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Abstract: Torque distribution control is a key technique for four-wheel independent-drive electric
vehicles because it significantly affects vehicle stability and handling performance, especially under
extreme driving conditions. This paper, which focuses on the global yaw moment generated by both
the longitudinal and the lateral tire forces, proposes a new distribution control to allocate driving
torques to four-wheel motors. The proposed objective function not only minimizes the longitudinal
tire usage, but also make increased use of each tire to generate yaw moment and achieve a quicker
yaw response. By analysis and a comparison with prior torque distribution control, the proposed
control approach is shown to have better control performance in hardware-in-the-loop simulations.

Keywords: electric vehicles; independent drive; direct yaw control; torque distribution

1. Introduction

Electric vehicles (EVs) are enjoying a wide distribution in road transportation not only
thanks to their benefits for the environment [1], but also owing to their better dynamic
performance [2].

Of the current EVs, four-wheel independent-drive electric vehicles (4WIDEVs), with mo-
tors installed in each wheel, have great advantages in generating both traction and braking
torque quickly, accurately, and independently. These merits make 4WIDEVs an ideal plat-
form for active chassis control, especially for direct yaw moment control (DYC). The DYC
system, in contrast to four-wheel steering (4WS) and active front-wheel steering (AFS), uti-
lizes the yaw moment directly generated by a reasonable distribution of longitudinal forces
to adjust vehicle motion [3,4]. Therefore, as the basis of a DYC system, torque distribution
control plays a key role in maintaining vehicle stability [5–7].

The early torque distribution control method for 4WIDEVs adopted a rule-based
distribution method. Considering the tire characteristics, Shan formulated new rules to
arrange the execution of actuators in a certain order [8]. Park took both the characteristic of
independent wheel motor and tire friction circle into account and proposed a novel torque
distribution algorithm based on daisy-chaining allocation [9]. Although it is easy to achieve
this implementation, this kind of method, based on specific rules, had weak adaptability to
the environment and low allocation accuracy. It faced difficulties in satisfying performance
requirements under actual various driving conditions.

For this purpose, current research works have been adopting the optimal control theory
to conduct torque distribution control to improve the control performance of DYC. For optimal
control, it is very important to find the suitable objective function and constraints.

Joa and Feng proposed integration methods to minimize the allocation error, unin-
tended braking, and tire slip [10,11]. However, in the critical situation in which DYC
operates, it is more important to keep vehicles stable while passing through a curve quickly
than to minimize tire dissipation or unintended deceleration.
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Hori and Peng considered the sum of squares of longitudinal and lateral tire forces as
an index to optimize torque distribution [12]. This method is very close to the concept of
tire usage. Mokhiamar and Abe proposed the concept of tire workload usage first and built
up an objective function. In the subsequent research works, a weight coefficient and more
constraints were involved to improve the control performance [13,14]. The method-based
tire usage rate relies on the idea that, the smaller the tire usage, the larger the margin left for
lateral force and the more stable the vehicle. Ono introduced the tire grip margin coefficient,
which minimized and equaled the usage of each tire. Additionally, this research proved
the convergence of the proposed objective function [15]. Ignoring the uncontrollable lateral
tire force, Yu took the constraints of the motor peak torque and road contact surface into
account and defined a new objective function including the longitudinal tire force and
weight coefficient [16]. Based on this research, Yang gave consideration to the relation
between the lateral and longitudinal tire forces [17]. Wang added the constraint condition of
longitudinal tire forces [18], and Guo also considered wheel slip ratio control for emergency
conditions [19]. Li proposed a multifunctional optimization approach to simultaneously
minimize the errors of force and moment at the center of gravity, actuator control efforts,
and tire usage [20]. In addition to the driving safety object function, Huang also took
drive system efficiency into account in their controller design [21]. Hu decoupled four-
wheel torque vectoring and innovated a two-level distribution formula to reduce energy
consumption while ensuring handling stability [22].

