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Abstract: Heavy-haul trains have the characteristics of large volume, long formation, and complex
line conditions, which increase the driving difficulty of drivers and can easily cause safety problems.
In order to improve the safety and efficiency of heavy-haul railways, the train control mode urgently
needs to be developed towards the direction of automatic driving. In this paper, we take the
Shuohuang Railway as the research background and analyze the train operation data of SS4G
locomotives. We find that the proportion of operation data under different working conditions is
seriously out of balance. Aiming at this unbalanced characteristic, we introduce the classification
method in the field of machine learning and design an intelligent driving algorithm for heavy-haul
trains. Specifically, we extract the data by random forest algorithm and compare the classification
performance of C4.5 and CART algorithms. We then select the CART algorithm as the base classifier of
the AdaBoost algorithm to build the model of the automatic air brake. For the purpose of heightening
the precision of the model, we optimize the AdaBoost algorithm by improving the generation of
training subsets and the weight of voting. The numerical results certify the effectiveness of our
proposed approach.

Keywords: AdaBoost algorithm; CART classifier; heavy-haul trains

1. Introduction

Heavy-haul railways have the characteristics of large capacity, high efficiency, low
energy consumption, and low transportation costs and are widely valued by countries all
over the world. They have been recognized internationally as the main direction of the
development of railway bulk cargo transportation. For China, the United States, Canada,
and other continental countries with vast territory, rich products, and uneven distribu-
tion of resources, the development of heavy-haul railways will help to rapidly increase
transportation capacity, alleviate transportation bottlenecks, and improve transportation
economic benefits.

Shuohuang Railway Line is a typical heavy-haul railway line, which is an important
coal transportation line in the Chinese West Coal East Transport Project. Like other heavy-
haul railway lines, although its driving plan is fixed, the line conditions are very complex,
e.g., there are many long and steep downhills along the railway line. A driver of a heavy-
haul train usually has to follow a predefined driving curve, which leads to great pressure
on the drivers [1–3].

Automatic train operation (ATO) has been widely used in urban rail transit systems,
which realizes the complete automation of the work performed by train drivers and the
highly centralized control of trains. Research shows that if the ATO system were to be
applied to heavy-haul trains, the workload of the drivers would be greatly reduced, and the
safety and operation efficiency would be greatly increased [4].
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At present, the research on the automatic driving of urban rail transit trains is very
mature, and the relevant algorithms of train automatic control include PID classic control
theory, genetic algorithm, fuzzy control theory, machine learning, and so on. Gruber and
Bayoumi [5] achieve curve tracking with the goal of minimizing the coupling force caused
by disturbances such as slope. Hou [6] introduced the TILC method to the automatic
stopping of the train when entering the station and used the error of the terminal stop
position during the previous braking process to update the current control curve. The
authors of [7] introduce GA to generate optimal idle control based on punctuality, comfort,
and energy consumption.

Furthermore, many studies have introduced fuzzy control into the control of freight
trains. Bonissone et al. synthesized a fuzzy controller to track the speed curve while driving
smoothly within the speed limit and used genetic algorithms to adjust the parameters of
the fuzzy controller (scaling factor and membership function) to optimize the performance
of the fuzzy controller [8]. Sekine [9] uses a fuzzy controller to control the speed of coal
trains during unloading operations to keep it constant. The literature shows that fuzzy
controllers can be successfully applied to specific control tasks.

Based on the historical data of train stops, Bai [10] modeled the latest status of train
braking equipment and introduced fuzzy neural networks to realize intelligent control of
freight train stops. Reinforced learning, as a variant of the Markov decision process [11],
also shows good characteristics in train control. Based on the channel characteristics of
the CBTC communication system and real-time train position information, Zhu Li uses
deep reinforcement learning to achieve joint optimization of communication performance
and a train control strategy [12]; based on transponder positioning information, Chen De-
wang et al. modeled train control into multiple models. In the stage of the decision-making
process, the reciprocal of the parking error is set as the return value, and reinforcement
learning is introduced to solve the maximum return function [13].

Yet, the research on autonomous driving of heavy-haul trains is relatively rare. Be-
cause heavy-haul trains do not have linear time-varying braking and traction systems, they
cannot be described by PID control systems. At the same time, due to the flexible formation
of heavy-haul trains, it is not possible to generalize the application of fuzzy control models.
Machine learning has strong adaptability and a nonlinear processing ability and can learn
characteristics of train operation data at different marshaling [12,14].

