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Abstract: This paper has dealt with a tracking control problem for a class of unstable reaction–
diffusion system with time delay. Iterative learning algorithms are introduced to make the infinite-
dimensional repetitive motion system track the desired trajectory. A new Lyapunov–Krasovskii
functional is constructed to deal with the time-delay system. Picewise distribution functions are
applied in this paper to perform piecewise control operations. By using Poincaré–Wirtinger inequality,
Cauchy–Schwartz inequality for integrals and Young’s inequality, the convergence of the system with
time delay using iterative learning schemes is proved. Numerical simulation results have verified
the effectiveness of the proposed method.

Keywords: reaction–diffusion system; time-delay system; tracking control; iterative learning;
Lyapunov–Krasovskii functional

1. Introduction

Time delay phenomenon is widespread in practice industrial production and various
engineering systems. The existence of time delay will affect the stability and performance
of the system. At the same time, it will greatly increase the complexity and difficulty for the
stability or convergence analysis of the system. Therefore, the study of time-delay systems
has attracted the attention from many scholars around the world. In the past few decades,
fruitful results have been achieved in theory and application of time-delay systems. For
example, the delay-dependent stability problem of time-varying delay systems has been
addressed in [1–4], neural networks with time-varying delays [5–7], stabilizability of linear
systems with time-varying input delay [8–10], finite time convergence problem of multi-
agent systems [11–14], data-driven distributed adaptive control problem [15,16], and so
on. Although there have been many results on time-delay systems, most of them focus on
the ordinary differential equation systems. However, in actual engineering, most systems
are modeled by partial differential equations. Therefore, the study of partial differential
equation systems with time delay has important application value.

In recent years, the study of partial differential equation systems with time delay
has made some remarkable achievements. The exponential stabilization for distributed
parameter systems with multi-time delays has been studied in [17,18], where the Lyapunov–
Krasovskii functional is utilized to deal with the problem of stability analysis and synthesis
for time-delay systems. The stability for fuzzy time-delay system has been addressed
in [19–22], where a Takagi–Sugeno fuzzy time-delay parabolic partial differential equation
model is employed. Adaptive stabilization for time delay partial differential equation
systems has been presented in [23–25]. The related study of the time-delay systems lays
the theoretical foundation for the development of this paper.
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In this paper, the trajectory tracking problem of the reaction–diffusion system with
time delay is discussed. The reaction–diffusion system is naturally an infinite-dimensional
system and modeled by parabolic partial differential equation. It is widely used in chem-
istry to represent the spatiotemporal dynamic changes of the chemical substance concen-
tration. Recently, the study of the trajectory tracking control has developed rapidly. For
example, distributed adaptive tracking synchronization approach has been addressed
in [26], prescribed-time tracking method in [27], front tracking method in [28], robust
tracking control in [29], and so on. So far, iterative learning algorithms have been proposed
and widely used to deal with the problem of trajectory tracking control. Since iterative
learning control requires little information about the system itself, or even completely
unknown, it has unique advantages in the tracking control of the systems with nonlinear
and unknown models. For example, the theoretical analysis of iterative learning control has
been discussed in [30–32], the iterative learning algorithm applied in robotic manipulators
has been studied in [33–35], the iterative learning control design for distributed parameter
systems has been addressed in [36–41] and for flexible structure systems has been presented
in [42–44].

However, to the authors’ best knowledge, there are no relevant results for the reaction–
diffusion system with time delay using iterative learning and piecewise control methods.
Therefore, the trajectory tracking control for the reaction–diffusion system with time delay
using iterative learning and piecewise control method will be considered in this paper.
Compared with the existing works, the contributions of this paper are as follows: (1) a
new Lyapunov–Krasovskii functional is introduced to deal with the time-delay system
(2) the picewise distribution functions are applied to perform piecewise control operations
(3) open-loop and closed-loop P-type iterative learning schemes are proposed to make
the iterative learning system track the desired trajectory. The advantages of the proposed
method is to use iterative learning approach to solve the tracking problem of the infinite-
dimension reaction–diffusion systems.

The organizational structure of the remaining parts of this paper is arranged as follows:
Section 2 presents the problem formulation and preliminaries. Section 3 addresses the
open-loop and closed-loop iterative learning control design approaches. Section 4 shows
the convergence analysis of the iterative learning system. Section 5 gives some numerical
simulation results. Section 6 provides a brief conclusion.

