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Abstract: An online algebraic estimation technique for natural and forcing frequencies for a class
of uncertain and lumped-parameter vibrating mechanical systems with n degrees of freedom is
described. In general, realistic vibrating systems can be affected by unknown exogenous excitation
forces with multiple and independent frequency harmonic components. Hence, natural frequencies
as well as excitation force frequencies can be simultaneously computed from an algebraic approach
into a small interval of time during online operation of the mechanical system. Measurements of
an available output signal, associated with some specific degree of freedom, are only required for
frequency estimation in time-domain. Information on mass, stiffness and damping matrices are not
necessary for multifrequency estimation algorithms. Some analytical, numerical and experimental
results on a cantilever Euler–Bernoulli beam are described to show and validate the acceptable
estimation of multiple frequencies in forced multiple degrees of freedom vibrating systems.

Keywords: vibration engineering; MDOF vibrating systems; frequency estimation; online parame-
ter estimation

1. Introduction

Several techniques for mainly offline modal parameter identification on vibrating
mechanical systems have been proposed [1–5]. For instance, Fast Fourier Transform (FFT),
spectral estimation, Kalman filtering, linear regression, least squares and zero-crossing
techniques have been applied for estimation of frequency parameters in oscillating sig-
nals [6–8]. Some popular experimental modal analysis techniques based on Frequency
Response Functions (FRF) are peak picking, mode-picking, circle-fit and curve fitting [1,2].
The wave finite element method can be also used to compute offline the natural frequencies
of composite structures, which are widely used in automotive and aerospace industry [9].
The well-known FFT constitutes a standard offline method for multifrequency estimation
as well. Nevertheless, the FFT is not suitable for implementation of adaptive or active vi-
bration control schemes [10]. The FFT demands at least a sampling rate of the double of the
frequencies in vibrating signals [11]. Moreover, FFT presents numerical errors depending
on the information extracted from the measured signal during transient analysis, which
makes necessary the application of additional filtering techniques. Thus, a measurement
window of 12 cycles is commonly recommended to obtain an accurate parameter estimation
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using the discrete Fourier Transform for harmonic control in 60 Hz power systems, where
harmonics are sinusoidal components with integer multiples of the known fundamental
frequency [12]. A fundamental time versus frequency tradeoff is required for Fourier
Transform-based algorithms, with a consequent observation time equals to at least one to
ten waveform cycles, as described in [12].

In vibrating systems, parameter estimation can be used for detection of possible
structural damage [13,14]. Damages in structural components may cause inherent changes
on the stiffness distribution [14]. Changes in natural frequencies of damaged structures
can be then exhibited. In fact, wear, fatigue and cracks are the most common defects in
mechanical structures, and their opportune detection represents a major issue to anticipate
failures [15]. In this regard, damage detection (cracks) in cantilever shaft beams has been
carried out using information about natural frequencies of transverse vibrations [16]. Here,
it has been concluded that changes on natural frequencies depend on the crack location
and dimensions [16]. Similarly, changes on natural frequencies of beam-like structures due
to presence of cracks has been discussed in the literature [17]. Thus, the fast estimation of
natural frequencies represents a relevant issue to detect potential failures and quantify the
remaining useful life on many mechanical structures. Moreover, real-time information on
natural frequencies and/or excitation force frequencies can be used to implement efficient
vibration control schemes in a wide variety of vibration engineering systems [18–20]. In
this context, active vibration control on flexible smart structures, based on modal control
techniques, requires information on the existing natural frequencies with a reasonable
accuracy [20].

Online algebraic frequency estimation for active vibration control tasks has been
introduced by the authors in [21]. Online estimation of natural frequencies has been also
used for adaptive resonant vibration control in a flexible cantilever beam structure in [10].
Furthermore, online monitoring of natural frequencies of flexible structures can be used to
readjust vibration control parameters, where an online estimator of a natural frequency in
a flexible-link manipulator has been presented in [22].