Nevertheless, these control designs based on tire usage devote the most effort to a
single tire rather than on the rigid characteristics of 4WIDEVs. For example, in the curve
scenario, even with the same tire usage, the left wheels have obvious differences from the
right wheels in terms of their potential and contribution to global yaw moment. In the
same way, the front and rear wheels also have different efficiencies in the generation of
yaw moment. The simple consideration of tire usage cannot make full use of each tire to
generate yaw moment. Thus, there is some space left for improving the DYC performance
in 4WIDEVs.

Therefore, this paper, considering tire usage as well as the efficiency of global yaw mo-
ment generation, focuses on the development of a new torque distribution control system
for 4WIDEVs. This system includes the models of yaw moment generation constructed for
each tire and involves a new objective function to improve the DYC performance.

The rest of the paper is organized as follows. Section 2 describes the vehicle’s dynamic
model. Section 3 proposes the optimal torque distribution control approach. Section 4
validates the effectiveness and real-time performance of the proposed approach in a hier-
archical DYC system. Section 5 analyzes its implementation, compares it with a typical
method on the basis of the optimal tire usage, and analyzes the reason for its higher
performance in depth.

2. Vehicle Dynamic Model

A seven-degree-of-freedom (7-DOF) vehicle dynamic model—including the longitudi-
nal, lateral, and yaw motion of the chassis as well as the rotation of the four wheels—was
constructed for controller design. The chassis plane motion model is presented in Figure 1.
Table 1 displays the definition of the notation used in the model.

The corresponding equations of vehicle planar motion are as follows:

m
( .
u− vr

)
= (Fx1 + Fx2) cos δ + (Fx3 + Fx4)−

(
Fy1 + Fy2

)
sin δ (1)

m
( .
v− ur

)
= (Fx1 + Fx2) sin δ +

(
Fy3 + Fy4

)
−
(

Fy1 + Fy2
)

cos δ (2)

Iz
.
r = l f

(
Fy1 + Fy2

)
cos δ− lr

(
Fy3 + Fy4

)
+

d f (Fy1−Fy2) sin δ

2 + dr
2 (Fx4 − Fx3)

+
d f
2 (Fx2 − Fx1) cos δ + l f (Fx1 + Fx2) sin δ

(3)
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Figure 1. Vehicle plane motion model.

Table 1. Definitions of symbols used in modeling.

Symbols Definitions Unit

CG Center of gravity
Cf Cornering stiffness of front wheels N/rad
Cr Cornering stiffness of rear wheels N/rad
df Front track width m
dr Rear track width m
Fxi Longitudinal force of the ith tire N
Fyi Lateral force of the ith tire N
Iw Rotational inertia of the wheel kg·m2

Iz Yaw moment of inertia of the vehicle kg·m2

lf Distance from CG to front axle m
lr Distance from CG to rear axle m
l Distance from front axle to rear axle m

m Vehicle mass kg
Reff Wheel effective radius m
Twi Motor torque on the ith wheel N·m
u Vehicle longitudinal velocity m/s
v Vehicle lateral velocity m/s
r Yaw rate rad/s
β Sideslip angle rad
δ Steering wheel angle rad

ωi Wheel rotational speed rad/s

The tire rotation dynamic equations can be described as

Iw
.

ωi = Twi − FxiRe f f (4)

3. Controller Design

As illustrated in Figure 2, this study employed a hierarchical DYC system comprising
three layers: a parameter estimator, yaw moment controller, and torque distribution
controller. The parameter estimator uses measurable sensor signals to estimate the sideslip
angle and tire forces [23,24]. The measured parameters include the longitudinal acceleration
ax, lateral acceleration ay, yaw rate r, wheel angular velocity ωi, and steering wheel angle
δ. The measured and estimated parameters are input to the upper yaw motion controller.
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Figure 2. Hierarchical direct yaw moment control (DYC) system.

The upper yaw moment controller calculates the global yaw moment requirement
on the CG to follow the desired sideslip angle and yaw rate and sends it as the equality
constraint of the torque distribution controller.

