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Abstract: This paper addresses a novel nonlinear algorithm for the trajectory tracking of a planar
cable-driven parallel robot. In particular, we outline a nonlinear continuous-time generalized predic-
tive control (NCGPC). The proposed controller design is based on the finite horizon continuous-time
minimization of a quadratic predicted cost function. The tracking error in the receding horizon is
approximated using a Taylor-series expansion. The main advantage of the proposed NCGPC is based
on using an analytic solution, which can be truncated to a desired degree of order of the Taylor-series.
This allows us to achieve a prediction horizon of NCGPC tracking performance. The description of
the proposed NCGPC method is followed by a comparison between NCGPC and a conventional
computed torque control (CTC) method. Robustness tests are performed by considering payload
and parameter uncertainties for both controllers. Simulation results of NCGPC compared to the
commonly used CTC prove the effectiveness and advantages of the proposed approach.

Keywords: planar cable-driven parallel robot; nonlinear models; continuous-time generalized pre-
dictive control; control robustness; tracking performance

1. Introduction

Cable-driven parallel robots (CDPRs) are a class of parallel robots where the end-
effector is supported by a system of cables, which are extended or retracted by using motors
and pulleys. Recently, CDPRs are widely used for several applications, such as lifting
heavy loads and rehabilitation applications, as reported, for example, by Albus et al. [1],
Tang [2], Pinto et al. [3], and Morizono et al. [4]. The challenges arising in the control of
CDPRs have been the subject of many research works. Particularly significant in this field
are, for example, the work on orientability by Vikranth Reddy [5]; the work [6] where the
control takes into account the viscoelastic effect of cables; the work on the pseudo-drag
effect at high speed that is reported, for example, in [7]; or the work on high-frequency and
oscillation reduction that is reported, for example, in [8].

The accuracy of a cable-driven parallel robot can be strongly affected by the imple-
mented control strategy. In this paper, we propose a robust control strategy for the real-time
control of a cable-driven robot. In recent decades, predictive control has become one of
the most important research topics in nonlinear control systems, such as that reported by
Koreyam et al. for ICaSbot CDPR in [9], or by considerations on the feasibility for enhanced
control strategies, as reported in [10]. Model predictive control (MPC), also known as
receding horizon control, is generally based on a priori knowledge of the process via a
prediction model ensuring the estimation of the future outputs. This can be achieved by
means of frequency analyses, as proposed, for example, in [11], or by establishing proper
dynamic models with cable elasticity, as reported, for example, in [12]. Once this model
has been determined, the MPC algorithm can be formulated as an online optimization
problem on a finite moving horizon. At each sampling step, the controller tries to minimize
the cost functions subject to specific constraints. Constraints can be set on the feedback
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linearization, as proposed, for example, in [13]; they can be based on adaptative control
strategies, as proposed, for example, in [14]; or they can be defined on elastic models of
the actuators, as proposed, for example, in [15]. When the control sequence is found, only
the first component is applied to the process. At the next sampling time, the prediction
horizon moves one step forward, and the optimization problem is repeated iteratively.
However, the above-mentioned problem becomes more difficult, or even impossible to
solve, when it is implemented for nonlinear systems with fast dynamics, especially in the
case where several constraints are considered, such as that proposed by Inel et al. in [16]
or by Carbone et al. in [17]. This is because the on-line nonlinear optimization algorithm
imposes a heavy computational burden which requires a large computation time, as re-
ported, for example, by Tang and Shao in [18], by Li et al. in [19], or by Poignet and Gautier
in [20]. Therefore, in most cases, linear models are used to predict the future behavior of
the nonlinear system over a finite horizon. The advantage of using linearized prediction
models lies in the fact that in the absence of constraints, the optimal solution can be written
explicitly. Nevertheless, the robustness of the control law depends directly on considering
the nonlinear nature of the system. Nonlinear model predictive control (NMPC) is, there-
fore, a powerful strategy. The best way to address these difficulties arising in the design
and implantation of NMPC is to adopt an analytic approach, where the control problem is
formulated in a closed form to avoid online optimization with the approach proposed, for
example, in [21] or the application proposed by Hedjar et al. in [22].

