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Abstract: This research presents an analysis and management strategy for hovering hexacopter
with one or more failing motors. Of late, multirotor drones have become particularly popular,
and all drones have been increasing in popularity. Unlike a fixed-wing drone, failure of motors in a
multirotor craft may cause safety problems. Numerous published articles have proposed solving
this problem by redesigning the control law or control gain. This approach, however, is difficult to
implement because change of control gain usually involves connecting external devices. This paper
proposes to keep the control gain unchanged but reallocate the thrusts. Simulations are conducted
on a hexacopter in various hovering modes. Some hovering state problems are investigated for
the linearized dynamics but also numerically verified for the original nonlinear dynamics. In case
some motors of a hexacopter fail in flight, an allocation matrix is proposed to redistribute required
thrusts to functional motors. Seven cases of motor failure are studied. This paper analytically proves
that limited controllability for emergency landing is feasible in four scenarios at the linear level,
but the other three scenarios are completely uncontrollable. Numerical simulations are presented to
demonstrate the validity of our algorithm. An online video of real flight also confirms our results.
This paper potentially helps the design of failure management of rotors and increases the successful
rate of emergent landing.

Keywords: motor failure; failure management; control allocation; hexacopter; drones

1. Introduction

Drones have been widely used since 2010. In addition, drones are used for tasks such
as scientific research, civil development, and military missions [1]. As drones become
popular, many stakeholders are concerned with safe drone operation. A hexacopter drone
has two more motors than does a quadrotor drone; this provides redundancy in the cases in
which some motors fail. Drones equipped with the conventional control allocation schemes
may crash if one or more motors fail during flight. Fault-tolerant control is crucial to drone
safety and has been an extensively researched topic [2–5]. For a multirotor drone, failure of
some motors may result in a period of uncontrolled flight or an uncontrolled crash landing.
Two approaches are mainly employed to investigate drone motor failure: fault detection
and isolation, which usually entails estimating the effectiveness of failed motors [6,7] and
control allocation.

Several studies have been conducted on motor failure detection, maneuverability of
drones with failed motors, and control allocation. When a drone suffers from motor failure,
fast detection of failed motors is essential for follow-up responses. Some excellent work on
this field can be found in [8–10]. A very recent and novel method of fault diagnosis using
thermal imaging is presented in [11]. Refs. [12–14] considered the influence of multirotor
configuration to the controllability and maneuverability. Though robustness of the drone
subject to rotor failure was discussed in their work, only the case of one failed rotor were
considered. Lu [1] proposed a complete active fault-tolerant control system for quadrotors
subjected to one total rotor failure. Merheb [15] proposed a lookup table for transforming
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a quadrotor to a trirotor in the event of one total rotor failure. Tjønnås [16] proposed an
algorithm that employs a positive-definite control efficiency matrix; by contrast, Falconí [2]
proposed an algorithm in which the restrictions are released and the virtue control matrix
is assumed to be full rank. Nagarjuna and Suresh designeds a safe landing sequence [17].
Wang and Zhang reshaped the control commands via sliding mode control algorithm [18].
Lee et al. employed two servomotors that control relative roll and pitch attitudes when
one motor failure is detected to maintain the stability of the quadrotor [19].

Although the aforementioned systems are excellent, a few questions remain unan-
swered: first, most previous studies have considered quadrotor or hexacopter systems
with one failed motor. The question as to how to address systems with more than one
failed motor has not been answered. Second, Falconí [2] imposed the assumption that the
virtue control matrix is full rank. However, in the event of motor failure in a multirotor
vehicle, this assumption may not hold. Third, ref. [15,20] have proposed a lookup table
to solve control allocation problems on a case-by-case basis. However, an algorithm that
provides a general approach to the allocation problem is required. Fourth, most studies
have discussed attitude control but not trajectory control. Hence, the question as to whether
trajectory is also controllable under failed motors warrants answering. The presented work
in this paper is inspired by [21]. There are still several differences: In [21], an octorotor
was investigated, whereas we investigate a hexacopter. Secondly, ref. [21] approached the
problem only with numerical simulations, whereas controllability is examined analytically
in our work. Thirdly, Marks et al. only simulated altitude and attitude in [21], whereas
we analytically and numerically show that recovery of hovering position is possible in
some cases.

In this paper, we focus on the allocation of controls when some motors fail during
flight. Figure 1 presents a block diagram of the motor failure management process, and this
paper mainly focuses on the failure management portion, presented in the block of dark gray
background. Assume that motors have failed during flight and that this failure has already
been detected. The uneven distribution of forces results in the offset of the states from the
nominal hovering states. For hovering states, the control reconfiguration algorithm generates
new control distribution regarding functional motors. However, the perturbed flight states
require more control effort than do nominal flight states. The extra control effort is managed
and generated by applying the allocation algorithm detailed in Figures 3 and 4. The control
allocation algorithm along with reconfigured nominal control is expected to restabilize the
hexacopter during hovering flight. If not, this algorithm is expected to sufficiently stabilize
the flight so that pilots can perform an emergency landing.

Detected

Motors Failure

Dynamics

Hexacopter

Reconfiguration

Control

Algorithm

Allocation

Forces

Perturbed

States

Unbalanced

Allocated

Control

Propagation of States

Failure Management

States

Stabilized

Figure 1. Block diagram of motor failure.

There are three main advantages in using allocation of controls. First, only one
control gain is required, even with failed motors; secondly, onboard emergency response is
possible; thirdly, development process of controller is faster. Implementation of controllers
requires a computing unit and other supporting components in an integrated circuit board,
such as an onboard computer or a set of microchips. For a drone using an onboard
computer, change of control gain or control law in response to failed motors may require an
external, special device to “burn” parameters into the onboard computer, such as Pixhawk.
Therefore, in general, parameters and control algorithms are not adjustable during flight
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in such cases. Although some computing units composed of microchips may modify
their control parameters in flight, this process needs to be manipulated from the ground
station. In contrast, the algorithm of control allocation along with control reconfiguration
can be written in the onboard computing unit in advance. When encountering a motor
failure event, the drone can respond to the emergency and stabilize itself autonomously.
An alternative but similar manipulation is to prepare multiple control gains or control
laws onboard, as suggested in this paper suggested with allocation matrices. This method
requires longer developing period to develop, simulate, and verify controllers for various
motor failure cases. Moreover, gain scheduling should also be considered for different
controllers subject to change in drone configuration or variations in flight conditions.
One set of control gain with the proposed allocation algorithm significantly shortens and
simplifies the development process.

Specifically, the objective was to develop an approach that can be applied to safely
land a hexacopter with one or more failed motors. In some cases, however, emergent and
immediate landing may be difficult. Trajectory control with some failed motors is crucial
under these circumstances. Assuming that failed motors are detected, our investigation
focuses on control reconfiguration and control allocation. Instead of rotational speeds, force
and moments are adopted as the control input in the equations of motion (EOMs). The force
and moments are then distributed to the rotors. In cases in which some rotors have failed
during flight, the required force and moments are allocated to the remaining functional
motors if possible. This approach tolerates uncontrollable yaw but not uncontrollable
pitch or roll, which is highly related to flight safety. According to our research, pitch or
roll would become uncontrollable only if four or more motors fail. Therefore, this paper
discusses situations involving the failure of only one, two, or three motors; such failures
can be grouped into seven cases. The paper also proposes a general allocation algorithm
for efficiently allocating thrust and moment loads to the remaining functional motors even
when non-full-rank control allocation matrix is applied. Thus, the designated control law
and control gain need not be changed due to motor failure. This assumption is relatively
practical because change of control law or control gain takes relatively larger effort as
discussed previously. Our algorithm considers the control of full states, including trajectory
and attitude, and is verified through numerical simulations.

The rest of this paper is organized as follows: Section 2 describes the dynamics and
EOMs. The applied control law and the general control allocation algorithm are presented
in Section 3. In this paper, our algorithm applies a linearization approach for equation
analysis and simulations are conducted in a nonlinear regime to demonstrate the validity
of the algorithm. Section 4 discuses cases of failed motors and failure management. Several
simulations are presented in Section 5 to verify the proposed algorithm. The final section
concludes our work and summarizes the contributions.