Finally, the torque distribution controller allocates the optimal driving torque com-
mand to the four in-wheel motors to comply with the global yaw moment requirement.

3.1. Yaw Moment Controller

Thanks to its high robustness to sensor noise and variation in the vehicle state param-
eters, the sliding mode control method is easy to implement and widely used in vehicle
stability controllers [25,26]. This study takes advantage of the sliding mode control method
to design the yaw moment controller. The sliding surface is designed as

S = k3(r− rt) + k4(β− βt) (5)

where rt and βt are the target yaw rate and sideslip angle, respectively, which can be
obtained from a 2-DOF vehicle model [27]. k3 and k4 are the weight coefficients, and rt and
βt are calculated as

rt =
1

1− mu2

2l2
l f C f−lrCr

C f Cr

u
l

δ (6)

βt =
1− mu2

2l2
l f

lrCr

1− mu2

2l2
l f C f−lrCr

C f Cr

lr
l

δ (7)

where the parameters in (6) and (7) are listed in Table 1. For the convenience of calculation,
the tire stiffness is replaced by an approximate fixed value. Owing to the limitation of road
adhesion, the target yaw rate and sideslip angle have an upper limitation, which can be
expressed as

rmax = 0.85
∣∣∣µg

u

∣∣∣ (8)

βmax = tan−1(0.02µg) (9)

where µ is the road friction coefficient and is assumed to be a constant.
The switching control law is designed as follows:

.
S = −k1sgn(S)− k2S (10)
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The control law presented in (10) eliminates the system chattering caused by the sign
switching function sgn(S) at high frequencies.

The sliding surface (5) is derived as

.
S = k3

( .
r− .

rt
)
+ k4

( .
β−

.
βt

)
(11)

The output of the upper yaw moment controller is set to Mzd. The yaw moment
generated by longitudinal tire forces is easy to control directly, so it is suitable as the
output of the upper yaw moment controller. Combined with Formulas (3), (10), and (11),
the output is as follows:

Mzd = Iz
.
r−

[
l f
(

Fy1 + Fy2
)

cos δ +
d f
2
(

Fy1 − Fy2
)

sin δ− lr
(

Fy3 + Fy4
)]

= Iz

{ .
rt +

1
k3

[
−k1sgn(S)− k2S− k4

( .
β−

.
βt

)]}
−
[
l f
(

Fy1 + Fy2
)

cos δ +
d f
2
(

Fy1 − Fy2
)

sin δ− lr
(

Fy3 + Fy4
)] (12)

According to the Lyapunov stability theory, in order to make the system stable, k1 and
k2 are positive constants. The smaller k1 is, the smaller the chattering is. For a good balance
between response and stability, the values of the four control parameters (k1, k2, k3, and k4)
were tuned as 0.01, 50, 1.0, and −0.5 in the simulation, respectively.

Finally, the stability of the system using Formula (10) as the control law is analyzed.
The stability is proven as follows:

Consider the Lyapunov function as follows:

V =
1
2

S2 (13)

By substituting the control law of Formula (10), the following can be obtained:

.
V = S

.
S = S(−k1sgn(S)− k2S) = −k1|S| − k2S2 < 0 (14)

3.2. Torque Distribution Controller

In order to make full use of the lateral and longitudinal tire forces to generate the yaw
moment, this paper proposes a new nonlinear optimal torque distribution control approach,
with the objective function shown in (15). The ratio of the yaw moment generated by the
longitudinal tire force to the global yaw moment, as well as the tire usage to be minimized,
indicates that, in addition to the advantages of tire usage method, use is made of the lateral
tire force to contribute as large a yaw moment as possible, and the rigid characteristics of
4WIDEVs have also been fully considered.

min J =
4

∑
i=1

(
Fxi
Fzi
·Mxi

Mzi

)2
(15)

where Fxi is the longitudinal force of the ith wheel (i = 1, 2, 3, and 4), Fzi is the vertical
load of the ith wheel (i = 1, 2, 3, and 4), Mxi is the yaw moment generated by the ith
in-wheel motor driving force, Myi is the yaw moment generated from the ith lateral tire
force, and Mzi is the sum of Mxi and Myi.