Notation: < denotes the set of all real numbers. A denotes a matrix, AT denotes the
transpose of A. H , L2([0, L]) is a real Hilbert space of square integrable functions
with the inner product induced norm | · |2. zk(x, t) denotes the state of the system at
the k-th iteration. (zk(x, t))t stands for the partial derivative of zk(x, t) with respect to
t, i.e., (zk(x, t))t = ∂zk(x, t)/∂t. (zk(x, t))x and (zk(x, t))xx stands for the first-order and
second-order partial derivative of zk(x, t) with respect to x, i.e., (zk(x, t))x = ∂zk(x, t)/∂x,
(zk(x, t))xx = ∂2zk(x, t)/∂x2, respectively. zk(x, t)|x=a denotes the value of zk(x, t) at the
spatial position x = a.M denotes a set of natural numbers, i.e.,M , {1, 2, · · · , m}.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

We consider a class of time-delayed reaction–diffusion systems with multiple inputs
modeld by parabolic partial differential equations (PDEs)

zt(x, t) = zxx(x, t) + αz(x, t) + βz(x, t− τ) +
m

∑
i=1

gi(x)ui(t), x ∈ (0, L) (1)

subject to the Dirichlet boundary conditions

z(0, t) = z(L, t) = 0 (2)
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and the initial value

z(x, 0) = z0(x), x ∈ [0, L] (3)

where z(·, t) , {z(x, t), x ∈ [0, L]} ∈ H denotes the state variable of the reaction–diffusion
system. α and β denote the known constants. L ∈ < denote the length of the spatial
domain. τ > 0 denotes the time delay parameter. gi(x), i ∈ M denotes the distribution of
i-th actuator. ui(t), i ∈ M denotes the control input of i-th actuator.

Remark 1. The reaction–diffusion system (1) is an infinite-dimensional system in nature. While
finite number of actuators are applied in this paper to deal with the trajectory tracking problem of
the infinite-dimensional system, which is a challenging work. It will bring a lot of difficulties to
the control design and convergence analysis compared with the finite-dimensional system. Thus, to
deal with the problem, the tracking control of reaction–diffusion system with multiple inputs and
multiple outputs (MIMO) will be discussed in this paper.

For the reaction–diffusion system, the motion performs the same operation over and
over again with high precision. This action is represented by the objective of accurately
tracking a chosen reference signal on a finite time interval. Assume the reaction–diffusion
system (1)–(3) is working in a repetitive mode over [0, T], the equation of motion can be
expressed as 

(zk(x, t))t = (zk(x, t))xx + αzk(x, t) + βzk(x, t− τ)
+∑m

i=1 gi(x)uk,i(t), x ∈ (0, L), t ∈ [0, T]
zk(0, t) = zk(L, t) = 0, t ∈ [0, T]
zk(x, 0) = zk0(x), x ∈ [0, L]

(4)

where k > 0 is a positive integer and denotes the number of iterations. zk(x, t) denotes the
state variable of the system at the k-th iteration, uk,i(t) denotes control input of i-th actuator
at the k-th iteration.

The measurement outputs in the repetitive motion system are obtained as

yk,i(t) =
∫ L

0
ci(x)zk(x, t)dx + γuk,i(t) (5)

where yk,i(t), i ∈ M denotes the measurement output of i-th sensor at the k-th iteration.
ci(x), i ∈ M denotes the distribution status of i-th sensor. γ > 0 is a scalar to be determined.

The main purpose of this paper is to design a suitable iterative learning algorithm to
make the trajectory of repeatable reaction–diffusion system (4) track the desired trajectory.
The learning process using the information from previous repetitions to improve the
control signal can be found iteratively. Hence, for the tracking control problem of the
reaction–diffusion system, a desired PDE system is presented as follows:

(zd(x, t))t = (zd(x, t))xx + αzd(x, t) + βzd(x, t− τ)
+∑m

i=1 gi(x)ud,i(t), x ∈ (0, L), t ∈ [0, T]
zd(x, t)|x=0 = zd(x, t)|x=L = 0, t ∈ [0, T]
zd(x, 0) = zd0(x), x ∈ [0, L]
yd,i(t) =

∫ L
0 ci(x)zd(x, t)dx + γud,i(t), x ∈ (0, L), t ∈ [0, T]

(6)

where zd(·, t) , {zd(x, t), x ∈ [0, L], t ∈ [0, t f ]} ∈ H denotes the state of the desired system.
ud,i(t) denotes the desired intput of i-th actuator. yd,i(t) denotes the desired output of i-th
sensor.

The distributions of actuators and sensors are represented by the piecewise functions,
the abstract structure diagram is shown in Figure 1. It can be implemented by patch-type
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actuators and sensors in engineering system. The mathematical form of the distribution
function is as follows

gi(x) = ci(x) ,
{

1 x ∈ [x̄l
i , x̄r

i ]
0 elsewhere

, i ∈ M (7)

Figure 1. Abstract structure diagram of the distributions of actuators in one-dimensional spatial
domain.