2. Dynamic Model of the Hexacopter
2.1. Coordinate System and Rotor Numbering

A hexacopter is composed of six rotors. To keep the momentum of the whole vehicle
neutral, the six rotors are arranged in three pairs, with the two rotors in each pair rotating
in opposite directions (Figure 2, left panel). The six rotors are separated form one another
at an angle of 60◦.

A Cartesian coordinate system, comprising the axes (i, j, k), with origin at the center
of mass (CM) of the hexacopter is defined for further investigation. Because this coordinate
system shifts along with the hexacopter, it is in the drone body-fixed frame (BF). The i-axis is
defined so that the left rotor rotates counterclockwise (CCW) and the right rotates clockwise
(CW) from the top view. Because the vehicle is rotationally symmetric, the direction i can
be arbitrarily assigned as long as the aforementioned constraint is satisfied. The j-axis
points rightward and is perpendicular to the i-axis. Finally, k = i× j completes the triad.

A local-vertical-local-horizontal (LVLH) frame, comprising the axes (I, J, K), is also
defined. The I-axis points northward, J-axis points eastward, and K-axis points toward
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the center of the earth. Because the endurance of a hexacopter is much shorter than a
day, the earth can be assumed to be static during a mission, and the LVLH frame can be
regarded as inertial. A diagram depicting the concept is presented in the right panel of
Figure 2.

A set of Euler angles (φ, θ, ψ) is employed to describe the rotation of the hexacopter,
representing the rolling, pitching, and yawing angles, respectively. Throughout this paper,
we adopt a yaw-pitch-roll sequence, also called 321-sequence, for rotations from the LVLH
(inertial) frame to the BF. A rotation matrix RI2B associated with the set of Euler angles
is defined to transform coordinates of a vector with respect to the LVLH frame to those
with respect to the BF. Detailed formulation of RI2B can be found in [22]. A rotation matrix
is orthonormal, satisfying RB2I = R−1

I2B = RT
I2B. Additionally, a matrix T is employed to

transform an angular velocity ω = pi + qi + rk to the time change rate of Euler angles
(φ̇, θ̇, ψ̇), described by Equations (2) and (3) [22].

For further investigation, all rotors are assigned a number. All rotors in the CCW
direction from the i-axis are designated as T1 to T6, as depicted in Figure 2.

j

i

T1

T2

T3 T4

T5

T6

i

k

j

I

J

K

r

l

Figure 2. Coordinate system of the hexacopter and the numbering of rotors. The diagram schematizes
the top view.

2.2. Hexacopter Dynamics

Let r = xI + yJ + zK denote the position of the hexacopter with respect to the LVLH
frame and V = ui + vj + wk be the velocity of the CM. Accordingly, the kinematic equa-
tions can be expressed as follows:

ṙ = V, (1)

Θ̇ = Tω, (2)

where Θ = (φ, θ, ψ), and

T =

1 Sφ tan(θ) Cφ tan(θ)
0 Cφ −Sφ

0 Sφ sec(θ) Cφ sec(θ)

. (3)

In Equation (3), Sφ = sin φ and Cφ = cos φ. Notably, r and V are expressed in different
coordinate systems. A rotation matrix RB2I should be applied to Equation (1) in actual
computation processes. Moreover, T is not a rotation matrix, and singularities exist when
θ = ±90◦. A hexacopter usually flies with a small pitch angle and is not influenced by
singularities. An alternative solution to avoid singularity is the employment of quaternions.
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The kinetic equations can be derived from Newton’s laws of motion. Let ∑ F be the
external forces exerted on the hexacopter and ∑ M be the external moments with respect to
the CM. Newton’s second law of motion describes the following:

V̇ = −ω× V̇ +
1
m ∑ F, (4)

ω̇ = I−1
CM
(
−ω× ICM ·ω + ∑ M

)
, (5)

where Icm is the inertia tensor with respect to the CM in the BF. Because a hexacopter is
usually symmetric to the ik and jk planes, the inertia tensor can be expressed as ICM =
diag(Ixx, Iyy, Izz).

Formulation of Forces and Moments

A previous study detailed the formulations of forces and moments [23], and the results
of these formulations are cited herein directly. However, the formulations must be slightly
modified because some definitions in this paper are unique.

The total force exerted on the hexacopter can be divided into four components: the
thrust Ft, rotor drag Dr, air resistance Da, and weight W. Therefore,

∑ F = Ft + Dr + Da + W. (6)

According to [23], the aforementioned forces can be formulated as follows:

Ft = −
(

b
6

∑
i=1

Ω2
i

)
k = −Ttk, (7)

Dr = −KT ·V = −KTui− KTvj, (8)

Da = −1
2

ρV2CDSV̂ = −KD(Vui + Vvj + Vwk), (9)

W = mgK = mg
(
−Sθi + CθSφj + CθCφk

)
, (10)

where b is the thrust factor, Ωi ≥ 0 is the rotational rate of the ith rotor, KT > 0 is a constant,
ρ is the atmospheric density, CD is the drag coefficient, and S is the reference area; moreover,
V = ||V||.

The moments and torques comprise four sets: torques due to rotational rate dif-
ference between rotors Mrd, torques due to gyroscopic effects Mgy, and yaw counter
torque Myc [24,25]. Hence,

∑ M = Mrd + Mgy + Myc, (11)

where Mrd = Mφi + Mθj + Mψk. Mφ, Mθ , and Mψ denote the roll, pitch, and yaw
moments, respectively and can be further derived as follows:

Mφ =
1
2

bl(2Ω2
2 − 2Ω2

5 + Ω2
1 + Ω2

3 −Ω2
4 −Ω2

6), (12)

Mθ =

√
3

2
bl(Ω2

1 + Ω2
6 −Ω2

3 −Ω2
4), (13)

Mψ = d(Ω2
1 −Ω2

2 + Ω2
3 −Ω2

4 + Ω2
5 −Ω2

6), (14)

where d is the drag factor, and l is the distance of rotors from the CM, as illustrated in
Figure 2. Mgy and Myc are formulated as follows:

Mgy = −JrqΩRi + Jr pΩRj, (15)

Myc = −JrΩ̇Rk, (16)
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where Jr is the rotational inertia of the propeller, and ΩR = −Ω1 + Ω2 −Ω3 + Ω4 −Ω5 +
Ω6 is the overall propeller speed.

2.3. Hexacopter Nonlinear EOMs

The EOMs of a hexacopter are given by Equations (1), (2), (4) and (5), and expansion of
these equations are provided in Equations (A1)–(A12) in Appendix A. Define a state vector
x as follows: (x, y, z, φ, θ, ψ, u, v, w, p, q, r) ∈ R12. Equations (A1)–(A12) can be summarized
as follows:

ẋ = f(x, u), (17)

where f ∈ R12 are the equations and u is the control vector.
In this paper, two aspects of control inputs can be considered: the rotation rates of

rotors and the force-moment set. In the first case, u = uΩ = (Ω1, Ω2, Ω3, Ω4, Ω5, Ω6) ∈
R6

0+, where R0+ denotes non-negative real numbers; accordingly, the rotation rates of
rotors are used as control inputs. In the second case, u = uFM = (Tt, Mφ, Mθ , Mψ) ∈ R4;
accordingly, the lift force as well as three moments are used as control inputs. The two
control vectors are convertible and are employed in different scenarios.

Notably, Ωi ≥ 0 in the EOMs. This may increase difficulties in further analysis because
the control uΩ is constrained. We perform a change of variable by defining Ωi = Ω2

r,i,
where Ωr,i ∈ R for i = 1, · · · , 6. This definition leads to{

Ωi = 0 if and only if Ωr,i = 0
Ωi > 0 if Ωr,i 6= 0

(18)

Then,

Tt = b
6

∑
i=1

Ω2
i = b

6

∑
i=1

Ω4
r,i, (19)

Mφ =
1
2

bl(2Ω4
r,2 − 2Ω4

r,5 + Ω4
r,1 + Ω4

r,3 −Ω4
r,4 −Ω4

r,6), (20)

Mθ =

√
3

2
bl(Ω4

r,1 + Ω4
r,6 −Ω4

r,3 −Ω4
r,4), (21)

Mψ = d(Ω4
r,1 −Ω4

r,2 + Ω4
r,3 −Ω4

r,4 + Ω4
r,5 −Ω4

r,6), (22)

ΩR =
6

∑
i=1

(−1)iΩi =
6

∑
i=1

(−1)iΩ2
r,i. (23)

Moreover, uΩ is replaced by uΩr = (Ωr,1, Ωr,2, Ωr,3, Ωr,4, Ωr,5, Ωr,6) ∈ R6 for fur-
ther analysis.