Non-linear continuous-time generalized predictive control (NCGPC) was first pro-
posed in [23] for linear plants. It has similar properties to those of the discrete time
generalized predictive control (GPC), and it is a promising alternative for dealing with
fast dynamic nonlinear systems, as mentioned, for example, in [24]. In general, the predic-
tive control problem has specific advantages for solving—in real time—a finite horizon
closed-loop optimal control subject to the system dynamic constraints involving states
and controls. The main advantage of MPC is the fact that it allows the current timeslot to
be optimized while taking future timeslots into account. This is achieved by optimizing
a finite time horizon while only implementing the current timeslot and then optimizing
again for the next timeslot.

The NCGPC prediction model is based on Taylor series expansion. However, obtaining
an analytic solution imposes a constraint on the order of the Taylor-series expansion to
the corresponding output relative degree [25,26]. Most work in generalized predictive
control is based on a discrete-time approach, but one can use a transfer function approach
to achieve a continuous-time approach. Note that this control strategy requires the stability
of all zero dynamics, and the closed-loop system stability is guaranteed for a relative degree
less than or equal to four.

The aim of this work is the application and implementation of an NCGPC control
algorithm for the motion control of a planar four-cable-driven parallel robot. The proposed
control strategy is based on a generalized predictive control with a discrete-time approach,
including dynamic constraints. The predictive error is obtained in advance by expanding
the output and reference signals in an ri-th order Taylor series, where ri is the relative degree
of the i-th output (relative degree ri ≤ 4, where ri is the number of motors). Accordingly,
the Taylor series is set to be lower than the number of active motors, as proposed, for
example, in [27]. This proposed approach is implemented for a specific case study and
compared with a conventional control approach. The obtained results demonstrate the
engineering feasibility, robustness, and enhanced performance of the proposed approach.
Note that four active motors are defined in the case of the study that is addressed in this
paper. However, the proposed approach can be generalized to any CDPR.

The paper is organized into six sections. Section 2 is dedicated to the proposed robot
modeling required for the control strategy design. Section 3 presents the control problem
formulation and the corresponding solution. Then, the stability analysis is discussed in
the following section. In Section 5, simulation results are presented. Finally, conclusions
are given.
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2. Robot Structure and Modeling

This paper focuses at a two-degree of freedom (DOF) planar cable-driven parallel
robot, whose kinematic scheme and main geometric parameters are reported in Figure 1.
This specific design was introduced in [28]. It is suitable for multiple applications, from
conventional pick and place tasks to rehabilitation exercises of human upper limbs. This
case study was selected since its dynamics are well known. However, the proposed control
approach can be generalized, and it can be conveniently applied, for example, to spatial
cable-driven robots.
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Figure 1. (a) Planar four-cable-driven parallel robot structure. (b) The structure diagram of the
pulley/shaft system.

The main geometric parameters of the robot are described in Table 1 by referring to
the schemes in Figure 1.

Table 1. Nomenclature of the robot geometric parameters.

Parameters Nomenclature

Ai =
(
Aix, Aiy

)
Attachment points of the driving cables to the motorized pulleys.

Li Driven cables lengths

θi Cables angles with respect to the x-axis.

LB The lengths of the workspace side.

Xm End-effector’s x-coordinate.

Ym End-effector’s y-coordinate.

M End-effector’s mass.

Ti Motors torques.

Ji Rotational inertia of shaft-pulley system.

Ci Motors shafts viscous damping coefficients.

βi Pulleys’ rotation angles.

ri Pulleys radius.

The dynamics of the platform are given by the following equation:

Meq(X)
..
X + N

(
X,

.
X
)
= FV (1)
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where the bold type indicates a matrix or vector;
..
X is the inertial matrix; N

(
X,

.
X
)

is the
matrix of Coriolis that can be written as

Meq(X) = r ∗m + S(X) J
∂β

∂x
; N
(

X,
.
X
)
= S(X)

(
J

d
dt

(
∂β

∂x

)
+ C

∂β

∂x

)
.
X (2)

where r is the matrix of the pulley radiuses ri = r and

m =

[
m 0
0 m

]
; J =

 J1 · · · 0
...

. . .
...

0 · · · J4

; C =

 c1 · · · 0
...

. . .
...

0 · · · c4

; X =
[

xm ym
]T (3)

where the T apex represents the transpose operator.
The virtual Cartesian force input FV is defined as

FV = S(X) τ (4)

The pulley angle vector can be written as a function of driven cable lengths as

β =

 β1(X)
...