Remark 2. Based on the distributions of actuators and sensors, the spatial domain (0, L) is
divided into m subdomains via spatial domain decomposition method. It can be expressed as
[x1, x2], [x2, x3], · · · , [xm, xm+1], and should satisfy the condition 0 = x1 < x2 < · · · < xm <
xm+1 = L. The execution positions of the actuators and sensors are within the decomposed
subdomains, i.e., [x̄l

i , x̄r
i ] ∈ (xi, xi+1), i ∈ M.

2.2. Preliminaries

For the development of this study in this paper, some essential assumption and basical
lemmas are presented as follows:

Assumption 1. The initial values of the repeatable reaction–diffusion system is equal to the initial
value of the desired system for each k iteration, i.e., zk0(x) = zd0(x).

Lemma 1 (Poincaré–Wirtinger inequality [45,46]). For any scalar function z(·, t) ∈ H,
x ∈ [0, L], we have ∫ l2

l1
(z(x)− z(x̃))2dx ≤ 4φ̄1π−2

∫ l2

l1
(dz(x)/dx)2dx (8)

where x̃ ∈ [l1, l2] ⊂ [0, L], φ̄1 , max{(x̃− l1)2, (l2 − x̃)2}.

Lemma 2 (Cauchy–Schwartz Inequality for integrals). Let ψ1(x) and ψ2(x) be any two real
integrable functions in [a, b], then the following inequality holds∣∣∣∣∫ b

a
ψ1(x)ψ2(x)dx

∣∣∣∣2 ≤ ∫ b

a
|ψ1(x)|2dx

∫ b

a
|ψ2(x)|2dx (9)

Lemma 3 (Young’s inequality with ε). If a ≥ 0 and b ≥ 0 are nonnegative real numbers, then
the following inequality holds for any real number ε > 0

ab ≤ a2

2ε
+

εb2

2
(10)
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Definition 1 (λ-norm [40,47]). For a vector function f (·, t) : [0, T]→ Rn, λ-norm is defined as
follows:

|| f (·, t)||λ = sup
t∈[0,t f ]

{exp(−λt)|| f (·, t)||} (11)

where λ > 0 and || · || denotes a normal L2-norm.

3. Iterative Learning Control Design

In this section, we will present two iterative learning schemes: (1) Open-loop iterative
learning scheme that the control signal is updated using the information from the previous
iteration of the repetitive system. (2) Closed-loop iterative learning scheme that the control
signal is updated using the information from the current iteration of the repetitive sys-
tem. The objective of this paper is to make the trajectory of repeatable reaction–diffusion
system (4) can track the desired trajectory using the designed iterative learning schemes.

3.1. Open-Loop P-Type Iterative Learning Control Design

Firstly, an open-loop P-type iterative learning algorithm for the repeatable reaction–
diffusion system (4) with time delay is proposed. Define the i-th measurement output
error between the output trajectory yk,i(t) in the iterative process and the desired trajectory
yd,i(t) as

ek,i(t) , yd,i(t)− yk,i(t) (12)

The open-loop learning law is designed as follows

uk+1,i(t) = uk,i(t) + Γiek,i(t) (13)

where Γi > 0, i ∈ M are the open-loop learning gains to be determined.
Define the state error and input error at the k-th iteration as follows

z̄k(x, t) , zd(x, t)− zk(x, t) and ūk,i(t) , ud(t)− uk,i(t) (14)

Applying the mean value theorem for integrals, we have the output error at the k-th
iteration

ek,i(t) = yd,i(t)− yk,i(t)

=
∫ L

0
ci(x)(zd(x, t)− zk(x, t))dx + γ(ud,i(t)− uk,i(t))

= δxi z̄k(x̄i, t) + γūk,i(t) (15)

where x̄i ∈ [x̄l
i , x̄r

i ] and δxi , x̄r
i − x̄l

i , i ∈ M.
Then, the input error at the (k + 1)-th iteration is

ūk+1,i(t) = ud(t)− uk+1,i(t)

= ud(t)− uk,i(t)− Γiek,i(t)

= ūk,i(t)− Γiek,i(t) (16)

Substituting the Equation (15) into (16), we have

ūk+1,i(t) = ūk,i(t)− Γi(δxi z̄k(x̄i, t) + γūk,i(t))

= (1− γΓi)ūk,i(t)− Γiδxi z̄k(x̄i, t) (17)
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Differentiate z̄k(x, t) and consider the boundary condition and initial value (4), we have

(z̄k(x, t))t =(zd(x, t)− zk(x, t))t

=(z̄k(x, t))xx + αz̄k(x, t) + βz̄k(x, t− τ) +
m

∑
i=1

gi(x)ūk+1,i(t)

=(z̄k(x, t))xx + αz̄k(x, t) + βz̄k(x, t− τ) +
m

∑
i=1

gi(x)(1− γΓi)ūk,i(t)