2.4. Linearization of EOMs
2.4.1. Equilibrium Point

As mentioned, the aim of this paper is to develop an algorithm for the analysis and
management of hexacopter motor failures. When a hexacopter incurs a rotor failure during
flight, an emergent hovering is designed to be imposed, and the developed algorithm can be
applied to manage the failure. After control is regained for the hexacopter, the hexacopter
may continue its designated trajectory or perform an emergency landing. Therefore,
the proposed algorithm can help regain hexacopter controllability during hovering.

The equilibrium state during hovering is expressed as follows [26]: x̄ = (x̄, ȳ, z̄, 0, 0, 0,
0, 0, 0, 0, 0, 0). Therefore, the following can be derived: Tt = mg, Mφ = Mθ = 0, and Mψ =
JrΩ̇R. Notably, the system does not execute maneuvers during hover, implying that Ω̇R = 0
and Mψ = 0.
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2.4.2. Nominal Control for Equilibrium

Writing Equations (19)–(22) in matrix form at the equilibrium point yields the following:


b b b b b b

1
2 bl bl 1

2 bl − 1
2 bl −bl − 1

2 bl√
3

2 bl 0 −
√

3
2 bl −

√
3

2 bl 0
√

3
2 bl

d −d d −d d −d





Ω̄4
r,1

Ω̄4
r,2

Ω̄4
r,3

Ω̄4
r,4

Ω̄4
r,5

Ω̄4
r,6


=


mg
0
0
0

 (24)

Alternatively, W̄Ω̄0 = ūFM, where the bar over a variable denotes evaluation in
nominal states, and the subscript “0” denotes no failed motor. W̄ is a transformation matrix
that transforms Ω̄0 to ūFM.

To simulate the failure of motors, an effectiveness matrix Ra is employed. Ra is defined
as Ra = diag(Ra1 , Ra2 , Ra3 , Ra4 , Ra5 , Ra6), where Rai represents the status of the motor i.
In this paper, we only allow motors to be on or off. As a result, Rai = 1 for a normal motor
and Rai = 1 for a failed motor. Then Equation (24) can be generalized as W̄RaΩ̄0 = ūFM.
Or, W̄Ω̄ = ūFM by letting Ω̄ = RaΩ̄0.

Let

W̄ =

[
W̄1
W̄2

]
, (25)

where W̄1 ∈ R1×6 represents the first row and W̄2 ∈ R3×6 represents the remaining entries
of W̄. Consequently, Ω̄ ∈ V subject to the following constraints:

V ⊂ N (W̄2), (26)

W̄1Ω̄ = mg, (27)

where N (·) denote the null space of a matrix. Notably, Ω̄r,i = 0 if Ra,i = 0.
Conclusively, the solution space is

N (W̄2) = Sp{n1, n2, n3}
= c1n1 + c2n2 + c3n3 (28)

where Sp{·} is the span of the vectors, n1 = (1, 0, 0, 1, 0, 0), n2 = (0, 1, 0, 0, 1, 0), n3 =
(0, 0, 1, 0, 0, 1), and (c1, c2, c3) ∈ R3 are coefficients.

In some cases, however, full control of the system in the nominal level is impossible.
An alternative strategy is to release the yaw constraint. Since emergent safe landing is
the first priority of the goal, sacrificing yawing motion is safer than sacrificing pitching or
rolling motion of a multirotor craft. With this assumption, the third row of W̄2 is removed.
Denote the new matrix as W̄′2, and its null space is given by

N (W̄′2) = Sp
{

n′1, n′2, n′3, n′4
}

,

= c′1n′1 + c′2n′2 + c′3n′3 + c′1n′3, (29)

where n′1 = (1,−1, 1, 0, 0, 0), n′2 = (1, 0, 0, 1, 0, 0), n′3 = (0, 1, 0, 0, 1, 0), n′4 = (−1, 1, 0, 0, 0, 1),
and (c′1, c′1, c′1, c′1) ∈ R4 are coefficients.

2.4.3. Linearized EOMs

The linearized system is expressed as follows: ∆ẋ = A∆x + B∆u, where the state
matrix is A ∈ R12×12, and the control matrix is B = BΩr ∈ R12×6 or B = BFM ∈ R12×4.
A and B can be derived through partial differentiation with respect to x and u evaluated at
the equilibrium point, and calculations are provided in Appendix A.
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3. Control Allocation
3.1. Control Architecture

Feedback control laws are usually designed to stabilize a hexacopter and can gen-
erally be presented as follows: u = −K(t)(x(t)− x̄(t)) + xdes(t), where K(t) denotes the
feedback gain, x denotes the real-time state vector, and xdes denotes the desired state vector.
A different control law may result in a different gain K(t).

The control allocation architecture is shown in Figure 3, where ∆x = x− x̄. Let uc
denote the control command computed from the control law. As mentioned, uc is given
by lift force and three moments. In practice, the control signal should be allocated to and
realized by the rotational speed of each rotor. The rotation of rotors in response to the
control command then generates corresponding lift and moments, denoted as u, to stabilize
the hexacopter.

Control

Allocation

System

Dynamics

K
∆x

∆x
∆xdes uc u

Figure 3. Control allocation architecture.

If all motors function well, the allocated rotational speeds should be identical to the
actual rotational speed, leading to uc = u. If some motors fail, only the remaining opera-
tional motors can generate controls. Consequently, uc 6= u in such cases. The proposed
algorithm forces uc = u for failed motors by reallocating control to the remaining motors if
possible—the limitation of the algorithm.

3.2. Transformation of Controllers

The transformation of uΩr and uFM in the linear regime can be obtained by linearizing
Equations (19)–(22) for the nominal rotational rates. Let ∆uFM = (∆Tt, ∆Mφ, ∆Mθ , ∆Mψ)
and ∆uΩr = (∆Ωr,1, ∆Ωr,2, ∆Ωr,3, ∆Ωr,4, ∆Ωr,5, ∆Ωr,6). The transformation can be written
in matrix form as follows:

∆uFM = W∆uΩr , (30)

where

W =
∂W̄Ω̄

∂Ω

∣∣∣∣
Ω̄

= 4W̄Ra
¯̄Ω, (31)

where ¯̄Ω = diag(Ω̄3
r,1, Ω̄3

r,2, Ω̄3
r,3, Ω̄3

r,4, Ω̄3
r,5, Ω̄3

r,6). Here we name W as a “linear transforma-
tion matrix”, which transforms ∆uΩr to ∆uFM.

In the implementation, ∆uFM is applied to prevent the adjustment of control gains due
to motor failures. To compensate for the loss of the failed motors, the control commends
are allocated to the remaining functional motors. Hence, we specify ∆uFM as ∆u because
∆uFM is the control vector obtained from the control law. ∆uΩr is renamed as ∆R for
simplicity. Moreover, we drop the ∆-sign in the following derivations for simplicity,
leading to u = WR. Notably the following derivations are only linear approximations.
Nominal controls should be considered and added if the original full nonlinear system is
to be simulated. Moreover,

3.3. Control Allocation in General Situations

Figure 4 presents the flowchart of the control allocation algorithm. The subscript “c”
denotes the command derived from the control law, and a term without a subscript denotes
the actual input in the implementation. Given a control command uc, the command for
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the rotational speeds Rc can be derived by multiplying the allocation matrix M, given
by Rc = Muc. On the other hand, ∆Ωr,i ≡ 0 if the ith motor is failed. Multiplied by Ra,
R simulate the actual rotation of rotors. For example, given the first and third motors
fail, we obtain the effectiveness matrix Ra = diag(0, 1, 0, 1, 1, 1) and the corresponding
R = RaRc = (0, Ωr,2, 0, Ωr,4, Ωr,5, Ωr,6).

Control

Reconfig.

Linear Trans.