According to the 7-DOF vehicle dynamic model, Mxi and Myi (i = 1, 2, 3, and 4) in (15)
can be described as

Mx1 = Fx1

(
l f sin δ− d f

2 cos δ
)

Mx2 = Fx2

(
l f sin δ +

d f
2 cos δ

)
Mx3 = −Fx3

dr
2

Mx4 = Fx4
dr
2

(16)
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My1 = Fy1

(
l f cos δ +

d f
2 sin δ

)
My2 = Fy2

(
l f cos δ− d f

2 sin δ
)

My3 = −Fy3lr
My4 = −Fy4lr

(17)

Although the relation between the longitudinal and lateral tire forces can be approx-
imately expressed as a friction ellipse, a simplified circle model with a safety factor s is
proposed to reduce the computation for actual implementation. s is set to 0.8 in the formula
to indicate that, even when the tire slip angle is large, the lateral force is not over estimated.
The tire circle model is expressed as

Fyi = sgn(δ)·
√
(sµFzi)

2 − Fxi
2 (18)

where the ith tire lateral force, Fyi, and traction/braking force, Fxi, are restricted by the
friction coefficient µ multiplied by the vertical load Fzi.

In the equality constraints (19), the sum of yaw moment generated by the longitudinal
tire forces is designed to meet the requirement of global yaw moment from the upper yaw
moment controller.

4

∑
i=1

Mxi = Mzd (19)

The inequality constraints, including the motor peak torque and road adhesion con-
straints, can be expressed as follows:

|Fxi| ≤
Timax
Re f f

(20)

|Fxi| ≤ µFzi (21)

where Timax is the peak torque of the ith in-wheel motor.

4. Simulation and Results
4.1. HIL Simulation System

This paper used an HIL simulation to verify the effectiveness of the proposed optimal
torque distribution approach. As illustrated in Figure 3, the HIL system comprises three
subsystems: an NI PXI Express engine, an electronic control unit (ECU), and a host personal
computer (PC).

• NI PXI Express Engine and models: The NI PXI Express engine contains different
modular slots to simulate a vehicle model and sensor model. Detailed parameters of
the PXI Express engine are provided in Table 2.

• ECU: The ECU is based on STM32F407ZGT6. The C code files of the yaw moment and
torque distribution controllers are embedded in the ECU and calculate the target yaw
moment and optimal motor torque exerted on each wheel. The step time is set to 5 ms.

• Host PC: The host PC is connected to the PXI Express by an Ethernet cable. The user inter-
face on the PC is used to send a test command and display the vehicle state information.

Table 2. Parameters of the NI PXI engine.

Product Module Specification

PXIe-1071 PXI Chassis Four-Slot, up to 3 GB/s
PXIe-8821 Controller 2.6 GHz dual-core processer
PXI-8512 CAN Interface Flexible data rate, high-speed
PXIe-6738 Analog Output 16 bit, 32 channel, 1 MS/s
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Figure 3. Structure of the HIL simulation system. ECU, electronic control unit; PC, personal computer.

This study develops a common C-class hatchback vehicle model in CarSim, which in-
cludes a chassis motion model, a steering system model, suspension rack models, tire mod-
els, and motor models. The vehicle parameters are listed in Table 3. The sensor models
comprise a 6-DOF inertia sensor and a steering angle sensor model. Band-limited white
noise signals are injected into the sensor models to simulate the noise in real sensors shown
in Table 4.

Table 3. Vehicle parameters.

Parameters Values

Vehicle mass 1412 kg
Sprung mass 1270 kg

Height of center of gravity (CG) 0.540 m
Wheel base 2.910 m

Distance from CG to front axle 1.015 m
Distance from CG to rear axle 1.895 m

Track width 1.675 m
Vehicle yaw inertia 1536.7 kg·m2

Wheel inertia 0.9 kg·m2

Wheel effective radius 0.325 m

Table 4. Noise signals.