−
m

∑
i=1

gi(x)Γiδxi z̄k(x̄i, t), x ∈ (0, L), t ∈ [0, T] (18)

subject to the Dirichlet boundary conditions and initial value

z̄k(0, t) = z̄k(L, t) = 0, z̄k(x, 0) = 0, x ∈ [0, L] (19)

3.2. Closed-Loop P-Type Iterative Learning Control Design

Then, a closed-loop P-type iterative learning algorithm for the repeatable reaction–
diffusion system (4) with time delay is proposed. The closed-loop iterative learning law is
designed as follows

uk+1,i(t) = uk,i(t) + χiek+1,i(t) (20)

where χi > 0, i ∈ M are the closed-loop learning gains to be determined.
According to the definition in (14), we have the input error at the (k + 1)-th iteration

ūk+1,i(t) = ūk,i(t)− χiek+1,i(t) (21)

and the output error at the k + 1 iteration

ek+1,i(t) = δxi z̄k+1(x̄i, t) + γūk+1,i(t) (22)

Substituting the Equation (22) into (21), we have the following expression

ūk+1,i(t) = (1 + γχi)
−1ūk,i(t)− (1 + γχi)

−1χiδxi z̄k+1(x̄i, t) (23)

Differentiate z̄k+1(x, t) and consider the boundary condition and initial value (4),
we have

(z̄k+1(x, t))t =(z̄k+1(x, t))xx + αz̄k+1(x, t) + βz̄k+1(x, t− τ)

+
m

∑
i=1

gi(x)(1 + γχi)
−1ūk,i(t)

−
m

∑
i=1

gi(x)(1 + γχi)
−1χiδxi z̄k+1(x̄i, t) (24)

subject to the Dirichlet boundary conditions and initial value

z̄k+1(0, t) = z̄k+1(L, t) = 0, z̄k+1(x, 0) = 0, x ∈ [0, L] (25)

4. Convergence Analysis
4.1. Open-Loop ILC Convergence Analysis

Theorem 1. For the repeatable reaction–diffusion system (4) with time delay, α and β are konwn
constants. Given suitable positive scalars γ, ε, p and η, if there exist appropriate open-loop iterative
learning gains Γi, i ∈ M making the following constraints safisfied:

Φi < 0, i ∈ M and 0 < (1 + ε−1)(1− γΓi)
2 < 1 (26)
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where

Φi ,


α− 0.25π2φ−1

i + p 0.25π2φ−1
i 0.5β 0

0.25π2φ−1
i −0.25π2φ−1

i −
δx2

i Γi
∆xi

0 δxi(1−γΓi)
2∆xi

0.5β 0 −p 0
0 δxi(1−γΓi)

2∆xi
0 − η

∆xi

, i ∈ M

in which ∆xi , xi+1 − xi, δxi , x̄r
i − x̄l

i , φi , max{(xi+1 − xl
i)

2, (xr
i − xi)

2}, i ∈ M. Then
the trajectory of repeatable reaction–diffusion system (4) can track the desired trajectory using the
designed iterative learning schemes (13).

Proof. Let construct a Lyapunov–Krasovskii functional cascade in terms of time delay as
follows

V(t) = V1(t) + V2(t), t ∈ [0, T] (27)

where

V1(t) = 0.5
∫ L

0
z̄2

k(x, t)dx

V2(t) = p
∫ t

t−τ

∫ L

0
z̄2

k(x, s)dxds

in which p > 0 is an unknown constant coefficient.
Differentiate V1(t) along with time t, obtaining

V̇1(t) =
∫ L

0
z̄k(x, t)(z̄k(x, t))tdx

=
∫ L

0
z̄k(x, t)(z̄k(x, t))xxdx + α

∫ L

0
z̄k(x, t)z̄k(x, t)dx

+ β
∫ L

0
z̄k(x, t)z̄k(x, t− τ)dx +

∫ L

0
z̄k(x, t)

m

∑
i=1

gi(x)(1− γΓi)ūk,i(t)dx

−
∫ L

0
z̄k(x, t)

m

∑
i=1

gi(x)Γiδxi z̄k(x̄i, t)dx (28)

Based on the integration by parts technique, Poincaré–Wirtinger inequality in Lemma 1
and boundary condition in (19), it is obtained that∫ L

0
z̄k(x, t)(z̄k(x, t))xxdx = z̄k(x, t)(z̄k(x, t))x|x=L

x=0 −
∫ L

0
(z̄k(x, t))2

xdx

≤ −0.25π2φ−1
i

∫ L

0
(z̄k(x, t)− z̄k(x̄i, t))2dx (29)

where φi , max{(xi+1 − xl
i)

2, (xr
i − xi)

2}, i ∈ M.
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Substituting the inequality (29) into (28), we have