Smart structures are mechanical and kinematic systems, which are partially actuated
from a dynamical point of view [23]. In recent years, these smart structures have gained
ground in a wide variety of engineering fields [18], ranging from civil structures, such
as bridges and buildings, vehicles, such as automobiles, aircrafts and ships, heavy con-
struction cranes [24] and oil rigs up to those of spatial applications such as flexible-link
robots [25]. The aim of providing these systems with proper actuators is to improve their
dynamic performance and robustness against external disturbances such as wind forces,
road imperfections, seismic motions amidst the ever changing loading and operating
conditions often imposed by the nature of their tasks [18,23]. In these cases, not only the
knowledge of their natural frequencies but the frequency content of the external distur-
bances are required to design effective vibration control schemes that allow these systems
to perform their tasks with accuracy, efficiency and safety. Indeed, the knowledge of the
natural frequencies on a smart structure makes it possible for the control system to adapt
its response, such that, when the natural frequencies of some of the plant modes fall within
the bandwidth of its actuators, an active vibration control scheme may be turned-on in
order to cancel or attenuate residual vibrations. However, when these natural frequencies
change and exceed the bandwidth of the actuators, the strategy may be reconfigured to im-
plement semiactive or passive vibration control to inject damping with the same actuators.
For instance, in flexible-link robots, fast rotations of the flexible links and time-varying
loading conditions often induce changes in the boundary conditions of these systems
with distributed mass and stiffness, which in turns makes the natural frequencies of its
links to abruptly change [26]. Thus, critical natural frequencies of flexible links are key
parameters for the synthesis of an effective control system design [27,28]. In general, a
precise knowledge of the so-called modal parameters allows the proper selection, location
and tuning of actuators (e.g., electrical motors, piezoelectric patches, electromagnetic and
hydraulic shakers, magnetorheological dampers) [25,29]. Therefore, a reasonable knowl-
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edge of a model and parameters of a mechanical structure and exogenous is a crucial part
for analysis, design and control of modern smart structures.

This paper deals with the online parameter identification problem of both natural
frequencies and exogenous excitation force frequencies into an operating bandwidth of
interest for lumped-parameter vibrating mechanical systems of n degrees of freedom. The
online algebraic parameter identification approach is based on operational calculus, differ-
ential algebra and module theory [30,31]. In contrast with other parameter identification
techniques, in this multifrequency estimation approach natural and excitation frequencies
are computed from an algebraic approach, online, in time-domain and using information of
some simple and measurable signal. The main challenge is that, all system parameters are
assumed to be completely unknown and the information is estimated from the dynamics
in real-time oscillatory signals.

The main contributions of the present work are the following:

• A novel algebraic technique for online estimation in time-domain of multiple natural
frequencies for an important class of forced and uncertain lumped-parameter vibrating
mechanical systems of n degrees of freedom is proposed.

• Closed-form algebraic formulas to simultaneously estimate online multiple frequen-
cies of possible exogenous excitation forces affecting a vibrating system are obtained.

• Compared with other parameter identification methods, the introduced multifre-
quency estimation approach is performed in time-domain, algebraically and online,
into a small interval of time. System parameters of mass, stiffness and damping
matrices are assumed to be completely unknown.

• Measurements of available output signals, associated with some degree of freedom,
are only required. Then, multifrequency estimation can be carried out using measure-
ments of either position, velocity or acceleration.

The work is organized as follows. The class of Multiple Degrees-Of-Freedom (MDOF)
forced vibrating mechanical systems considered for multiple frequency estimation synthesis
is described in Section 2. Closed-form algebraic formulas to obtain online estimates of
natural and excitation frequencies are described in Section 3. Some analytical, numerical
and experimental results to validate the effectiveness of the algebraic estimation of multiple
frequencies in considerably disturbed MDOF vibrating systems are presented in Section 4.
In general, the results reveal that the proposed estimation technique represents a very good
and effective alternative to compute natural and excitation frequencies on uncertain and
forced MDOF vibrating mechanical systems. Some conclusions and future research are
finally described in Section 5.