Matrix Matrix

AllocationFailed Motor #i

uc M Ra W
uRRc

(Ω̄r;i;Ra) W M

Figure 4. Control allocation between the command given by controller and the system.

According to Equation (30),

u = W ·Ra ·M · uc. (32)

In normal flight, Ra = I6, and uc = u. When some motors fail, the design of the
allocation matrix M becomes critical. The following questions are assessed in this paper:

1. Does M exist so that uc = u when some motors fail?
2. If yes, what is the best method to design M? if no, what is the best method to regain

the control of the hexacopter?

3.4. Controllability of the System

When some motors fail during flight, the designated control command cannot be fully
realized, causing loss of force and unbalanced moments. An ideal allocation algorithm will
redistribute the rotational speeds of the remaining operational motors so that the lost thrust
is compensated for. Obviously, not every failure situation can be compensated for. For
example, in the special case that all six motors fail, the thrust will never be compensated
for. Therefore, the effectiveness of the allocation algorithm depends on whether the system
is controllable subject to a constrained control.

The controllability of the system in the specific allocation problem can be formulated
as follows: consider a linear control system

ẋ = Ax + Bu, u ∈ Um. (33)

In our problem, the details of the state-space equations are presented in Appendix A.
The controllable states and the corresponding control must be determined, and the domain
of the actual control is given by

u = WR = WRaRc. (34)

Recall that Rc = Muc, leading to Rc ∈ R(M), whereR(·) denotes the range space of
M. Because uc ∈ R4 and M ∈ R6×4,R(M) ⊂ R6.

Therefore, the problem can be reformulated by substituting Equation (34) into Equation (33)
as follows:

ẋ = Ax + BWRaRc

= Ax + BWRaMuc

= Ax + Bcuc, uc ∈ R4, (35)

where Bc = BWRaM. The controllability can be examined by studying the pair (A, Bc).
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4. Failure Management

In this paper, we consider seven cases of motor failure: one case involving only a
single failed motor, three cases involving two failed motors, and three cases involving
three failed motors. The arrangement of the subsequent failed motors is based on motor 1
because the arrangement of the six motors on the hexacoptor is geometrically symmetrical.
The failure cases are illustrated in Figure 5. The crosses on the motors signify that the
motors have failed.

Figure 5. Failure states of a six-motor system.

4.1. Design of Allocation Matrix

Failure management is discussed in this section. Once failed motors are detected,
the allocation matrix M is adjusted to reallocate required rotor rotational speeds so that the
designated control inputs can be realized. Because the function of M is to maintain u = uc,
the following identity holds:

WRaM = I4. (36)

Let Wk = WRa denote the failed motors. For example, If Motors #1 and #4 fail, then
Ra = diag(0, 1, 1, 0, 1, 1) and W14 = WRa. If all motors function normally, that situation
is denoted by W0. On the basis of this definition, Equation (36) can be further simplified
as follows:

WkM = I4. (37)

Taking the right pseudo-inverse of Wk yields

M = WT
k (WkWT

k )
−1. (38)

Clearly, Equation (38) satisfies Equation (37) given that WkWT
k is invertible.

In the case that WkWT
k is singular, implying that full control of the hexacopter is

impossible, the yaw control must be sacrificed. Let

Wk =

[
Wk1
Wk2

]
, (39)
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where Wk1 ∈ R3×6 and Wk2 ∈ R1×6. If rank(Wk1)=3, Wk1WT
k1 is invertible. Then, M is

constructed as follows:

M =
[

WT
k1
(
Wk1WT

k1
)−1 | 06×1

]
. (40)

Accordingly,

WkM =

[
Wk1
Wk2

][
WT

k1
(
Wk1WT

k1
)−1 06×1

]
=

[
I3 03×1

Wk2WT
k1
(
Wk1WT

k1
)−1 0

]
. (41)

With such M, we can determine that Tt = Ttc , Mφ = Mφc , and Mθ = Mθc , but
Mψ 6= Mψc . Although the yaw control is not as designed and may fail to control the yaw
motion, this situation is acceptable: first, the yaw motion is independent of other states in
the linear sense, and failure in yaw control does not affect the propagation in other states;
second, uncontrolled yaw motion does not influence the flight safety considerably whereas
uncontrolled pitch or roll motion may cause a crash.

If rank(Wk1) < 3, flight safety cannot be achieved for the hexacopter. These cases are
out of the scope of this paper and are not discussed.

4.2. Case 0: Control Allocation in Normal Flight
4.2.1. Allocation Matrix Design

Assume that all motors are normal. The nominal rotor rotation rates are Ω̄r,1 =
· · · = Ω̄r,6 = Ω̄r = 4

√
mg/(6b), and Ra = I6. The allocation matrix M0 is attainable

via Equation (38) and provided in Equation (A22) in Appendix B.

4.2.2. Controllability

A system without failed motors must be fully controllable. This fact can also be proved
as follows:

Bc = BWRaM = BW0WT
0 (W0WT

0 )
−1 = B. (42)

The controllability matrix U formed by the pair (A, Bc) is full rank, indicating that all
states are controllable.

4.3. Case 1: One Failed Motor
4.3.1. Reconfiguration of Rotor Rotation

Without loss of generality, we can assume that Motor #1 failed during flight. In this
case, nominal control is attainable by solving Equation (27) with a vector in Equation (28)
subject to the constraint: Ω̄r,1 = 0. One solution is (c1, c2, c3) = (0, Ω̄r, Ω̄r), where Ω̄r =
4
√

mg/(4b). As a result, nominal control can be derived as follows: ūΩr = (0, Ω̄r, Ω̄r, 0, Ω̄r, Ω̄r),
resulting in ¯̄Ω = diag(0, Ω̄3

r , Ω̄3
r , 0, Ω̄3

r , Ω̄3
r ).

4.3.2. Allocation Matrix Design

In this case, Ra = diag(0, 1, 1, 1, 1, 1), and W1 is attainable by W1 = WRa
¯̄Ω. The 1st

and 4th columns are zeros, and this indicates that rank(W1) = 3. The allocation matrix M1
is attainable via Equation (40) and provided in Equation (A23) in Appendix B.
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4.3.3. Controllability and Stabilizability

The control matrix Bc is expressed as Bc = BW1M1. The structure of Bc is identical
to Equation (A17), and that of B3 identical to Equation (A20). However, B4 is modified
as follows:

B4 =

 0 1
Ixx

0 0
0 0 1

Iyy
0

0 − d
blIzz

−
√

3d
blIzz

0

. (43)

We can derive the controllability matrix U and assess the rank. Rank(U) = 10 < 12.
Hence, this is an uncontrollable system. This result is consistent with those proposed in [12].
An alternative approach can be achieved by defining the controllability matrix as follows:

Ualt = [λI −A|B]. (44)

where λ is an eigenvalue of A. Those uncontrollable eigenvalues reduce the rank of Ualt.
A has ten unstable eigenvalues at 0 and two stable eigenvalues at −KT/m. By scanning
through all eigenvalues of A, we conclude that the system is unstabilizible because the
uncontrollable eigenvalues are the 0 values.

According to control theory, controllable states can be found in the column space of U,
denoted asR(U). Executing manipulations yields

R(U) = Sp
{

e1, e2, e3, r41 , r51 , e7, e8, e9, r101 , r111

}
, (45)

where ei ∈ R12 is a standard basis in the vector space, and

r41 =

(
0, 0, 0, 1, 0,− dIxx

blIzz
, 0, · · · , 0

)
,

r51 =

(
0, 0, 0, 0, 1,−

√
3dIyy

blIzz
, 0, · · · , 0

)
,

r101 =

(
0, · · · , 0, 1, 0,− dIxx

blIzz

)
,

r111 =

(
0, · · · , 0, 1,−

√
3dIyy

blIzz

)
.

The subscript ri denotes a failed motors. This result explains that only specific initial
conditions in the yaw motion can be stabilized when our algorithm is applied in a case in
which opposite motors have failed.

4.4. Case 2: Two Opposite Motors Fail

In this case, two opposite motors are assumed to have failed, as shown in Figure 5.
Without loss of generality, we use Motor #1 and #4 as an example. Other opposite pairs of
failed motors lead to similar results.