V̇1(t) ≤− 0.25π2φ−1
i

∫ L

0
(z̄k(x, t)− z̄k(x̄i, t))2dx + α

∫ L

0
z̄2

k(x, t)dx

+ β
∫ L

0
z̄k(x, t)z̄k(x, t− τ)dx +

∫ L

0
z̄k(x, t)

m

∑
i=1

gi(x)(1− γΓi)ūk,i(t)dx

−
∫ L

0
z̄k(x, t)

m

∑
i=1

gi(x)Γiδxi z̄k(x̄i, t)dx

=− 0.25π2φ−1
i

∫ L

0
(z̄k(x, t)− z̄k(x̄i, t))2dx + α

∫ L

0
z̄2

k(x, t)dx

+ β
∫ L

0
z̄k(x, t)z̄k(x, t− τ)dx

+
m

∑
i=1

δxi(1− γΓi)z̄k(x̄i, t)ūk,i(t)−
m

∑
i=1

δx2
i Γi z̄2

k(x̄i, t) (30)

Differentiate the Lyapunov function V2(t) along with time t, we have

V̇2(t) =p
∫ L

0
z̄2

k(x, t)dx− p
∫ L

0
z̄2

k(x, t− τ)dx (31)

Substituting the time differentiation of V1(t) and V2(t) into the Lyapunov–Krasovskii
functional cascade (27), we have

V̇(t) =V̇1(t) + V̇2(t)

≤− 0.25π2φ−1
i

∫ L

0
(z̄k(x, t)− z̄k(x̄i, t))2dx + α

∫ L

0
z̄2

k(x, t)dx

+ β
∫ L

0
z̄k(x, t)z̄k(x, t− τ)dx

+
m

∑
i=1

δxi(1− γΓi)z̄k(x̄i, t)ūk,i(t)−
m

∑
i=1

δx2
i Γi z̄2

k(x̄i, t)

+ p
∫ L

0
z̄2

k(x, t)dx− p
∫ L

0
z̄2

k(x, t− τ)dx

=
m

∑
i=1

∫ xi+1

xi

ξT
k,i(x, t)Ξiξk,i(x, t)dx +

m

∑
i=1

δxi(1− γΓi)z̄k(x̄i, t)ūk,i(t) (32)

where ξk,i(x, t) , [z̄k(x, t) z̄k,i(x̄i, t) z̄k(x, t− τ)]T , i ∈ M, and

Ξi ,

 α− 0.25π2φ−1
i + p 0.25π2φ−1

i 0.5β

0.25π2φ−1
i −0.25π2φ−1

i −
δx2

i Γi
∆xi

0
0.5β 0 −p

, i ∈ M

Considering the inequality (32), we can obtain for any scalar η > 0

V̇(t)− ηū2
k,i(t) ≤

m

∑
i=1

∫ xi+1

xi

ξT
k,i(x, t)Ξiξk,i(x, t)dx

+
m

∑
i=1

δxi(1− γΓi)z̄k(x̄i, t)ūk,i(t)− ηū2
k,i(t)

≤
m

∑
i=1

∫ xi+1

xi

νT
k,i(x, t)Φiνk,i(x, t)dx (33)

where νk+1,i(x, t) , [ξk,i(x, t) ūk,i(t)]T and Φi, i ∈ M is to be determined in Theorem 2.
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If the LMI constraint Φi < 0, i ∈ M in Theorem 1 is fulfilled, it is obtained

V̇(t) ≤ ηū2
k,i(t) (34)

Integrating the inequality (34) from 0 to t and considering the initial value V(0) = 0,
we have

V(t) ≤η
∫ t

0
ū2

k,i(s)ds (35)

From the definition of V(t) in (27), the following equation holds

V(t) ≥ 0.5||z̄2
k(·, t)||22 (36)

Thus, we can obtain from (35) and (36) that

||z̄2
k(·, t)||22 ≤ 2η2

∫ t

0
ū2

k,i(s)ds (37)

Multiplying both sides of the inequality (37) by exp(−λt), we can get

exp(−λt)||z̄k(·, t)||22 ≤ exp(−λt)2η2
∫ t

0
|ūk+1,i(s)|2ds

=2η
∫ t

0
exp(−λ(t− s))|ūk+1,i(s)|2 exp(−λs)dτ

≤2η
∫ t

0
exp(−λ(t− s))ds sup

t∈[0,t f ]

{
exp(−λt)|ūk+1,i(t)|2

}
≤2η

1− exp(−λt)
λ

sup
t∈[0,t f ]

{
exp(−λt)|ūk+1,i(t)|2

}
≤2η

λ
sup

t∈[0,t f ]

{
exp(−λt)|ūk+1,i(t)|2

}
(38)

where λ > 0 is a constant.
From the definition of λ-norm in Definition 1, the inequality (38) is rewritten as

||z̄k(·, t)||2λ ≤
2η

λ
|ūk,i(t)|2λ (39)