2. Description of the MDOF Forced Vibrating Mechanical System

It is considered the online and simultaneous estimation of natural frequencies and
excitation force frequencies occurring on lightly damped vibrating mechanical systems of
n degrees of freedom. In general, this class of MDOF mechanical system can be described
as follows

Mẍ(t) + Cẋ(t) + Kx(t) = f(t), x ∈ Rn, f ∈ Rn (1)

where x =
[

x1 x2 · · · xn
]T is the generalized displacement vector and

f =
[

f1 f2 · · · fn
]T stands for an excitation force vector, whose values contains mul-

tiple harmonic components. As usual, ẋ, ẍ ∈ Rn are velocity and acceleration vectors,
respectively. The matrices M, C, K ∈ Rn×n denote mass, damping and stiffness matrices
described by

M =


m11 m12 · · · m1n

m21 m22 · · · m2n
...

. . .
mn1 mn2 · · · mnn

, C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

. . .
cn1 cn2 · · · cnn

, K =


k11 k12 · · · k1n

k21 k22 · · · k2n
...

. . .
kn1 kn2 · · · knn

 (2)
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Moreover, the components in the excitation force f can be described as a sum of m
arbitrary, distinct and unknown frequency harmonic terms as follows

fi(t) =
m

∑
j=1

Fij sin
(
Ωjt + αij

)
, i = 1, . . . , n (3)

where Fij, Ωj and αij are amplitudes, excitation frequencies and phase angles, respectively.
The vibrating system (1) can be also described in terms of modal (principal) coordi-

nates qi(t) (see, e.g., [1,2] and references therein) as follows

q̈i + 2ζiωi q̇i + ω2
i qi =

n

∑
k=1

ψik fk(t) (4)

where i = 1, . . . , n; j = 1, . . . , m, and ψik are components of the n× n modal matrix

Ψ=


ψ11 ψ12 · · · ψ1n
ψ21 ψ22 · · · ψ2n

...
. . .

ψn1 ψn2 · · · ψnn


The general model (1) has been widely used to describe forced oscillations for a

large class of engineering systems. The mathematical model (1) is commonly adopted for
vibration analysis and control [20,32]. In fact, vibrating behavior of rotating machinery,
building and bridge structures, machine tools, dynamic vibration absorbers, cranes and
flexible-link robots can be modeled, under certain operating conditions, as the MDOF
mechanical system (1) [25,31,33–36].

Furthermore, some continuous vibrating mechanical systems (e.g., beams, plates, gen-
eral structures) can be also approximated, into a specific interest bandwidth, by application
of the well-known Rayleigh expansion theorem, modal analysis theory or finite element
methods with a finite MDOF mechanical system (1) [1,2,32,37].

3. Algebraic Estimation of Natural and Forcing Frequencies

The proposed online algebraic estimation technique of natural and excitation forcing
frequencies on MDOF vibrating systems, into an interest bandwidth, will be based on avail-
able information on some measurable output signal (e.g., position, velocity or acceleration).
Moreover, the system parameters of mass, damping and stiffness matrices and excitation
force vector are assumed to be unknown.

The presented online estimation approach considers that all vibration modes of in-
terest in the vibrating system are excited by external forces or by changes in its initial
conditions. Information about the natural frequencies of the vibrating system can be then
extracted from the measured output signal. Estimation of natural frequencies can be then
computed for operating scenarios in which measurements of free vibration responses are
only available.

The frequency estimation is based on a perspective of oscillating signal modeling. In
this fashion, harmonic excitation force components (3) can be modeled into a small interval
of time and certain initial conditions as

z̈ij + Ω2
j zij = 0 (5)

with i = 1, . . . , n and j = 1, . . . , m. Then, solution of Equation (5) yields the harmonic
components of the excitation force vector as follows

zij = Fij sin
(
Ωjt + αij

)
(6)
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with

Fij =

√√√√z2
ij,0 +

(
żij,0

Ωj

)2

, αij = tan−1

(
zij,0Ωj

żij,0

)

where zij,0 and żij,0 stand for unknown initial conditions of the dynamic model (5) at t = 0.
Therefore, the excitation forces can be expressed as

fi(t) =
m

∑
j=1

zij(t), i = 1, . . . , n (7)