β4(X)

 =
1
r


L01 −

√
(xm −A1x)

2 +
(
ym −A1y

)2

...

L04 −
√
(xm −A4x)

2 +
(
ym −A4y

)2

 (5)

The Jacobian matrix S(X) is given by

S(X) =
[
− cos θ1 · · · − cos θ4
− sin θ1 · · · − sin θ4

]
(6)

where

θi = atan−1

(
xm −Aix

ym −Aiy

)
(7)

where i = 1, . . . , 4.

Choosing x =
[

x1 x2
]T

=
[

XT
.
X

T
]T

as state vector and U = FV as the control
input, the proposed robot dynamic model given by Equation (1) can be rewritten in the
form of 

.
X1 = x2.

x2 = f(x) + g(x)U
y = h(x) = x1

(8)

where
f(x) = −N(x); g(x) = M−1

eq (x) (9)

3. The Proposed NCGCP Controller Design

One can consider the following multiple input–multiple output (MIMO) nonlinear
system, whose nomenclature of parameters variables is shown in Table 2.

.
x = F(x) +

m
∑

i=1
gi(x)ui = F(x) + G(x) U

y = h(x) =
[

h1(x), h2(x), · · · , hm(x)
]T (10)

where x ∈ Rn, U ∈ Rm and y ∈ Rm are, respectively, the state vector, the control vector and
the output vector. F(x) and h(x) are smooth vector fields.
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Table 2. Nomenclature of the multiple input–multiple output (MIMO) system parameters variables.

Parameters Nomenclature

x the states vector
U control vector
y output vector

F(x) and h(x) smooth vector fields
y (t + T) future reference
e (t + T) future tracking error vector
yr (t + T) quadratic performance

∏s
i the last row of the matrix

∏ss
i is the last element of ∏s

i
Ki is the (ρi × 1) gain vector
ρi relative degree

As in the nonlinear case, the predictive control is based in taking the derivatives of
the output. These output derivatives are obtained from the system of Equation (10). The
proposed NCGPC control strategy allows us to minimize the error between the desired tra-
jectory and the predicted positions while taking into account constraints on cable tensions.
The NCGPC controller is designed so that the future output vector y (t + T) follows the
future reference signal yr (t + T) by minimizing the quadratic performance index given by

J =
∫ T

0
e(t + τ)T e(t + τ) dτ (11)

where e (t + T) is the future tracking error vector, and T > 0 is the prediction horizon.
To solve the nonlinear optimization problem in Equation (11), the predicted term

e(t + T) is expanded into a (ρ + 1)th order Taylor series expansion using the Lie derivative
hm(x) along a field of vectors F(x). The outputs of the system and the reference signals
predictions are approximated by their Taylor-series expansions up to corresponding relative
degree ρi in the form

ei(t + T) ≈
ρi

∑
k=0

Tk

k!

(
y(k)

ri
(t)− y(k)

i (t)
)

(12)

ei(t + T) ≈
[

1 T T
2! · · ·

Tρi
ρi!

]


yri
(t)− yi(t)

ẏri
(t)− ẏi(t)..

yri
(t)− ..

yi(t)
...

y(ρi)
ri (t)− y(ρi)

i (t)

 (13)

ei(t + T) = Γi(T)Yi(t) (14)

One can define the augmented vector Y(t) as

Y(t) =
[

YT
1 (t) · · · YT

m(t)
]T (15)

Therefore, one can write
e(t + T) = Γ(T) Y(t) (16)

where Γ(T) is the mx(ρ + m) (ρ = ∑m
i=1 ρi) matrix defined as follows

Γ(T) = Diag(Γi(T)) (17)

Substituting Equations (16) into (11) leads to the following criterion function

J ≈
∫ T

0
YT(t) ΓT(τ) Γ(τ) Y(t)dτ = YT(t)

(∫ T

0
ΓT(τ) Γ(τ)dτ

)
Y(t) (18)
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J ≈ YT(t) ∏(T) Y(t) (19)

where

∏(T) =
∫ T

0
ΓT(τ) Γ(τ)dτ = Diag

(
∏1(T), ∏2(T), · · · , ∏m(T)

)
(20)

The output yi time derivatives required in the approximated performance index
are expressed as given below using Lie derivatives [28]. Numbered lists can be added
as follows

.
y1 = LF h1(x)..
y1 = L2

F h1(x)
...

y(ρ1)
1 = L(ρ1)

F h1(x) + Lg1
L(ρ1−1)

F h1(x) u1 + · · ·+ Lgm
L(ρ1−1)

F h1(x) um
.
y2 = LF h2(x)

...