In this case, Ω̄1 = Ω̄4 = 0 and Ω̄i = Ω̄r = 4
√

mg/(4b) for i = 2, 3, 4, 5. Ra =
(0, 1, 1, 0, 1, 1). The parameters in this scenario are identical to those in Case 1. Therefore,
the analysis procedures and results are also identical to those in Case 1.

4.5. Case 3: One Working Motor in Between

In this case, we assume one working motor in between two failed motors, as shown in
Figure 5. Without loss of generality, this paper uses failed Motors #1 and #3 as an example.

4.5.1. Reconfiguration of Rotor Rotation

In this case, nominal control is attainable by solving solving Equation (27) with
a vector in Equation (28) subject to the constraint: Ω̄r,1 = Ω̄r,3 = 0. One solution is
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(c1, c2, c3) = (0, Ω̄r, 0), where Ω̄r =
4
√

mg/(2b). As a result, nominal control can be derived
as follows: ūΩr = (0, Ω̄r, 0, 0, Ω̄r, 0), resulting in ¯̄Ω = diag(0, Ω̄3

r , 0, 0, Ω̄3
r , 0).

4.5.2. Allocation Matrix Design

In this case, Ra = diag(0, 1, 0, 1, 1, 1), and W13 is attainable by W13 = WRa
¯̄Ω. Only

the 2nd and 5th columns are nonzeros, and this indicates that rank(W13) = 2. Accordingly,
pitch and roll are uncontrollable. Hence, this scenario is out of the scope of this paper.

4.5.3. Alternative Reconfiguration

An alternative way to reshape nominal control is to release the stability of yawing
motion. In this circumstance, nominal control is attainable by solving solving Equation (27)
with a vector in Equation (29) subject to the constraint: Ω̄r,1 = Ω̄r,3 = 0. One solution
is (c′1, c′2, c′3, c′4) = (0, Ω̄r, Ω̄r, Ω̄r), where Ω̄r = 4

√
mg/(5b). Consequently, according to

Equation (27), nominal control can be derived as follows: ūΩr = (0, 4
√

2Ω̄r, 0, Ω̄r, Ω̄r, Ω̄r).

4.5.4. Controllability and Stabilizability

The control matrix Bc is calculated as Bc = BW13M13. The structure of Bc is identical
to Equation (A17), and those of B3 and B4 are identical to Equations (A20) and (A21),
respectively. Because Equations (A20) and (A21) are derived under the assumption of
normal flight, the system is controllable.

Notably, the system is controllable because we restricted our attention to stabilize yaw
motion. The system should be controllable if and only if yaw stability is not considered.
In contrast to Case 1 and Case 2, in which the yaw motion is uncontrollable at the linearized
level, yaw stability is not considered at the nominal level in this case. Therefore, we can
expect the divergence of the yaw motion to be greater and faster than those in Case 1 and
Case 2. The allocation matrix M13 is provided in Equation (A24).

4.6. Case 4: Adjacent Motors in Failure

In this case, two adjacent motors are assumed to have failed, as shown in Figure 5.
Without loss of generality, we consider Motors #1 and #2 as examples.

4.6.1. Reconfiguration of Rotor Rotation

In this case, nominal control is attainable by solving solving Equation (27) with a
vector in Equation (28) subject to the constraint: Ω̄r,1 = Ω̄r,2 = 0. The only solution is
(c1, c2, c3) = (0, 0, Ω̄r), where Ω̄r =

4
√

mg/(2b). As a result, nominal control can be derived
as follows: ūΩr = (0, 0, Ω̄r, 0, 0, Ω̄r), resulting in ¯̄Ω = diag(0, 0, Ω̄3

r , 0, 0, Ω̄3
r ).

4.6.2. Allocation Matrix Design

In Case 4, Ra = diag(0, 0, 1, 1, 1, 1), and W12 is attainable by W12 = WRa
¯̄Ω. Only the

3rd and 6th columns are nonzeros, and this indicates that rank(W12) = 2. Accordingly,
pitch and roll are uncontrollable. Hence, this scenario is out of the scope of this paper.

The alternative approach of releasing yaw control is also investigated for this case.
After a similar manipulation procedure to that in the preceding cases, we can obtain that one
solution is (c′1, c′2, c′3, c′4) = (Ω̄r, 0, 0, Ω̄r), where Ω̄r =

4
√

mg/(2b). Consequently, according
to Equation (27), nominal control can be derived as follows: ūΩr = (0, 0, Ω̄r, 0, 0, Ω̄r). Since
the result is identical to that in the full approach, this case is uncontrollable.

4.7. Three Motors in Failure

In this section, the three motors are assumed to have failed simultaneously. Potential
cases are demonstrated in Figure 5, and they are numbered as Case 5, Case 6, and Case 7.
Without loss of generality, motors #1, #3, and #5 are used as an example of failure for Case 5;
motors #1, #2, and #4 are used as an example of failure for Case 6; and motors #1, #2, and #3
are used as an example.
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4.7.1. Case 5: (#1, #3, #5) Motors in Failure

In this case, the only solution to Equation (27) with a vector in Equation (28) subject to
the constraint Ω̄r,1 = Ω̄r,3 = Ω̄r,5 = 0 is (c1, c2, c3) = (0, 0, 0), leading to ūΩr = 06×1. This
implies that nominal rotational rates to stabilize the hexacopter do not exist. We can thus
conclude that full controllability of this system is impossible.

An alternative approach is to release the constraint in yawing. With this assumption,
we conclude that (c′1, c′2, c′3, c′4) = (0, Ω̄r, 0, Ω̄r), where Ω̄r = 4

√
mg/(3b). According to

Equation (27), nominal control can be found as follows: ūΩr = (0, Ω̄r, 0, Ω̄r, 0, Ω̄r), resulting
in ¯̄Ω = diag(0, Ω̄3

r , 0, Ω̄3
r , 0, Ω̄3

r ).
Therefore, Ra = (0, 1, 0, 1, 0, 1), and W135 is attainable by W135 = WRa

¯̄Ω. The 1st, 3rd,
and 5th columns are zeros, and this indicates that rank(W135) = 3. The allocation matrix
M135 is attainable via Equation (40) and provided in Equation (A25) in Appendix B.

The control matrix Bc is calculated as Bc = BW135M135. The structure of Bc is identical
to Equation (A17), and that of B3 identical to Equation (A20). However, B4 is modified
as follows:

B4 =

 0 1
Ixx

0 0
0 0 1

Iyy
0

− d
bIzz

0 0 0

. (46)

Through a similar analysis process, we realize that this an uncontrollable and unstabi-
lizable system.

According to control theory, controllable states can be found in the column space of
the controllability matrixU, denoted asR(U). Executing some manipulations yields

R(U) = Sp
{

e1, e2, r3135 , e4, r51 , e7, e8, r9135 , e10, e11
}

, (47)

where

r3135 =

(
0, 0, 1, 0, 0,

dm
bIzz

, 0, · · · , 0
)

,

r9135 =

(
0, · · · , 0, 1, 0, 0,

dm
bIzz

)
.

The subscript ri denotes the failed motors.

4.7.2. Case 6: (#1, #2, #4) Motors in Failure

In this case, nominal control is attainable by solving solving Equation (27) with a
vector in Equation (28) subject to the constraint: Ω̄r,1 = Ω̄r,2 = Ω̄r,4 = 0. The only solution
is (c1, c2, c3) = (0, 0, Ω̄r), where Ω̄r = 4

√
mg/(2b). This solution space is identical to the

space in Case 4. Hence, the pitch and roll are uncontrollable.
Consider the alternative approach, which entails releasing the constraint on yaw at

the nominal level. We obtain (c′1, c′2, c′3, c′4) = (Ω̄r, 0, 0, Ω̄r), where Ω̄r =
4
√

mg/(2b). This
result is identical to Case 4, and we argue that this case is uncontrollable.

4.7.3. Case 7: (#1, #2, #3) Motors in Failure.

In this case, the only solution to Equation (27) with a vector in Equation (28) subject to
the constraint Ω̄r,1 = Ω̄r,2 = Ω̄r,3 = 0 is (c1, c2, c3) = (0, 0, 0), leading to ūΩr = 06×1. This
implies that nominal rotational rates to stabilize the hexacopter do not exist. We can thus
conclude that full controllability of this system is impossible.