Signal Amplitude Reference

δ 6.3◦ HiTech SAS (Steering Angle Sensor), HiRain
ax, ay 0.049 m/s2 Technologies Co., Ltd., Beijing, China

r 1 deg/s TAMAGAWA AU7428N200, TAMAGAWA
ω 10 rpm SEIKI Co., Ltd., Nagano Prefecture, Japan

4.2. HIL Simulation Results
4.2.1. Sine with Dwell

The Sine with Dwell (SWD) maneuver in the 126 requirements of the American Federal
Motor Vehicle Safety Standard (FMVSS) was used to verify the effectiveness of the proposed
optimal torque distribution method. The initial speed was set to 80 km/h and the friction
coefficient was 0.8.

Figure 4 shows the yaw rate and sideslip angle responses of the vehicles with and
without the proposed optimal torque distribution approach. As illustrated in Figure 4a,
without control, the yaw rate was larger than 35% of its peak value. In contrast, with the pro-
posed control, the yaw rate followed the variation in the steering wheel angle well, with its
value reaching 20% of the peak value at 0.6 s after steering was completed. Table 5 shows
the comparative evaluation of the SWD test. According to the FMVSS 126 requirements,
it can be concluded that the vehicle with the proposed approach passed the test.
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Table 5. Evaluation of the Sine with Dwell (SWD) test.

Yaw Rate Vehicle with the Proposed
Control Method Vehicle without Any Control

Peak value −0.431 rad/s −0.736 rad/s
35% of the peak value −0.151 rad/s −0.258 rad/s

1 s after completing steering −0.003 rad/s −0.505 rad/s
20% of the peak value −0.086 rad/s −0.147 rad/s

1.75 s after completing steering +0.003 rad/s −0.450 rad/s

4.2.2. Double Lane Change

Closed-loop simulations were conducted at a constant speed of 60 km/h under road
conditions with µ = 0.8.

Figure 5a displays the vehicle’s trajectory. Figure 5b,c display the yaw rate and sideslip
angle responses of the vehicles with and without the proposed optimal torque distribution
approach. As illustrated in Figure 5a, the vehicle without control was not able to follow
the expected trajectory. As illustrated in Figure 5b, without control, the yaw rate was
constantly changing owing to the failure to follow the expected trajectory, meaning that the
vehicle lost stability. By contrast, under the proposed control approach, the change of yaw
rate was able to track the target yaw rate quickly and accurately, thus achieving vehicle
stability control.
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The detailed comparison in Figure 5c reveals that, when the control was not used,
the sideslip angle increased rapidly after 5 s and ultimately exceeded the vehicle stability
boundary. However, with the proposed control approach, the amplitude of the sideslip
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angle was always below 3◦ and changed smoothly, which means the vehicle could be easily
handled by the driver.

5. Analysis and Discussion
5.1. Global Optimal Proof

A global optimal solution can be obtained for convex optimization problems. In order
to prove that the proposed algorithm is a convex optimization problem, it is necessary
to prove that the proposed objective function is a convex function. It is assumed that the
arm of yaw moments generated by longitudinal tire force and lateral tire force are Ai and
Bi. The specific values of Ai and Bi are derived from (16) and (17). The objective function
can be clearly expressed as (22), which can also be rewritten as (23). In the process of
optimization, Ai, Bi, and Fzi are constants, where Fxi = [Fx1 Fx2 Fx3 Fx4]

T .

min J =
4

∑
i=1

(
Fxi
Fzi

)2
(

AiFxi
AiFxi + BiFyi

)2

(22)

min J =
4

∑
i=1

(
Ai
Fzi

)2
 F2

xi

AiFxi + Bi

√
(sµFzi)

2 − F2
xi

2

(23)