...
y(ρm)

1 = L(ρm)
F hm(x) + Lg1

L(ρm−1)
F hm(x) u1 + · · ·+ Lgm

L(ρm−1)
F hm(x) um

(21)

Introducing Equation (21) into the approximated performance index (19) yields

J ≈ (A(x)− B(x, U))T∏(T)(A(x)− B(x, U)) (22)

where

A(x) =



yr1
− h1(x)

.
yr1
− LFh1(x)

...
y(ρ1)

r1 − L(ρ1)
F h1(x)

yr2
− h2(x)

...

...
y(ρm)

rm − L(ρm)
F hm(x)


(23)

B(x, u) =



0ρ1×1

Lg1
L(ρ1−1)

F h1(x) u1 + · · ·+ Lgm
L(ρ1−1)

F h1(x) um
0ρ2×1

Lg1
L(ρ2−1)

F h2(x) u1 + · · ·+ Lgm
L(ρ2−1)

F h2(x) um
...
...

0ρm×1

Lg1
L(ρm−1)

F hm(x) u1 + · · ·+ Lgm
L(ρm−1)

F hm(x) um


(24)

Finally, the control law that minimizes the approximated performance index is ob-
tained by solving the system as proposed in [29] in the form

dJ
dU

=

(
d(A(x)− B(x, U))

dU

)T

∏(T)(A(x)− B(x, U)) = 0(ρ+m)×1 (25)

Consequently, the control law is given by

U = D−1(x) Diag
((

∏ss
i

)−1
∏s

i

)
A(x)) = D−1(x) Diag(Ki) A(x) (26)
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where D(x) is the (m×m) decoupling matrix, ∏s
i is the last row of the matrix ∏i, ∏ss

i is
the last element of ∏s

i and Ki is the (ρi × 1) gain vector that can be written as

D(x) =


Lg1

L(ρ1−1)
F h1(x) Lg2

L(ρ1−1)
F h1(x) · · · Lgm

L(ρ1−1)
F h1(x)

Lg1
L(ρ2−1)

F h2(x) Lg1
L(ρ2−1)

F h2(x) · · · Lgm
L(ρ2−1)

F h2(x)
...

...
...

...
Lg1

L(ρm−1)
F hm(x) Lg2

L(ρm−1)
F hm(x) · · · Lgm

L(ρm−1)
F hm(x)

 (27)

Ki =
[

ρi!
Tρi

2ρi+1
(ρi+1) · · · ρi!

Tρi−j
2ρi+1

j!(ρi+j+1) · · · 1
]

(28)

4. Stability Analysis

Under the assumption that all of the system’s zero dynamics are asymptotically stable,
proving the stability of the closed-loop system leads to proving that the output tracking
errors converge to zero. Replacing the control law given by Equation (26) into (21) yields
the following dynamic tracking errors:

e(ρi)
i (t) + Ki(ρi−1)e

(ρi−1)
i (t) + · · · · · · Ki1

.
ei(t) + Ki0e(t) = 0 (29)

As given in [15], for relative degrees with ρ_i ≤ 4, closed-loop system stability is
guaranteed. However, instability occurs when the relative degree is greater than four. For
the proposed robot, we have

ρ1 = ρ1 = 2
D(x) = Meq(x)

h(x) = X =
[

xm ym
]T

Lfh(x) =
[

Lf h1(x) Lf h2(x)
]T

=
.
X

L2
f h(x) =

[
L2

f h1(x) L2
f h2(x)

]T
= −N(x)

K1 = K2 =
[

10
3T2

10
4T 1

]
(30)

Therefore, the control that minimizes the performance index (11) is given by

U = Meq(x)


ρ1=2

∑
i=0

K1i

(
y(i)

r1 (t)− Li
f h1(x)

)
ρ2=2

∑
i=0

K2i

(
y(i)

r2 (t)− Li
f h2(x)

)
 (31)

This leads to the closed-loop tracking error dynamics given by{ ..
e1(t) + K11

.
e1(t) + K10e1(t) = 0

..
e2(t) + K21

.
e2(t) + K20e2(t) = 0

(32)

Error dynamics correspond to the following closed-loop eigenvalues{
λ1.2 = − 1.25

T ± j 1.33
T

λ3.4 = − 1.25
T ± j 1.33

T
(33)

Therefore, stability is proven for the proposed CDPR model, and the position error
between the actual position and the desired position is real-time feed forward.