Based on Cauchy-Schwarz inequality for integrals in Lemma 2, the following inequal-
ity holds

|z̄k,i(x̄i, t)|2 =

(∫ L

0
ci(x)ẑk(x, t)dx

)2

≤
∫ L

0
|ci(x)|2dx

∫ L

0
z̄2

k(x, t)dx =
1

δxi
||z̄k(·, t)||22 (40)

From the derivation of ūk+1,i(t) in (17) and the λ-norm in Definition 1, we have

|ūk+1,i(t)|2λ ≤(1 + ε−1)(1− γΓi)
2|ūk,i(t)|2λ + (1 + ε)(Γiδxi)

2|z̄k(x̄i, t)|2λ

≤(1 + ε−1)(1− γΓi)
2|ūk,i(t)|2λ + (1 + ε)(Γiδxi)

2 2η2

λ
|ūk+1,i(t)|2λ (41)

Then, we can obtain from (41)

|ūk+1,i(t)|2λ ≤vi|ūk,i(t)|2λ (42)
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where vi =
(1+ε−1)(1−γΓi)

2

1−(1+ε)(Γiδxi)2 2η2
λ

.

If λ is large enouth, then lim
λ→∞

2η2

λ = 0. From the constraint in Theorem 1 that

(1 + ε−1)(1− γΓi)
2 < 1, it is obtained 0 < vi < 1. It is easily derived from (42) that

lim
k→∞
|ūk,i(t)|λ = 0 (43)

Meanwhile, from the deravation of (39), we can get

lim
k→∞
||z̄k(·, t)||λ = 0 and lim

k→∞
|ek,i(t)|λ = 0 (44)

Based on the definition of λ-norm, it can be derived from (44) that

lim
k→∞

z̄k(x, t) = 0 and lim
k→∞

ek,i(t) = 0 (45)

Hence, the trajectory of repeatable reaction–diffusion system (4) can track the desired
trajectory using the designed open-loop iterative learning schemes (13). The proof is
completed.

4.2. Closed-Loop ILC Convergence Analysis

Theorem 2. For the repeatable reaction–diffusion system (4) with time delay, α and β are konwn
constants. Given suitable positive scalars γ, ε, q and ζ, if there exist appropriate parameter
µi, i ∈ M making the following constraints safisfied:

Ωi < 0, i ∈ M and 0 < (1 + ε−1)µ2
i < 1 (46)

where

Ωi ,


α− 0.25π2φ−1

i + q 0.25π2φ−1
i 0.5β 0

0.25π2φ−1
i −0.25π2φ−1

i −
δx2

i
γ∆xi

(1− µi) 0 δxiµi
2∆xi

0.5β 0 −q 0
0 δxiµi

2∆xi
0 − ζ

∆xi

, i ∈ M

and the closed-loop iterative learning gain is

χi =
1
γ
(

1
µi
− 1), i ∈ M

Then the trajectory of repeatable reaction–diffusion system (4) can track the desired trajectory
using the designed closed-loop iterative learning schemes (20).

Proof. Let construct a Lyapunov–Krasovskii functional cascade in terms of time delay as
follows

V(t) = V3(t) + V4(t), t ∈ [0, T] (47)

where

V3(t) = 0.5
∫ L

0
z̄2

k+1(x, t)dx

V4(t) = q
∫ t

t−τ

∫ L

0
z̄2

k+1(x, s)dxds

where q > 0 is an unknown constant coefficient.
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Differentiate V3(t) along with time t and consider the Poincaré–Wirtinger inequality,
it is obtained

V̇3(t) =
∫ L

0
z̄k+1(x, t)(z̄k+1(x, t))tdx

≤−
∫ L

0
(z̄k+1(x, t))2

xdx + α
∫ L

0
z̄2

k+1(x, t)dx + β
∫ L

0
z̄k+1(x, t)z̄k+1(x, t− τ)dx

+
∫ L

0
z̄k+1(x, t)

m

∑
i=1

gi(x)dx(1 + γχi)
−1ūk,i(t)

−
∫ L

0
z̄k+1(x, t)

m

∑
i=1

gi(x)dx(1 + γχi)
−1χiδxi z̄k+1(x̄i, t)

≤− 0.25π2φ−1
i

∫ L

0
(z̄k+1(x, t)− z̄k+1(x̄i, t))2dx + α

∫ L

0
z̄2

k+1(x, t)dx

+ β
∫ L

0
z̄k+1(x, t)z̄k+1(x, t− τ)dx +

m

∑
i=1

δxi(1 + γχi)
−1z̄k+1(x̄i, t)ūk,i(t)

−
m

∑
i=1

(1 + γχi)
−1χiδx2

i z̄2
k+1(x̄i, t) (48)