The displacements xi(t), i = 1, . . . , n, for a lightly damped vibrating mechanical
system (i.e., ζi ≈ 0) can be approximated as

xi =
n

∑
k=1

Aik sin(ωkt + ϕk) +
m

∑
j=1

Bij sin
(
Ωjt + α̃ij

)
, i = 1, . . . , n (8)

where ωk is the k-th natural frequency and Ωj is the j-th forcing excitation frequency to be
simultaneously estimated. Similarly, from Equation (8) output displacement signals yi = xi
can be modeled by differential equations as

y(2r)
i + a2r−2y(2r−2)

i + a2r−4y(2r−4)
i + · · ·+ a2ÿi + a0yi = 0, i = 1, . . . , n (9)

where the superscript notation (ρ) is used to denote time derivatives of order ρ. Then, the
solution of the dynamic signal model (9) can be used to reconstruct harmonic terms of
measured signals yi for certain initial conditions into an interval of time. It is important to
remark that the system parameter information is contained into the coefficients a2r−2, for
r = 1, . . . , n + m.

Note that, by defining either yi = ẋi or yi = ẍi, the velocity and acceleration signals
can be also modeled by Equation (9). Therefore, the proposed estimation technique can be
also implemented for operational scenarios where measurements of velocity or acceleration
may be preferred.

Now, from Equation (9) the natural and excitation frequencies are given by the imagi-
nary roots of the polynomial

Pc(s) =
(

s2 + ω2
1

)(
s2 + ω2

2

)
· · ·
(

s2 + ω2
n−1

)(
s2 + ω2

n

)
· · ·

· · ·
(

s2 + Ω2
1

)(
s2 + Ω2

2

)
· · ·
(

s2 + Ω2
m−1

)(
s2 + Ω2

m

)
(10)

Nevertheless, parameters and initial condition of the vibrating signal model (9) are
unknown. Thence, for synthesis of the multiple frequency estimation scheme, Equation (9)
is first multiplied by (t− t0)

2(n+m) to eliminate dependence on unknown initial conditions.
Resulting expressions are then integrated 2(n + m) times with respect to time to avoid
information of time derivatives of measured signals up to 2(n + m)-th order:

a2(n+m)−2ai
1,1 + a2(n+m)−4ai

1,2 + · · ·+ a2ai
1,n+m−1 + a0ai

1,n+m = bi
1 (11)

with

ai
1,r =

2(n+m)−2r

∑
k=0

(−1)2(n+m)−k [2(n + m)]![2(n + m)− 2r]!
k![2(n + m)− k]![2(n + m)− 2r− k]!

∫ (k+2r)

t0

(t− t0)
2(n+m)−kyi

bi
1 =−

2(n+m)

∑
k=0

(−1)2(n+m)−k [2(n + m)]!2

k![2(n + m)− k]!2

∫ (k)

t0

(t− t0)
2(n+m)−kyi
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where r = 1, . . . , n + m and t0 > 0 is the starting time to perform the estimation pro-
cess. Here, the notation

∫ (n) g(t) is used to stand for iterated integrals of the form∫ t
t0

∫ σ1
t0
· · ·
∫ σn−1

t0
g(σn) dσn · · ·dσ1. Henceforth, the superscript i is used to denote coef-

ficient, matrix or vector associated with some measurable output variable yi used for
natural and excitation frequency estimation.

Repeating n + m − 1 more integrations, with respect to time, of the Equation (11),
leads to the systems of linear equations

Aiθi = Bi (12)

where θi = [a2(n+m)−2 a2(n+m)−4 · · · a2 a0]
T is the (n+m)× 1 vector of system parameters

to be estimated, Ai and Bi are, respectively, (n + m)× (n + m) and (n + m)× 1 matrices
given by

Ai =


ai

1,1 ai
1,2 · · · ai

1,n+m
ai

2,1 ai
2,2 · · · ai

2,n+m
...

...
...

ai
n+m,1 ai

n+m,2 · · · ai
n+m,n+m

, Bi =


bi

1
bi

2
...

bi
n+m

 (13)

The components ai
k,r and bi

k are given by

ai
k,r =

∫ t

t0

ai
k−1,j(τ1) dτ1

bi
k =

∫ t

t0

bi
k−1(τ1) dτ1 (14)

with k = 2, 3, . . . , n + m and r = 1, . . . , n + m.
The estimated parameters are computed as follows

θi =
(

Ai
)−1

Bi=
1

det Ai

(
adjAi

)
Bi =

1
det Ai


∆i

2(n+m)−2
∆i

2(n+m)−4
...