The proposed formulation uses the reported inverse kinematics equations. Given the
Cartesian position XR = {xR yR}T, we calculated the cable lengths Li at a given time. Given
the specific kinematic formulation, the proposed formulation can be easily obtained from
the inverse kinematics without requiring a close-form solution of the direct kinematics.
Figure 2 shows a flowchart of the entire control scheme. After the desired control target is
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provided, the robot must initialize its end-effector position by solving the inverse position
kinematics problem; that is, it is given the Cartesian position XR = {xR yR}T, where XR
is the input of the reference trajectory. Then, one can obtain the corresponding cable
lengths Li. The solution is based on calculating the Euclidean norm between the moving
point XR = {xR, yR}T and each fixed ground link vertex Ai where the cables originate. The
dynamics model and the control technique calculate the cable tensions with a limit to the
feasible cable tensions (they must always be positive), as also mentioned in [30–35]. Then,
the system is driven to generate the trajectory.
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Figure 2. A flow-chart of tension control (NCGPC: nonlinear continuous time generalized predictive
control; PDP robots: planar-driven parallel robots).

The proposed control architecture includes a feedforward term, and a virtual Cartesian
force input to real actuator torque calculation. The PD controller gains are determined via
trial-and-error using a Matlab Simulink simulation to achieve reasonable performance. The
matrix gains KP and KD are 2 × 2 diagonal matrices, which means that the PD control is
accomplished independently for the x and y motions, even though the dynamics model is
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coupled. The feedforward term Meq(X) is composed of the overall position-dependent
Cartesian mass matrix and the reference Cartesian acceleration components. One should
note that the virtual-to-real calculation has the task of inverting the matrix S(X) that is
nonsquare with the constraint of only positive cable tensions.

5. Simulation Results

In this section, simulation results obtained with NCGPC are presented and compared
to those obtained using computed torque control (CTC), which is widely used for robotic
systems. Both simulations were carried out within Matlab environment.

The CTC controller is defined as follows

U = Meq(X)
[ ..
Xr + KD

.
e + KPe

]
+ N

(
X,

.
X
)

(34)

where
e = Xr − X (35)

KP and KD are 2 × 2 diagonal matrices containing the linear gains. Applying this
control to the robot model (1) yields the tracking errors dynamics as

..
e + KD

.
e + KPe = 0 (36)

Based on the above-mentioned formulations, both NCGPC and CTC control schemes
were implemented based on the control scheme in Figure 3.
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The parameters for the dynamic equations of motion (34) for the 4-cable CDDRs are:
mass m = 0.01–0.015 kg; rotational shaft/pulley inertias Ji (i = 1, . . . , 4) = 0.0008 kg m2.
Shaft rotational viscous damping coefficients Ci (i = 1, . . . , 4) were set as equal to 0.01 Nms
and ri = r = 1 cm (for all i = 1, . . . , 4) by considering the properties of standard off-the-shelf
components. We considered the reference of our system in the center of the workspace
(0,0). Accordingly, we wrote the nonlinear dynamics terms N

(
X,

.
X
)

in Equation (34). Then,

we set the reference Cartesian acceleration
..
Xr in a feed forward term, and we implemented

a Cartesian PD controller to reduce the tracking error e = XR − X. The reference Cartesian
position is given by XR = {xR yR}T.

S†(X) is the pseudo-inverse of S(X). The reference trajectory is chosen as a circular
path given by {

xmref = 0.2165 ∗ sin(α(t))
ymref = 0.2165 ∗ cos(α(t))

(37)

where
..
α(t) = 8π, α(0) =

.
α(0) = 0.

Referring to Table 1, the parameters for the dynamic Equation (34) for both the
4-cable CDDRs are assumed as mass m = 0.01 kg and rotational shaft/pulley in-
ertias Ji (i = 1, . . . , 4) = 0.0008 kg m2. Shaft rotational viscous damping coefficients
Ci (i = 1, . . . , 4) = 0.01 Nm s and ri = r = 1 cm (for all i = 1, . . . , 4), and the base square side is
Lb = 0.658 m, as also summarized in Table 3. We defined the reference frame of our CDPR
system in the center of the workspace with coordinates (0,0).
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Table 3. Main values of parameters for the proposed case study.