Consider the alternative approach, which entails releasing the constraint on yaw
at the nominal level. One possible solution is (c′1, c′2, c′3, c′4) = (0, Ω̄r,−Ω̄r, Ω̄r). Conse-
quently, according to Equation (27), nominal control can be derived as follows: ūΩr =
(0, 0, 0, Ω̄r,−Ω̄r,−Ω̄r). Because all entries of the vector must be greater than zero, this
approach is infeasible. Hence, we argue that this case is fully uncontrollable.
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4.8. Summarization of Cases Study

After studying potential failure cases, we conclude that

1. the pilot is able to regain controllability of states other than yawing motion when two
opposite motors have failed;

2. for the case with only one failed motor (Case 1 and Case 2), the best strategy is to turn
off the opposite motor and perform the same maneuver as in the previous scenario;

3. for the case with two failed motors with one working motor in between (Case 3),
the pilot is able to regain controllability of states other than yawing motion. In this
scenario, however, the hexacopter tends to spin and wobble severely.

4. for the case with three failed motors with one working motor in between (Case 5),
the pilot is able to regain controllability of states other than yawing motion. Similar to
the previous scenario, the hexacopter tends to spin and wobble severely.

5. for other cases, it is very markedly difficult for the pilot to regain controllability and
safely land the hexacopter.

5. Numerical Simulations
5.1. Controller and Simulation Parameters

We present the simulation of an example flight mission to verify the proposed algo-
rithm. Table 1 lists the simulation parameters of the hexacopter.

Table 1. Simulation parameters of the hexacopter.

Parameters Values Units Parameters Values Units

Ixx 5.126× 10−3 kg ·m2 g 9.81 m/s2

Iyy 5.126× 10−3 kg ·m2 m 2.4 kg
Izz 1.3× 10−2 kg ·m2 KD 7.5× 10−3 N ·m/s2

l 0.5 m KT 3.13× 10−5 N/s2

d 1.140× 10−7 N ·m/rad2 b 2.98× 10−5 N/rad2

An LQR controller is designed to stabilize the linearized dynamics of the hexacopter
with the three weighting matrices being set as follows:

Q = diag(5, 5, 5, 10, 10, 1, 1, 1, 1, 10, 10, 1)

R = diag(1, 1, 1, 1)

N = 012×4

The feedback gain K in Section 3.1 is given by K = R−1(BTP + NT), where P satisfies
the continuous algebraic Riccati equation [27].

The initial offset in the simulations is given by x0 =
[
x0pos x0ang x0vel x0avl

]T
=

(x01 , x02 , · · · , x012), where x0pos = (0, 0, 0.1) m is the position offset, x0ang = (0.05,−0.05,
0.1) rad is the attitude offset, x0vel = (0.01,−0.01, 0.1) m/s is the velocity offset, and x0avl =
(0, 0, 0) rad/s is the angular offset. Because we simulate a situation in which the control is
subject to reconfiguration due to the sudden loss of motors, we can set the initial control
offset as u0FM = (0, 0, 0, 0). For a performance comparison, these initial conditions are
employed throughout the cases, except for some specific cases.

5.2. Verification of Case 0

This case represents a control scenario with no motor failure. According to the results
in Section 4.2, the linearized system is fully controllable. Figure 6 illustrates that all states
can converge to 0 values, which represent the nominal states. The control input is shown in
Figure 7. ∆u and ∆uc are identical, as predicted. The rotational speeds of the six motors are
presented in Figure 8. These rotational speeds are the actual rotational speeds, computed
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using Ωi = Ω̄r,i + ∆Ωi, where ∆Ωi ∈ ∆R and ∆R = RaM∆uc. The speeds are identical to
the nominal speeds eventually.
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Figure 6. State responses in Case 0.
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Figure 7. Control inputs in Case 0.
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Figure 8. Rotational speeds of motors in Case 0.

5.3. Verification of Case 1 and Case 2
5.3.1. Arbitrary Initial Condition

The failure of Motor #1 is simulated in this section. According to the reconfiguration
result in Section 4.3, Motor #4 should be turned off to maintain the hexacopter’s balance.
However, turning Motor #4 off also prevents the stabilization of the linearized system
at the linear level. This scenario is identical to Case 2, where Motors #1 and #4 lost
power simultaneously due to failure. The aforementioned arbitrary initial condition set is
employed in this simulation. Figures 9–11 present the simulation results.
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All states in Figure 9 converge to zero except ψ. Notably, ψ remains constant with the
convergence of the yaw rate r. The control inputs are shown in Figure 10. ∆Tt, ∆Mφ and
∆Mθ are generated to control the system, whereas ∆Mψ remains at zero due to the failure
and deactivation of the motors. The rotational speeds of the six motors are presented in
Figure 11. The speeds of Motors #1 and #4 are zero, and the speeds of the other motors are
increased to reshape the thrust and torques.
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Figure 9. Position response in Case 1.
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Figure 10. Control inputs in Case 1.

0 2 4 6 8 10

Time (s)

0
100
200
300

(R
P

M
)

Motor 1

Allocated

Normal

0 2 4 6 8 10

Time (s)

360
380
400
420
440

(R
P

M
)

Motor 2

Allocated

Normal

0 2 4 6 8 10

Time (s)

360
380
400
420
440

(R
P

M
)

Motor 3

Allocated

Normal

0 2 4 6 8 10

Time (s)

0
100
200
300

(R
P

M
)

Motor 4

Allocated

Normal

0 2 4 6 8 10

Time (s)

360
380
400
420
440
460

(R
P

M
)

Motor 5

Allocated

Normal

0 2 4 6 8 10

Time (s)

360
380
400
420
440
460

(R
P

M
)

Motor 6

Allocated

Normal

Figure 11. Rotational speeds of motors in Case 1.

5.3.2. Controllable Initial Condition

According to control theory, initial conditions from any controllable set in a partly
controllable system should be controllable. This section presents the verification of our
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algorithm because it is unlikely for a hexacopter to fall into this initial condition subject to
motor failure in a real flight. The controllable initial condition set is provided in Section 4.3.3.

In this simulation, (x01 , · · · , x05 , x07 , · · · , x011) are identical to the aforementioned
initial conditions. However, x06 is obtained from the corresponding element of x04 r41 +
x05 r51 . Similarly, x012 is obtained from the corresponded element of x010 r101 + x011 r111 .
The state responses are displayed in Figure 12. All states converge to zero, including
ψ. Figure 13 shows the control response. ∆Tt, ∆Mφ and ∆Mθ are derived to control the
system, whereas ∆Mψ remains at zero due to the failure and deactivation of the motors.
These results demonstrate that ψ is controllable even if ∆Mψ is not available or derived.
The rotational speeds of the six motors are presented in Figure 14.
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Figure 12. Position response in Case 1 with controllable initial conditions.

0 2 4 6 8 10

Time (s)

0

0.2

0.4

0.6

(N
)

 T
t

u

u
c

0 2 4 6 8 10

Time (s)

-0.6

-0.4

-0.2

0

(N
 
 m

)

 M

u

u
c

0 2 4 6 8 10

Time (s)

0

0.2

0.4

0.6

(N
 
 m

)

 M

u

u
c

0 2 4 6 8 10

Time (s)

-2

-1

0

(N
 
 m

)

10
-3  M

u

u
c

Figure 13. Control responses in Case 1 with controllable initial conditions.
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Figure 14. Rotational speeds of motors in Case 1 with controllable initial conditions.
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5.4. Verification of Case 3

The simultaneous failure of Motors #1 and #3 is simulated in this section. According
to the analysis in Section 4.5, the yaw motion is uncontrollable at the nonlinear level.
Therefore, to maintain the safety of the hexacopter, we must give up the yaw motion and
try to stabilize other states. Through this strategy, all states other than the yaw motion
should be controllable.

The aforementioned arbitrary initial condition set is employed in this simulation.
Figures 15–17 present the simulation results. Figure 15 converge to zero except ψ and r. The
control inputs are shown in Figure 16. Unlike Case 1 and Case 2 where r converges to zero
and ψ remains constant, in the present scenario, r converges to a constant and ψ diverges.