∆i
2

∆i
0

 (15)

Then, corresponding coefficients a2r−2 can be algebraically computed, into some short
window of time, without singularities, by the estimators

â2r−2 =

∫ (2)
t0

e−γ(t−t0)
∣∣∆i

2r−2

∣∣∫ (2)
t0

e−γ(t−t0)
∣∣∆i
∣∣ , r = 1, . . . , n + m (16)

where ∆i = det Ai, γ ≥ 0 is the gain for a first order invariant and smoothing filter. Here,
the notation (̂·) is used for estimated value and |·| represents absolute value.

Therefore, algebraic formulas to simultaneously compute the natural frequencies ωi
and excitation frequencies Ωj are proposed as follows

ω̂i =
∣∣∣λ̂i

∣∣∣, i = 1, . . . , n

Ω̂j =
∣∣∣λ̂j

∣∣∣, j = 1, . . . , m (17)
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where λ̂i and λ̂j are the roots of the characteristic polynomial given by

λ̂i =jω̂i, λ̂∗i = −jω̂i

λ̂j =jΩ̂j, λ̂∗j = −jΩ̂j

where the asterisk (∗) denotes complex conjugate.

4. Numerical and Experimental Validation
4.1. Numerical Results: 3 DOF Mass-Spring System

The proposed algebraic estimation technique of natural and excitation frequencies is
validated on 3 DOF lightly damped vibrating mechanical system submitted to uncertain
and multiple frequency disturbances.

The system parameters used as mass, viscous damping and stiffness of the forced
mechanical system are detailed in Table 1.

Table 1. Parameters of the 3 Multiple Degrees-Of-Freedom (DOF) forced vibrating mechanical system.

Mass [kg] Viscous Damping [Ns/m] Stiffness [N/m]

m1 = 5.0 c1 ≈ 0 k1 = 1200 N/m
m2 = 3.0 c2 ≈ 0 k2 = 1000 N/m
m3 = 2.5 c3 ≈ 0 k3 = 750 N/m
− − k4 = 400 N/m

For reference and further evaluation, the natural frequencies of the oscillating system
to be estimated are numerically computed as ω1 = 11.601 rad/s, ω2 = 21.202 rad/s and
ω3 = 29.987 rad/s.

For application of the proposed algorithms, the algebraic estimation assumes that all
the system parameters and excitation forces are unknown. Thus, multiple frequency esti-
mation should be performed by using exclusive information on some specific measurable
output signal.

The vibrating 3 DOF mechanical system dynamics with lumped parameters used for
numerical estimation assessment purposes is governed by

m1 ẍ1 + c1 ẋ1 + k1x1 + k2(x1 − x2) = f1(t)

m2 ẍ2 + c2 ẋ2 + k2(x2 − x1) + k3(x2 − x3) = f2(t)

m3 ẍ3 + c3 ẋ3 + k3(x3 − x2) + k4x3 = f3(t) (18)

with excitation forces

f1(t) =2 sin
(

2t +
1
5

π

)
+ 2.5 sin

(
50t +

2
5

π

)
+ 3 sin

(
100t +

3
5

π

)
f2(t) =− 1.5 sin

(
2t +

1
7

π

)
+ 4 sin

(
50t +

2
7

π

)
+ 5 sin

(
100t +

3
7

π

)
f3(t) =1.2 sin

(
2t +

1
13

π

)
+ 3.3 sin

(
50t +

2
13

π

)
− 4 sin

(
100t +

3
13

π

)
(19)

Therefore, three different, low and high frequencies contained into the excitation
forces (19) to be estimated are Ω1 = 2 rad/s, Ω2 = 50 rad/s and Ω3 = 100 rad/s.

In numerical tests, measurements of the position variable x1(t) were only used. How-
ever, any measurable output signal can be employed to perform the proposed online
algebraic estimation technique.

An effective and fast estimation of the three natural frequencies is verified in Figure 1.
Similarly, in Figure 2 is depicted a satisfactory algebraic estimation of the three components
with low and high excitation frequencies, that is, with multiple and arbitrary harmonics. It
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is important to note that, for numerical implementations, fifth-order Runge–Kutta methods
with fixed small step time of 0.1 ms were used for computation of the natural and forcing
frequencies before 0.5 s.