Thus, it becomes possible to apply machine learning in the intelligent driving of heavy-
haul trains. However, there are still some problems to overcome, such as the possibility
of being trapped in a local optimal solution, slow convergence speed, and ease of overfit.
Therefore, this paper uses classification algorithms in data mining and machine learning to
build a model of an intelligent heavy-haul train air braking system and to predict different
driving strategies.

The main contributions of this paper are as follows:

• A random forest algorithm is introduced to reduce the dimensionality of the charac-
teristics of the heavy-haul train operation data.

• An AdaBoost-based algorithm is designed to realize the intelligent control of the air
brake of the heavy-haul trains.

• We optimize the AdaBoost algorithm from two aspects: the extraction method of the
training sample subset and the voting weight. Finally, the highly precise control of
the air brake and the intelligent driving of heavy-haul trains are realized.

The rest of the paper is organized as follows. Section 2 introduces the main procedures
of the machine-learning-based heavy-haul train intelligent driving method. In Section 3,
we introduce the work of data pre-processing. Then, we use the random forest algorithm
to extract features in Section 4. In Section 5, we propose the AdaBoost algorithm to build
the heavy-haul train air braking model. Then, we present the numerical results in Section 6
and finally make a conclusion in Section 7.
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2. Main Procedures of the Machine-Learning-Based Heavy-Haul Trains Intelligent
Driving Method

Research shows that air braking mainly refers to several different amounts of decom-
pression to control trains [15]; this paper combines machine learning with classification
algorithms in the heavy-haul train air braking intelligent control system. Machine learning
processes generally include the following steps.

2.1. Modeling

First, the problems studied in this paper are turned into the mathematical model of
machine learning. The intelligent control of heavy-haul trains can be divided into two parts:
intelligent control of air braking and intelligent control of electric braking. The pressure
values applied to the air brake are discrete; thus, this control process could be defined as a
classification problem in machine learning.

2.2. Data Collection

In this paper, the relevant data on the route are collected from Shenchi South Station
to Suning North Station of the Shuohuang Railway, including information on the train
operation characteristics and line features.

2.3. Data Pre-Processing

In this step, we delete incorrect data from the collected data to make it easy to be
calculated. In addition, in order to better supervise learning, the feature labels not collected
need to be supplemented.

2.4. Feature Extraction

In order to improve the algorithmic performance, it needs to select the correct features
for training and learning, and this paper completes feature extraction engineering by
building, extracting, and selecting features in the original data set, which is a basic step of
mining data in the field of machine learning. A total of 17 important features are selected
in this paper.

2.5. Model Training and Optimization

This paper uses the classification learning algorithm to train the intelligent control
model of heavy-haul trains. Firstly, we use the AdaBoost algorithm to learn the charac-
teristic space of the train operating data, and then we adjust the data quantity and the
parameters used in the algorithm, so as to optimize the model, and finally encapsulate the
model. The processes are shown in Figure 1.
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Figure 1. A flowchart for intelligent driving of heavy-haul trains based on machine learning.

3. Data Pre-Processing

The data collected from the heavy-haul trains contain errors and anomaly points,
as well as random noise during acquisition, which can adversely affect the results. The
static and dynamic data collected are not perfect enough, and the missing data must be
supplemented. Therefore, the initial collected data need to be pre-processed, including
data standardization and data complementation.

3.1. Data Analysis

Analysis of the initial data shows the collected information about the trains in Table 1.
This paper collected a total of 35 items of static line information, such as line slope, speed
limit, and other information.

Table 1. Collected information.

Group Information Train Information Driving Information

Locomotive type Travel speed Zero information
Train weight Train speed limit Brake gear
Train length Tube pressure Traction gear

... ... ...

3.2. Data Complement

The cycle of data collection by on-board equipment is not uniquely determined but is
triggered by events such as the different operating strategies or the different operating
conditions. Thus, data omissions or loss may occur during the processes of collecting data,
and they can be matched by asking for the average value of the location context data [16,17].
However, in practical applications, air brake decompression, the indicator closely related to
air braking, is not collected and cannot be complemented by the above method. Therefore,
we design a special algorithm to supplement it.