Similar to the derivation of (31), the time differentiation of Lyapunov–Krasovskii
functional cascade V(t) is rewritten as

V̇(t) =V̇3(t) + V̇4(t)

≤
m

∑
i=1

∫ xi+1

xi

ξT
k+1,i(x, t)Ψiξk+1,i(x, t)dx +

m

∑
i=1

δxi(1 + γχi)
−1z̄k+1(x̄i, t)ūk,i(t) (49)

where ξk+1,i(x, t) , [z̄k+1(x, t) z̄k+1,i(x̄i, t) z̄k+1(x, t− τ)]T , i ∈ M, and

Ψi ,

 α− 0.25π2φ−1
i + q 0.25π2φ−1

i 0.5β

0.25π2φ−1
i −0.25π2φ−1

i −
χiδx2

i
(1+γχi)∆xi

0
0.5β 0 −q

, i ∈ M

Similar to the derivation of (33), it is obtained that

V̇(t)− ζū2
k,i(t) ≤

m

∑
i=1

∫ xi+1

xi

ϑT
k+1,i(x, t)Ωiϑk+1,i(x, t)dx (50)

where ϑk+1,i(x, t) , [ξk+1,i(x, t) ūk,i(t)]T and Ωi, i ∈ M is to be determined in Theorem 2.
If the LMI constraint Ωi < 0, i ∈ M in Theorem 2 is fulfilled, similar to the derivation

of (34)–(36), it is obtained

||z̄2
k+1(·, t)||22 ≤ 2ζ

∫ t

0
ū2

k,i(s)ds (51)

Multiplying both sides of the inequality (51) by exp(−λt), we can get

||z̄k+1(·, t)||2λ ≤
2ζ

λ
|ūk,i(t)|2λ (52)
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Considering the derivation of uk+1,i(t) in (23) and applying Young’s inequality in
Lemma 3, we have

|ūk+1,i(t)|2λ ≤(1 + ε−1)[(1 + γχi)
−1]2|ūk,i(t)|2λ

+ (1 + ε)[(1 + γχi)
−1χiδxi)]

2|z̄k+1(x̄i, t)|2λ
≤(1 + ε−1)[(1 + γχi)

−1]2|ūk,i(t)|2λ

+ (1 + ε)[(1 + γχi)
−1χiδxi]

2 2ζ

λ
|ūk+1,i(t)|2λ (53)

The inequality (53) can be rewritten as

|ūk+1,i(t)|2λ ≤ v̂iūk,i(t)|2λ (54)

where v̂i =
(1+ε−1)(1+γχi)

−2

1−(1+ε)[(1+γχi)−1χiδxi ]2
2ζ
λ

.

If λ is large enouth, then lim
λ→∞

2ζ
λ = 0. From the constraint in Theorem 2 that 0 <

(1 + ε−1)(1 + γχi)
−2 < 1, then 0 < v̂i < 1. It is easily derived from (54) that

lim
k→∞
|ūk,i(t)|λ = 0 (55)

Then, it can be derived from (55) based on the definition of λ-norm

lim
k→∞

z̄k(x, t) = 0 and lim
k→∞

ek,i(t) = 0 (56)

Hence, the trajectory of the repeatable reaction–diffusion system (4) can track the
desired trajectory using the designed closed-loop iterative learning schemes (20). The proof
is completed.

5. Numerical Simulation

In this section, we will present some numerical simulation experiments to verify the
effectiveness of the proposed method. Through given some scalar parameters, the con-
troller gains of the open-loop and closed-loop ILC can be obtained from Theorems 1 and 2.
Bringing the ILC controllers into the reaction–diffusion system and operating k iterations,
the trajectory of the iterative system will track the desired trajectory. Next, the simula-
tion results of the open-loop and closed-loop ILC approaches will be addressed below,
respectively.

5.1. Open-Loop ILC Simulation

Firstly, the numerical simulation for the reaction–diffusion system (4) with time delay
using open-loop iterative learning schemes (13) is presneted. The parameter settings are
shown in Table 1 and there are two actuators are acting at [0.1 L, 0.4 L] and [0.6 L, 0.9 L].
By solving the LMI constraint (26) via Matlab software, we can obtain Γ1 = Γ2 = 42.1705.
Set ρi , (1 + ε−1)(1− γΓi)

2, it can be calculated that ρ1 = ρ2 = 0.6688, which implies
0 < ρi < 1. Assume the desired outs as yd,1(t) = 0.5 cos(10πt), yd,2(t) = t cos(10πt). Then,
the numerical simulation results for the reaction–diffusion system (4) with time delay using
open-loop iterative learning schemes (13) are presented in the following graphics.
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Table 1. Parameter Settings.