Clearly, the numerical results for the case of this undamped 3 DOF mechanical system,
submitted to forces containing up to three different harmonics, are certainly effective, fast
and acceptable.
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Figure 1. Online algebraic estimation of the three natural frequencies for the 3 DOF vibrating mechani-
cal system (18).
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Figure 2. Online algebraic estimation of the three excitation frequencies for the 3 DOF vibrating
mechanical system (18).

4.2. Experimental Results: A Cantilever Euler–Bernoulli Beam

The dynamic performance of the proposed estimation technique was evaluated on
a distributed parameter system, that is, a cantilever Euler–Bernoulli beam with base
excitation (shaker). The experimental setup is shown in Figure 3. This mechanical system
consists of an instrumented aluminum beam (with strain gauge and accelerometer), whose
physical dimensions are given in Table 2.

Note that a cantilever beam represents a flexible vibrating mechanical system, with
distributed parameters of mass, stiffness and damping. In fact, distributed parameter
systems have an infinite number of DOF and natural frequencies, which are modeled by
partial differential equations [32,37].

In this case study, the algebraic estimation technique was performed to algebraically
compute approximate values for the first three natural frequencies. The dynamics as-
sociated with higher order vibration modes were then considered as disturbances for
evaluation of the robustness of the proposed estimation techniques. Moreover, unknown
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damping parameters were also neglected in the online and multifrequency estimation.
Nevertheless, more frequencies can be considered in the estimation approach, according to
a specific bandwidth, operating conditions and type of application.

Figure 3. Experimental setup of the cantilever beam submitted to forces with multiple excitation fre-
quencies.

Table 2. Specifications of the cantilever beam.

Parameter Value

Density 2710 [kg/m3]
Thickness 0.00158 [m]

Length 1.0160 [m]
Width 0.0381 [m]

Young’s modulus 68.9×109 [Pa]
Area of cross section 6.048375×10−5 [m2]

Moment of inertia 1.27×10−11 [m4]
Polar moment of inertia 0.059 [kg·m2]

The dynamic behavior of the cantilever beam can be numerically approximated by
using the finite element methods with clamped-free boundary conditions into a certain
frequency range. The finite element method was then used to compute the first three natural
frequencies. Thus, the beam was discretized in 10 elements and 11 nodes, where each node
has 2 DOF (i.e., lateral and angular displacements). The mass of the accelerometer was
introduced to the finite element model by means of a concentrated mass of 0.050 kg at the
node closest to the free-end of the beam. Applying the respective boundary conditions
and by means of the solution of the eigenproblem, the natural frequencies of the first
three modes of vibration were numerically obtained as: ω1 = 0.8412, ω2 = 6.2710 and
ω3 = 18.7800 Hz. Moreover, the numerical model and its modal parameters associated with
the cantilever beam were validated by means of experimental modal analysis techniques
(see, e.g., [2]). Thus, the so-called Peak Picking technique was implemented to obtain
offline approximate natural frequencies and modal dampings. The experimental Frequency
Response Function (FRF) of the cantilever beam is shown in Figure 4 and its approximate
modal parameters for the first three mode-shapes are reported in Table 3.



Actuators 2021, 10, 41 11 of 16

5 10 15 20 25

ω [Hz]

0

0.5

1

1.5

2

2.5

|X
(j
ω

)|
  
[g

]

Experimental FRF

Resonances

Figure 4. Experimental Frequency Response Functions (FRF) of the cantilever beam for the first three
mode-shapes.

Table 3. Modal parameters of the cantilever beam obtained with Peak Picking techniques.

Mode Frequency [Hz] Damping Ratio [%]

1 0.79 1.18
2 6.63 1.23
3 19.97 3.1

For online estimation purposes of multiple natural and excitation frequencies, the
flexible structure was additionally perturbed close to the clamping and also at a middle
point at the same time by two piezoelectric patch actuators mounted on the beam, as
shown in Figure 3. In addition, a strain gauge was cemented at a point near to the
physical clamping, in order to take precise strain measurements. The experimental setup
features a MEMS accelerometer, attached to the free-end of the beam, which is used to get
acceleration measurements. The data acquisition, signals processing and generation of
the multiple frequency excitation forces are depicted in the schematic diagram Figure 5.
The electrical signals were conditioned for the piezoelectric patch actuators (perturbations)
and the electromagnetic shaker (base excitation) by a high voltage and a high current
amplifier, respectively.