Parameters Value Parameters Value(
A1x, A1y

)
(−32.5;0) cm LB 65 cm(

A1x, A1y

)
(32.5;0) cm M 0.01 kg(

A1x, A1y

)
(32.5;32.5) cm Ji 0.0008 kg m2(

A1x, A1y

)
(−32.5;32.5) cm Ci 0.01 Nms

Figure 4 shows the plots of the reference trajectory for X- and Y-coordinates. The
proposed simulation study was carried out with three phases:

• Phase 1: Influence of the prediction horizon on NCGPC tracking performances.
• Phase 2: Comparison between NCGPC and CTC based on tracking errors.
• Phase 3: Robustness test of payload and parameter uncertainties for both NCGPC

and CTC.
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5.1. Influence of the Prediction Horizon on NCGPC Tracking Performances

Figure 5 shows tracking errors on the X-axis for different prediction horizons and a
zoom on X-axis tracking errors (b). Figures 5 and 6 show the tracking performances that can
be achieved by the proposed NCGPC control with a maximum error lower than 0.6 cm on
the X-axis and 0.9 cm on the Y-axis in the worst case at t = 0.015 s. The prediction horizon
exerts a direct influence on the transient response because it acts directly on the pole
placement of the closed loop. In addition, the steady state error is affected by the prediction
horizon, which is due to the precision decrease in the prediction model when the prediction
horizon becomes longer. In Figure 7, motor torques are shown. The lower and upper
bounds are limited (between 0.01–10 Nm) to avoid negative and high tensions, which can
lead to a cable loosening or tearing. Figure 8 shows resulting tensions in robot cables. Cable
tensions are positive, except in the transient response, where they are slightly negative.
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5.2. Comparison between NCGPC and CTC Based on Tracking Errors

Figures 9 and 10 show the tracking errors along X- and Y-directions of the end-effector
under different control strategies. In order to illustrate the superiority of the NCGPC
scheme, we compared it with CTC. In particular, one can identify a positioning error
ranging from +0.2 to +0.4 cm for the NCGPC control method, while one can identify a
positioning error ranging from −1.3 to +0.8 cm for the CTC control. One can also compute
the least square average positioning error along the X-axis as 0.04 cm with NCGPC and
0.2 cm with CTC when referring to the interval from 0.0 to 0.3 s. The least square average
positioning error along the X-axis is 0.2 cm with NCGPC and 0.8 cm with CTC when



Actuators 2021, 10, 97 14 of 20

referring to the interval from 0.5 to 0.8 s. Similarly, the least square average positioning
error along the X-axis is 0.2 cm with NCGPC and 0.8 cm with CTC when referring to the
interval from0.0 to 0.3 s. The least square average positioning error along the X-axis is
0.1 cm with NCGPC and 0.4 cm with CTC when referring to the interval from 0.5 to 0.8 s.
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As seen for these values, we can conclude that the NCGPC has a higher position
tracking accuracy compared with other control methods with different prediction horizons.
One should note that NCGPCs are extended from affine nonlinear systems to general
nonlinear systems and strategies applied to a permanent magnet motor for speed trajectory
tracking and disturbance rejection. Furthermore, they are revised in order to enhance
the robustness of the closed-loop system. Computed torque control (CTC) is instead an
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effective and high-performance motion control strategy for a robotic system. Based on the
simulation error results, we can conclude that the proposed control method is effective and
robust and can outperform CTC.

5.3. Robustness Test of Payload and Parameter Uncertainties

Measurement uncertainty is a nonnegative parameter characterizing the dispersion of
the quantity values attributed to a measure and based on the information used. The guide
to the expression of uncertainty in measurement (GUM) is the internationally accepted
reference for evaluating uncertainty, and it requires the use of a first-order Taylor series
expansion for propagating uncertainties. The specific assumed uncertainty values are
reported in Table 4.

Table 4. List of the considered parameter uncertainties.

