆v (m/s) 3.232 3.425 3.092
∆β (rad) 0.021 0.021 0.020

∆ω (rad/s) 0.090 0.045 0.067
Xregion 0.321 0.289 0.273

From the perspective of fuel economy and longitudinal ride comfort, the fuel con-
sumption with ACC is the lowest because of zero additional yaw moment, i.e., additional
braking forces are zero. The fuel consumption with ACC&DYC is the highest because
of the biggest control strength of DYC system. The fuel consumption with the proposed
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control is in a medium range so that the vehicle can improve the fuel economy as much as
possible on the premise of ensuring the lateral stability.

As can be seen in Figure 17, the longitudinal acceleration of host vehicle with the
proposed control increases rapidly at about 35 s. The reason is that the distance error is
about to reach the sensitivity limit. Therefore, it is necessary to increase the weights and
the control strength in the longitudinal control. When the distance error is in a relatively
small range, the proposed control will decrease the weights to improve the longitudinal
ride comfort as much as possible. The control outputs and brake pressure are shown in
Figures 18 and 19, respectively. It can be seen from the Figures 18 and 19 that the throttle
opening of ACC&DYC control method is greater than 0 between 10 s and 20 s, while the
throttle opening of the other two methods is 0. This is because the ACC&DYC method
needs to provide additional relatively large yaw moment during deceleration, which is the
same between 40 s and 50 s. This is also one of the reasons for the high fuel consumption
of ACC&DYC, because some fuel energy is converted into heat energy during differential
braking process, which is also reflected both in larger throttle opening and brake pressure.
This is the conflict between ACC (car-following performance) and DYC (lateral stability).
The proposed control gets a balance between car-following performance and lateral stability.
Meanwhile, the fuel economy has been improved by reducing such conflict.
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To summarize, compared with the traditional constant weight ACC and ACC&DYC,
the proposed control can both ensure the car-following performance and lateral stability by
intelligently designing the real-time weight matrices. It solves the problem of excessive
sacrifice of other performances when improving one performance during car-following
process.
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5. Conclusions

A coordinated multi-objective ACC integrated with DYC under the MPC framework
was proposed in this paper. The extension control is introduced into the real-time weight
matrix design to realize the coordination of various control objectives. The extension
control can intelligently adjust the weight matrix by evaluating the control effect of ACC
and the risk of losing lateral stability.

The longitudinal car-following performance, lateral stability, fuel economy and lon-
gitudinal ride comfort are considered in the control design. On the premise of ensuring
longitudinal car-following performance and lateral stability, the fuel economy and longitu-
dinal ride comfort are improved as much as possible.

With the proposed control, the longitudinal car-following distance error was kept
within the driver sensitivity limit. The lateral stability was ensured by applying DYC
system. Compared with the other two constant weight-matrix MPCs, the proposed control
can improve the overall performance of vehicle control system and realize the coordination
of longitudinal car-following capability, lateral stability, fuel economy and longitudinal ride
comfort. The application of extension coordinated control enables ACC vehicles to deal
with the problem of multi-objective coordinated control on curved roads. From a practical
point of view, it is conducive to reduce traffic accidents, reduce energy consumption and
improve driver comfort and vehicle safety.

Author Contributions: Conceptualization, H.W. and Y.S.; methodology, H.W. and Y.S.; software, Y.S.;
validation, Y.S.; formal analysis, H.W., Y.S. and Z.G.; investigation, Y.S. and Z.G.; resources, H.W.;
data curation, Y.S. and L.C.; writing—original draft preparation, H.W., Y.S. and Z.G.; writing—review
and editing, H.W. and Y.S.; visualization, Y.S. and L.C.; supervision, H.W. All authors have read and
agreed to the published version of the manuscript.
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