Taking Fx1 as an example, in order to prove that (24) is a convex function in a simple
and clear manner, the image of g(Fx1) is described in Figure 6, which indicates that the
proposed objective function is clearly a convex function in a feasible region. Similarly, it can
be proved that the inequalities Fx2, Fx3, and Fx4 are also true. In conclusion, the proposed
objective optimization problem is a convex optimization problem and represents a suitable
result for any driving condition.

g(Fx1) =

(
A1

Fz1

)2
 F2

x1

A1Fx1 + B1

√
(sµFzi)

2 − F2
x1

2

(24)
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5.2. Control Performance

This paper compares the proposed approach with the method based on the optimal tire
usage rate [16] to discuss the reason behind the higher performance of the proposed approach.

minJ =
4

∑
i=1

Ci
F2

xi

(µFzi)
2 (25)
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The simulation condition was a double-lane-change maneuver performed at 50 km/h,
where the road adhesion coefficient was set to 0.6 for more comparable results. Figure 7
presents the analysis of the yaw moment generated by the motor driving forces and lateral
tire forces. The results show that the proposed approach utilizes the lateral forces to
generate yaw moment more fully and quickly, as well as to reduce the torque output of the
four in-wheel motors. Figure 8 compares the CG lateral force, sideslip angle and driving
trajectory to prove that the vehicle with the proposed torque distribution approach can
follow the target trajectory better than with tire usage rate control.

Figure 7c,d display the yaw moments (Mz−x and Mz−y) generated by the motor
driving forces and lateral tire forces, respectively. According to the results, the difference in
the front-left and rear-right motor driving forces obtained for the two controllers is mainly
caused by the yaw moment generated by the lateral forces. As shown in the Figure 7d,
during 1.6–2.2 s, the proposed approach can use a larger Mz−y to compensate for the yaw
moment generated from the motor driving forces when the sign of Mz−y is the same as
that of Mz−x. Therefore, the Mz−x used to track the target yaw moment from the upper
controller is smaller, and the torque output of the four in-wheel motors is also reduced.
In addition, by comparing the curves of Mz−x and Mz−y during 1.2–1.5 s and 2.6–3.8 s,
the proposed approach outputs a lower Mz−x when Mz−x and Mz−y have opposite signs,
owing to the lower Mz−y.
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Figure 7e presents a comparison of the yaw rate responses. Under the proposed
method, the yaw rate can track the target value very well. The curve obtained under the



Actuators 2021, 10, 122 14 of 15

tire usage rate control clearly has a delay and a larger fluctuation around 5.2 s. Moreover,
it takes longer to converge to the stable state than in the proposed approach. In conclusion,
the proposed approach makes better use of the lateral tire forces to generate the yaw
moment and improves the vehicle yaw response.

Figure 8 illustrates the effect of CG lateral force on vehicle stability. As shown in
Figure 8c, with the proposed control, the vehicle path is maintained within a smaller range
and converges to the target trajectory more rapidly. Figure 8b, showing the comparative
sideslip angle, shows the same conclusion. Figure 8a reveals that, with the proposed control
method, the lateral force responds more quickly at 4.5 s, which causes the vehicle trajectory
and sideslip angle to converge rapidly to a stable state.

In summary, the comparisons presented in Figures 7 and 8 reveal that the proposed
optimal torque distribution control approach makes increased use of the motor driving
forces and the lateral tire forces to improve the vehicle’s yaw responses and trajectory-
following ability.

6. Conclusions

For the purpose of improving the efficiency of yaw moment generation, this paper
took the rigid characteristics of 4WIDEVs into full consideration and designed a control for
torque distribution. This controller employed a new objective function, which considered
tire usage and the efficiency of yaw moment generation.

The SWD results based on the HIL simulation demonstrated the effectiveness of our
approach. The further analysis proved that this method gives suitable results for any
driving condition, and the comparative simulation results in DLC experiments showed
that the proposed method made quicker and fuller use of lateral force to generate yaw
moment and gained better vehicle stability.

This approach has considerable value for distributed-drive EVs and can improve
handling stability when negotiating curves. Moreover, the in-wheel motor with restrained
torque output can also be used to achieve functions that enable great handling stability.
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