Parameters Uncertainties

∆r +5%
∆J −10%

∆Lb −5%
∆c +10%

Payload: ∆m +20%

The introduced uncertainties, which were implemented in numerical modeling with
Matlab Simulink software, are given in Table 4. Using the proposed robust control toolbox,
one can analyze the effect of model uncertainty on the closed-loop stability and performance
of the control system. In particular, one can determine whether our controller will perform
adequately over the entire considered operating range, and which source of uncertainty is
most likely to jeopardize the performance. The considered uncertainties are mostly related
to the cable lengths. Cables can only pull, so there are only feasible positive cable tensions.
The elasticity of cables makes them elongate proportionally to cable tensions. Accordingly,
only positive increases in the cable lengths can be feasible under positive cable tensions as
compared with nominal values. Although a sensitivity analysis is out of the scope of this
work, the proposed formulation allows for tolerances in the setup parameters commonly
above 1% of full scale, as reported in the plots in Figures 11–14.

We noticed that the position versus time curves obtained with the NCGPC method
with the uncertainties follow (superpose to) the curve of the nominal model in the interval
from 0.0 to 0.2 s very well. Similarly, in the interval from 0.22 to 0.4 s, we observe that the
model with uncertainties follows the curve of the nominal NCGPC control model very
well, with a similar tracking error ranging between 0.03 to 0.05 cm. In the interval from
0.5 to 1 s, the curve of NCGPC with uncertainties follows the curve of the nominal model
with a maximum tracking error of 0.04 cm along both the X- and Y- directions. On the other
hand, the position versus time curves obtained with the CTC method when considering
the same uncertainties demonstrate a significantly different behavior; that is, the interval
from 0.0 to 2.0 s shows a similar tracking performance but starting from the interval from
0.02 to 0.1, the curve with uncertainties demonstrates a significantly worst tracking error
performance with a large tracking error between 0.03 and 1 cm along both the X- and
Y-directions. When compared to Figures 9 and 10, the position tracking errors along the
X-direction with the NCGPC method show a tracking error performance that is 98% better
than the CTC in the interval from 0 to 2 s, where the tracking error results are negligible for
NCGPC, while it is 0.2 cm with the CTC method. Similarly, the NCGPC control method
shows a performance improvement as compared with the CTC method of about 90% in
several specific time intervals. Considering absolute values, for example, NCGPC shows
a tracking error of −0.23 cm, while CTC shows a tracking error of 1.16 cm at the time 4 s.
Similarly, along the Y-direction at time 0.25 s, NCGPC shows a tracking error of 0.13 cm,
while CTC shows a tracking error of 0.94 cm, again with NCGPC outperforming CTC
by about 90%. Accordingly, one can outline that, when introducing model uncertainties
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and payload mass, NCGPC demonstrates a significant improvement in tracking error
performance as compared with a standard CTC, also in the presence of significant amounts
of uncertainties.
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In this paper, the existing results for the analytic NCGPC are extended from affine
nonlinear systems to general nonlinear systems (the proposed CDPR robot). This controller
overcomes the difficulties imposed by the on-line nonlinear optimization involved in
NNCGPC, such as attaining local-minimum and long-sampling-time requirements. The
NCGPC developed in this paper is suboptimal for the original NCGPC problem. Since
there is no restriction on the order for Taylor-series expansion, theoretically, the analytic
solution developed by approximation can approach the solution of the original NCGPC at
any specified accuracy.

This study is mostly focused on a specific planar CDPR. In future work, we plan to
extend this formulation to a 3D CDPR, such as LAWEX and CUBE, with 3 to 6 active degrees
of freedom; to reconfigurable cable-driven devices; and/or to devices with new application
tasks, such as those reported in [36–41]. Additionally, multiobjective optimization strategies
could be implemented at design and control stages, as proposed, for example, in [42,43].

6. Conclusions

This paper describes a novel continuous time predictive controller design method for a
planar cable-driven parallel robot. The proposed method is based on the minimization of a
quadratic cost function of the predicted tracking error as calculated using Taylor expansion.
The main advantages of this proposed control scheme consist of avoiding on-line opti-
mizations and the capability to deal with fast dynamics on nonlinear systems. Simulation
results showed that the proposed NCGPC technique has a significantly improved tracking
performance with respect to a standard computed torque control (CTC). Furthermore, the
proposed control method demonstrates a suitable robustness in terms of the rejection of
model uncertainties and payload variations, as also demonstrated in comparison with a
CTC controller.
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