As for the control inputs, we sacrifice the yaw moment to save other states. Hence,
∆Mψ maintains divergence, whereas ∆Tt, ∆Mφ, and ∆Mθ function normally. The rotational
speeds of the six motors are presented in Figure 17. The speeds of Motors #1 and #3 are
zero, and those of the others are increased to reshape the thrust and torques. Moreover,
the nominal speed of Motor #2 is 4

√
2 times more than those of Motors #4, #5, and #6.
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Figure 15. Position response in Case 3.
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Figure 16. Control inputs in Case 3.
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Figure 17. Rotational speeds of motors in Case 3.

5.5. Verification of Case 4

The simultaneous failure of Motor #1 and #2 is simulated in this section. According to
the analysis in Section 4.6, this system is uncontrollable at both nonlinear and linearized
levels. Figure 18 presents a simulation with the aforementioned initial conditions. All states
diverge considerably fast.
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Figure 18. Position responses in Case 4.

5.6. Verification of Case 5

According to Sections 4.7.1–4.7.3, only Case 5 has limited controllability over the failed
hexacopter. The proposed algorithm has the capability of predicting uncontrollable systems,
as demonstrated in Section 5.5. Therefore, this section simulates potential responses in
Case 5, where Motors #1, #3, and #5 are assumed to have failed simultaneously.

5.6.1. An Arbitrary Initial Condition

Similar to Case 3, demonstrated in Section 5.4, the yawing motion is uncontrollable at
the nonlinear level. Therefore, to maintain the safety of the hexacopter, we must give up
the yawing motion and try to stabilize other states. With this strategy, all states other then
yawing motion should be controllable.

The aforementioned arbitrary initial condition set is employed in this simulation.
Figures 19–21 present the simulation results. All states in Figure 19 converge to zero except
ψ and r. The control inputs are graphed in Figure 20, similar to the responses in Case 3.

For the control inputs, we sacrifice the yaw moment to save other states. Hence, ∆Mψ

is maintained in a state of divergence, whereas ∆Tt, ∆Mφ, and ∆Mθ function normally.
The rotational speeds of the six motors are presented in Figure 17. The speeds of Motors
#1, #3, and #5 are zeros, and others increase their speeds to reshape the thrust and torques.
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Figure 19. Position response in Case 5.
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Figure 20. Control inputs in Case 5.
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Figure 21. Rotational speeds of rotors in Case 5.

5.6.2. Controllable Initial Condition

As aforementioned, this section is merely to verify our algorithm, because it is very
unlikely for a hexacopter to fall into this initial condition subject to motor failure in a real
flight. The controllable initial condition set is provided in Section 4.7.1.

In this simulation, (x01 , · · · , x05 , x07 , · · · , x011) are identical to the aforementioned
initial conditions. However, x06 is obtained from the corresponding element of x03 r3135 .
Similarly, x012 is obtained from the corresponding element of x09 r9135 . The state responses
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are shown in Figure 22. All states converge to zeros, including ψ. Figure 23 shows the
control response. ∆Tt, ∆Mφ and ∆Mθ are generated to control the system, whereas ∆Mψ

maintains zero due to the failure of the motors. One can see that ψ is controllable even
thought the system has zero ∆Mψ. The rotational speeds of six motors are presented in
Figure 24.
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Figure 22. Position response in Case 5 with controllable initial condition.
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Figure 23. Control response in Case 5 with controllable initial condition.

0 2 4 6 8 10

Time (s)

0
100
200
300

(R
P

M
)

Motor 1

Allocated

Normal

0 2 4 6 8 10

Time (s)

400

500

(R
P

M
)

Motor 2

Allocated

Normal

0 2 4 6 8 10

Time (s)

0
100
200
300

(R
P

M
)

Motor 3

Allocated

Normal

0 2 4 6 8 10

Time (s)

400

500

(R
P

M
)

Motor 4

Allocated

Normal

0 2 4 6 8 10

Time (s)

0
100
200
300

(R
P

M
)

Motor 5

Allocated

Normal

0 2 4 6 8 10

Time (s)

350
400
450
500
550

(R
P

M
)

Motor 6

Allocated

Normal

Figure 24. Rotational speeds of motors in Case 5 with controllable initial conditions.
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5.7. Simulations in Nonlinear Regime
5.7.1. Formulation of Nonlinear Controller

In our previous analysis, most cases are uncontrollable for yawing motion. At the
nonlinear level, attitude dynamics is coupled. As a result, uncontrollability of yawing
motion may eventually cause divergence of the whole vehicle. This section intends to
qualitatively understand the validity of our algorithm with numerical examples.

The flow chart for simulations of nonlinear system is presented in Figure 25. The sim-
ulations are divided into two parts: one part simulates the nominal trajectory, (i.e., the hov-
ering states in this research); the other part simulates the actual trajectory. The control gain
obtained from linearized system is employed in the nonlinear system directly. The state
offset is determined by ∆x = x− x̄, where the over bar denotes nominal states or nominal
control. In this simulation, the hexacopter is to track the nominal trajectory, leading to the
reference command ∆ur = ū− ū = 0.

_̄x = f(x̄; ū)
R

x̄(t)ū(t)
_̄x

x̄0 = (x̄; ȳ; z̄; 0; · · · ; 0)

_x = f(x;u)
R

x(t)
_x

x0 = x̄0 +∆x0

K

∆ur

x

u = [−K (x− x̄) +∆ur] + ū

Nominal Trajectory

Actual Trajectory

Figure 25. Flowchart for simulations of original nonlinear system.

In the simulations, the initial conditions of the nominal trajectory are set as the
hovering state. Without loss of generality, we let x̄ = ȳ = z̄ = 0. Because the values
of (x̄, ȳ, z̄) do not affect the simulation results, this setting helps to clearly display the
propagation of the position offset in the actual response. The differential equations are
the original nonlinear EOMs in Equations (A1)–(A12). ∆x0 is the initial condition vector
used in the simulations of linearized cases. Moreover, only four of the seven cases are
partly controllable. Among the four cases, Case 1 and Case 2 are identical whereas Case 3
and Case 5 are similar. Therefore, we only present the simulations of Case 2 and Case 3
as examples.

5.7.2. Case 2 as an Example

In Section 5.3, ψ remains constant and r converges to zero due to the lack of yawing
control. Other states are stabilized and converge to zeros as expected. Figures 26–28 present
the simulations of nonlinear response under identical initial offset as in Section 5.3.

In the linear level, states are decoupled. Nonconvergence of ψ does not influence other
states. In nonlinear level, all states are coupled. To control the position, nonconvergence of
ψ causes small oscillation of φ and θ, leading to wobbling of the hexacopter. The feedback of
wobbling furthermore causes the divergence of ψ gradually, implying that the hexacopter
spins. This is different from linear response. Except for uncontrollable yawing motion,
other states are controllable, the hexacopter is roughly maneuverable, and it can be landed
safely. One can see this phenomena in a real flight video [28].
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Figure 26. Nonlinear position response in Case 2.
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Figure 27. Control inputs response in Case 2.
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Figure 28. Rotational speeds of motors response in Case 2.

5.7.3. Case 3 as an Example

In Section 5.4, ψ diverges very fast due to unbalanced yawing moment. This is the cost
for the controllability of other states at the linear level. However, uncontrollable yawing
motion at the nonlinear level may cause problems in controlling the whole hexacopter in
real flight.

Figures 29–31 present the simulations of nonlinear response under identical initial
offset as in Section 5.4. From the simulations, one can see that ψ diverges even more severely
at the nonlinear level, implying that the hexacopter spins considerably. However, despite
small oscillations in the planar motion and some offset in the z-direction, the position of
the hexacopter is quite steady. This implies that, by applying our algorithm, the hexacopter
must spin sharply, wobble, move around the hovering position, and move slightly higher
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or lower after Motors #1, #3, and #5 are lost. Although this may appear somewhat scary,
the hexacopter is maneuverable and can be landed safely. Perhaps this scenario is too
difficult for a human pilot to handle; we did not find any real-flight clips that featured
human pilots managing such emergencies.
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Figure 29. Nonlinear position response in Case 3.
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Figure 30. Nonlinear control inputs in Case 3.
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Figure 31. Nonlinear rotational speeds of motors in Case 3.