On-line algebraic estimation of natural 
and excitation frequencies

 Data acquisition system based on 
ARM® microcontroller 

PC running under Windows® 
and Matlab/Simulink® 

Full speed USB 
communication

Signal generation, power 
amplification and 

electromechanical coupling   

Measurements

 Vibrating mechanical system

i i

PZT patch 
actuator

Cantilever 
flexible beam

Figure 5. Schematic diagram of the signal generation and data acquisition system for online alge-
braic identification.

The objective of this experiment was to estimate, in time domain and online, the
first three natural frequencies as well as the three excitation frequencies corresponding to
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exogenous disturbance forces applied on the cantilever beam. In addition to the three first
natural frequencies of the beam, the excitation force frequencies to be estimated online
are Ω1 = 2 rad/s (0.318 Hz), Ω2 = 50 rad/s (7.96 Hz) and Ω2 = 100 rad/s (15.91 Hz).
The acceleration signal measurements at the free-end of the cantilever beam were used for
application of the proposed algebraic frequency estimation.

The experimental results of the online algebraic estimation of the first three natural
frequencies of the beam are shown in Figure 6. Moreover, the algebraic estimation of
the three exogenous excitation frequencies is depicted in Figure 7. Thus, as shown in
Table 4, reasonable expected estimation errors are obtained for the first three natural
and excitation frequencies on the cantilever beam, which is approximately described by a
lumped-parameter model. These are result of the filtering of low frequencies inherent to the
data acquisition system as well as to the approximate discretization and implementations
of numerical integrators. In general, all the results are also fast and effective.

Finally, it is important to remark that, real-time algebraic estimation of multiple natural
and excitation frequencies on more complex distributed parameter systems, modeled
by partial differential equations, could be extended and improved to get more accurate
estimates. Indeed, this is a relevant and future research topic.

Table 4. Online algebraic estimation of natural and excitation frequencies.

Offline FEM Online Algebraic Method

Frequencies Actual Estimation Error Estimation Error

Natural [Hz] [Hz] [%] [Hz] [%]

ω1 0.79 0.8412 6.481 0.699 −11. 43
ω2 6.63 6.2710 −5.415 6.626 −0.06
ω3 19.97 18.780 −5.959 20.06 0.45

Excitation [Hz] [Hz] [%] [Hz] [%]

Ω1 0.318 − − 0.3202 0.692
Ω2 7.96 − − 7.576 −4.824
Ω3 15.91 − − 15.430 −3.017
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Figure 6. Online algebraic estimation of the first three natural frequencies of the distributed-
parameter system.
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Figure 7. Online algebraic estimation of exogenous excitation frequencies of the distributed-
parameter system.

5. Conclusions

In this paper, a novel time-domain and online algebraic estimation technique to
compute the natural and excitation frequencies on forced lumped-parameter vibrating
mechanical systems of n degrees of freedom was proposed and evaluated. Multiple and
unknown, natural and forced, frequencies are estimated algebraically, simultaneously, and
online into a small window of time. The proposed algebraic estimation technique does
not require information on the system parameters as mass, damping and stiffness. Online
estimation of natural and forced frequencies is independent of the initial conditions. Hence,
algebraic estimators can be continuously reset and updated to supervise possible changes
on natural frequencies and forcing excitation frequencies, during the real-time operation of
a vibrating mechanical system. Measurements of a measurable output signal associated
with some degree of freedom are only necessary to perform and apply the proposed al-
gebraic estimation technique. Some analytical, numerical and experimental results have
confirmed an effective performance of the algebraic estimation techniques for multiple nat-
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ural and excitation frequencies for disturbed vibrating systems. Finally, the novel algebraic
estimation techniques represent a good and fast alternative for estimation of natural and
excitation frequencies on forced and uncertain MDOF vibrating mechanical systems.
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