Symbol Explanation Value

L Spatial Length 1
T Finite Time Interval 0.4
α Model Parameter 4
β Delay-Model Parameter 1
τ Time Delay Parameter 0.1
ε Scalar Parameter 1
γ Coefficient Parameter 0.01
p Lyapunov Parameter 0.6272
η Scalar Parameter 0.5824
ts Sampling Time 0.001s

Figure 2 shows the output trajectories of yk,i(t) in the iterative learning process marked
with blue solid lines, and the desired output trajectories yd,i(t) marked with red dotted
lines. Figure 3 shows the trajectory of zk(x, t) in the iterative learning process at several
specified iterations. Figure 4 shows the trajectories of rms inputs |uk,i(t)| and rms output
errors |ek,i(t)| in the iterative learning process. It can be seen from Figures 2 and 3 that
along with the number of iterations increases, the outputs yk,i(t) will gradually track the
desired trajectories yd,i(t), and from Figure 4 that the output errors ek,i(t) will tend to
zero and the inputs uk,i(t) will remain unchanged. Therefore, we can conclude that the
designed open-loop iterative learning schemes (13) can make the iterative process of the
reaction–diffusion system (4) with time delay convergent.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t(s)

y
k
,1
(t
)

 

 

k=4 k=6 k=8 k=12 k=20 y
d,1

(t)

(a) Trajectory of output yk,1(t) at the specified k-th iteration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.4

−0.2

0

0.2

0.4

0.6

t(s)

y
k
,2
(t
)

 

 

k=4 k=6 k=8 k=12 k=20 y
d,2

(t)

(b) Trajectory of output yk,2(t) at the specified k-th iteration

Figure 2. Trajectories of outputs yk,i(t) at the specified k-th iteration using open-loop iterative
learning schemes (13).
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Figure 3. Trajectories of zk(x, t) at several specified iterations using open-loop iterative learning
schemes (13).
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Figure 4. Trajectories of inputs |uk,i(t)| and output errors |ek,i(t)| using open-loop iterative learning
schemes (13).

5.2. Closed-Loop ILC Simulation

Then, the numerical simulation for the reaction–diffusion system (4) with time delay
using closed-loop iterative learning schemes (20) is presneted. The parameter settings
are shown in Table 1. By solving the LMI constraint (46) via Matlab software, we can
obtain χ1 = χ2 = 88.1587. Set $i = (1 + ε−1)µ2

i , it can be calculated that µ1 = µ2 = 0.5135,
ρ1 = ρ2 = 0.5650, which implies 0 < $i < 1. Then, the numerical simulation results
for the reaction–diffusion system (4) with time delay using closed-loop iterative learning
schemes (20) are presented in the following graphics.

Figure 5 shows the output trajectories of yk,i(t) in the iterative learning process and
the desired trajectories yd,i(t), and Figure 6 shows the trajectories of rms inputs |uk,i(t)|
and rms output errors |ek,i(t)| in the iterative learning process. It can be seen from Figure 5
that along with the number of iterations increases, the outputs yk,i(t) will gradually track
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the desired trajectories yd,i(t), and from Figure 6 that the output errors ek,i(t) will tend to
zero and the inputs uk,i(t) will remain unchanged. Therefore, we can conclude that the
designed closed-loop iterative learning schemes (20) can make the iterative process of the
reaction–diffusion system (4) with time delay convergent. It can be easily obtained from
Figures 4 and 6 that the reaction–diffusion system (4) using closed-loop iterative learning
approach will converge faster than the open-loop method.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t(s)

y
k
,1
(t
)

 

 

k=2 k=3 k=4 k=5 k=12 y
d,1

(t)

(a) Trajectories of output yk,1(t) at the specified k-th iteration
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Figure 5. Trajectories of outputs yk,i(t) at the specified k-th iteration using closed-loop iterative
learning schemes (20).
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Figure 6. Trajectories of inputs |uk,i(t)| and output errors |ek,i(t)| using closed-loop iterative learning
schemes (20).
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6. Conclusions

This paper has presented two iterative learning schemes to deal with the trajectory
tracking problem of the reaction–diffusion system. For open-loop P-type iterative learning
scheme, the control signal is updated using the information from the previous iteration of
the repeatable system, and for closed-loop P-type iterative learning scheme, the control
signal is updated using the information from the current iteration. A new Lyapunov–
Krasovskii functional is constructed to solve the time delay problem in the iterative learning
process. Two theorems satisfying the sufficient conditions are provided for the convergence
of the iterative learning process are proposed. Numerical simulation experiments for the
open-loop and closed-loop iterative learning schemes are presented, respectively. Through
numerical simulation experiments, it can be concluded that the designed iterative learning
schemes can make the iterative process of the reaction–diffusion system (4) with time delay
convergent. In future work, robust iterative learning control for reaction–diffusion system
with input and output constraints will be studied.
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