6. Conclusions and Future Work
6.1. Conclusions

This paper proposes a control allocation algorithm for hexacopters subject to motor
failure during flight. More specifically, a hovering hexacopter is considered in the algorithm.
The main goal of this paper is to create states that allow the pilot to gain limited control
of the hexacopter and perform emergent landing. Potential cases of motor failure include
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failure of one, two, or three motors, leading to seven scenarios. Failure of more than
three motors is uncontrollable, and, hence, out of the scope of this paper. To avoid from
change of control or control gain, which may require additional effort during flight, this
research solves the motor failure problem by retaining the previous allocation of the
control gain but reallocating the rotational speeds. Specifically, the following results are
presented: (a) an allocation matrix is proposed to redistribute the control forces so that it is
possible to regain (limited) controllability without modifying control gain; (b) seven cases
are studied to analyze their respective controllability; (c) numerical simulations in both
linearized dynamics and original dynamics also verify the derived results. According to
the derivation and simulations, it has been proven that

1. the pilot is able to regain controllability of states other than yawing motion when two
opposite motors have failed;

2. for the case with only one failed motor, the best strategy is to turn off the opposite
motor and perform the same maneuver as in the previous scenario;

3. for the case with two failed motors with one working motor in between, the pilot
is able to regain controllability of states other than yawing motion. In this scenario,
however, the hexacopter tends to spin and wobble severely.

4. for the case with three failed motors with one working motor in between, the pilot
is able to regain controllability of states other than yawing motion. Similar to the
previous scenario, the hexacopter tends to spin and wobble severely.

5. for other cases, it is very markedly difficult for the pilot to regain controllability and
safely land the hexacopter.

6.2. Future Work

At the current stage, this paper focuses on the study of the allocation algorithm
and the verification of the algorithm through numerical simulations. In the future, some
perspective studies are considered, such as implementation of the algorithm in a hexacopter,
development of allocation algorithm in a tilted-rotor craft, generalization of this study to
cruise states, and so on.
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Appendix A. Linearization of Equations of Motion

Expanding Equations (1)–(5) yields the EOMs of the hexacopter. These equations are
outlined as follows:

ẋ =
[
CθCψ

]
u +

[
CψSφSθ − CφSψ

]
v +

[
SφSψ + CφCψSθ

]
w, (A1)

ẏ =
[
CθSψ

]
u +

[
CφCψ + SφSθSψ

]
v +

[
CφSθSψ − SφCψ

]
w, (A2)

ż = [−Sθ ]u +
[
CθSφ

]
v +

[
CθCφ

]
w, (A3)

φ̇ = p +
[
Sφ tan(θ)

]
q +

[
Cφ tan(θ)

]
r, (A4)

θ̇ =
[
Cφ

]
q +

[
−Sφ

]
r, (A5)

ψ̇ =
[
Sφ sec(θ)

]
q +

[
Cφ sec(θ)

]
r, (A6)

u̇ = vr− qw− gSθ −
KT + KDV

m
u, (A7)

v̇ = pw− ru + gSφCθ −
KT + KDV

m
v, (A8)
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ẇ = qu− pv + gCφCθ −
Tt

m
− KDV

m
w, . (A9)

ṗ =
Iyy − Izz

Ixx
qr +

Mφ − JrqΩR

Ixx
, (A10)

q̇ =
Izz − Ixx

Iyy
pr +

Mθ + Jr pΩR
Iyy

, (A11)

ṙ =
Ixx − Iyy

Izz
pq +

Mψ − JrΩ̇R

Izz
. (A12)

According to linear theory, the linearization is performed by

A =
∂f
∂x

∣∣∣∣
(x̄,ū)

(A13)

B =
∂f
∂u

∣∣∣∣
(x̄,ū)

(A14)

Moreover, the variations of the air resistant ∆Da and the yaw counter torque ∆Myc are
relatively small during hover. As a result, the two terms are neglected in the linearization.
With the aforementioned assumptions, A can be detailed as follows:

A =


0 0 I3 0
0 0 0 I3
0 A32 A33 0
0 0 0 0

, (A15)

where

A32 =

 0 −g 0
g 0 0
0 0 0

, (A16)

and A33 = diag(−KT/m,−KT/m, 0). Similarly, B is detailed as follows:

B =


0
0

B3
B4

. (A17)

Let the rotation rates of rotors be the control inputs. Then, B3 and B4 are given by

B3 =

 0 0 0 0 0 0
0 0 0 0 0 0

− (4bΩ̄3
r,1)

m − (4bΩ̄3
r,2)

m − (4bΩ̄3
r,3)

m − (4bΩ̄3
r,4)

m − (4bΩ̄3
r,5)

m − (4bΩ̄3
r,6)

m

, (A18)

B4 =


2blΩ̄3

r,1
Ixx

4blΩ̄3
r,2

Ixx

2blΩ̄3
r,3

Ixx
− 2blΩ̄3

r,4
Ixx

− 4blΩ̄3
r,5

Ixx
− 2blΩ̄3

r,6
Ixx

2
√

3blΩ̄3
r,1

Iyy
0 − 2

√
3blΩ̄3

r,3
Iyy

− 2
√

3blΩ̄3
r,4

Iyy
0

2
√

3blΩ̄3
r,6

Iyy
4dΩ̄3

r,1
Izz

− 4dΩ̄3
r,2

Izz

4dΩ̄3
r,3

Izz
− 4dΩ̄3

r,4
Izz

4dΩ̄3
r,5

Izz
− 4dΩ̄3

r,6
Izz

. (A19)
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Let lift force and moments be the control inputs. Then, B3 and B4 are given by

B3 =

 0 0 0 0
0 0 0 0
− 1

m 0 0 0

, (A20)

B4 =

 0 1
Ixx

0 0
0 0 1

Iyy
0

0 0 0 1
Izz

. (A21)

Appendix B. Allocation Matrices

1. Case 0:

M0 =



1/(24bΩ̄3
r ) 1/(24blΩ̄3

r )
√

3/(24blΩ̄3
r ) 1/(24dΩ̄3

r )
1/(24bΩ̄3

r ) 1/(12blΩ̄3
r ) 0 −1/(24dΩ̄3

r )

1/(24bΩ̄3
r ) 1/(24blΩ̄3

r ) −
√

3/(24blΩ̄3
r ) 1/(24dΩ̄3

r )

1/(24bΩ̄3
r ) −1/(24blΩ̄3

r ) −
√

3/(24blΩ̄3
r ) −1/(24dΩ̄3

r )
1/(24bΩ̄3

r ) −1/(12blΩ̄3
r ) 0 1/(24dΩ̄3

r )

1/(24bΩ̄3
r ) −1/(24blΩ̄3

r )
√

3/(24blΩ̄3
r ) −1/(24dΩ̄3

r )


. (A22)

2. Case 1 and Case 2:

M1 =



0 0 0 0
1/(16bΩ̄3

r ) 1/(8blΩ̄3
r )

√
3/(24blΩ̄3

r ) 0
1/(16bΩ̄3

r ) 0 −
√

3/(12blΩ̄3
r ) 0

0 0 0 0
1/(16bΩ̄3

r ) −1/(8blΩ̄3
r ) −

√
3/(24blΩ̄3

r ) 0
1/(16bΩ̄3

r ) 0
√

3/(12blΩ̄3
r ) 0


. (A23)

3. Case 3:

M13 =



0 0 0 0
1/(8bΩ̄3

r ) 1/(6blΩ̄3
r ) 0 1/(24dΩ̄3

r )
0 0 0 0
0 −1/(12blΩ̄3

r ) −
√

3/(12blΩ̄3
r ) −1/(12dΩ̄3

r )
1/(8bΩ̄3

r ) 0 0 1/(8dΩ̄3
r )

0 −1/(12blΩ̄3
r )

√
3/(12blΩ̄3

r ) −1/(12dΩ̄3
r )

 (A24)

4. Case 5:

M135 =



0 0 0 0
1/(12bΩ̄3

r ) 1/(6blΩ̄3
r ) 0 0

0 0 0 0
1/(12bΩ̄3

r ) −1/(12blΩ̄3
r ) −

√
3/(12blΩ̄3

r ) 0
0 0 0 0

1/(12bΩ̄3
r ) −1/(12blΩ̄3

r )
√

3/(12blΩ̄3
r ) 0

. (A25)
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