By studying the air braking system of heavy-haul trains, it can be known that when
air braking is applied, the train tube will drain air. When the air brake is released, the
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air will slowly enter the train’s tube. Therefore, by calculating the pressure difference
between the train cylinder in full air and in applied air brake, we will obtain the air brake
decompression [18]. The algorithm is shown in Algorithm 1.

Algorithm 1 An air brake decompression calculation method

1: set the threshold value Pd for the presser drop of the train tube after the air brake is
applied, threshold Pi of train pipe pressure rises after the air brake is released, and the
pressure change threshold Pa after the train pipe pressure is stabilized

2: calculate the difference ∆P = Ps − Ps−1 between the train tube pressure in this period
and the adjacent period, compare ∆P with Pd

3: if −∆P > Pd then
4: the train begins to apply air brake, record the time Ti, turn to step 11
5: else
6: no air brake is applied and go directly to the next judgment cycle
7: end if
8: continue to calculate the pressure difference ∆P between adjacent periodic pipes to

determine the relationship between ∆P and Pa
9: if |∆P| < Pa then

10: the processes of air brake application are deemed to be over, record the time Tf
11: calculate the air brake decompression Pe = Pi − Pf , turn to step 17
12: end if
13: continue to calculate the pressure difference between adjacent periodic pipes ∆P to

determine the relationship between ∆P and Pi
14: if ∆P > Pi then
15: start to release the air brake, record the time Te
16: confirm that Ti to Te need to apply air brake, and mark Pe as this air brake decom-

pression amount of the sample data for this period
17: end if

3.3. Data Normalization

We collect a wide range of data, whose scales are at different levels, which will lead
to disunity calculation, so the data need to be standardized at the same level. Then, the
training speed and accuracy of the model will be improved.

We select the Z-score normalization algorithm, and the formula is shown in Formula (1):

x′ =
x− µ

σ
(1)

where µ is the mean of the sample data, and σ is the standard deviation of the sample data.

3.4. Analysis of Unbalanced Data

Data unbalance refers to the large difference between the number of samples of one
type and other types in the entire sample set. Samples can then be divided into majority and
minority categories based on the sample size. Typically, when the ratio of the number of
minority classes to majority classes is less than 1:2, this means that the data are unbalanced
for the sample set [19].

Figure 2 shows a map of the air brake applied by an expert driver between Shenchi
South Station and Suning North Station. As can be seen from the figure, air braking is
not required all the time while the train is operating, and it is needed only in a few cases,
because air braking is applied only when the train speed cannot reduce to the speed limit
by electric braking on a long downhill slope. In all the data, the ratio of samples with
air brake output to samples without air brake output is 1:6, where the ratio of samples
with 80 kPa of decompression to samples without air brake output is 1:15, so the data are
seriously unbalanced.
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For the classification of unbalanced datasets, in order to minimize the rate of misclas-
sifying, general classifiers tend to focus on the classification effect of majority classes, while
ignoring the classification effect of minority classes [20].

In summary, although the need to apply air braking falls into a minority category,
its failure can have serious safety problems, such as speeding, decoupling, and other
major accidents, which will result in huge losses. Therefore, in view of the imbalance of
train operation data, this paper designs a classifier that can highly and accurately identify
majority and minority classes and realize the intelligent driving of heavy-haul trains.
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Figure 2. The air brake output by the expert driver.

4. Feature Extraction of Heavy-Haul Train Operation Data Based on Random Forest

The relevant data collected by the on-board devices contain several types of informa-
tion; on the one hand, these multi-dimensional features improve the performance of the
classifier, but on the other hand, they also increase the complexity of the algorithm, and it is
possible to cross the critical point and thus deteriorate the performance of the classifier [21].
Therefore, this paper uses the random forest algorithm to extract the characteristics of the
train operation data and selects the characteristics that affect the air braking of the train
more substantially, so as to avoid the effect of data redundancy.

4.1. Random Forest Algorithm

The random forest algorithm generates a new set of samples by randomly taking
K samples in the original sample set and then uses these new sample sets to generate K
classification trees, which is used to determine the final classification decision by synthesiz-
ing the classification results of the K classification trees. This random use of features and
samples allows the role of each feature to be evaluated when training each tree, resulting
in better classifier performance after synthesis [22]. The processes of establishing a random
forest are shown in Figure 3.
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Figure 3. The process of establishing a random forest.

4.2. Air Braking Modeling of Heavy-Haul Trains Based on Random Forests

We first set two types of labels, that is, for the need to apply air braking and for no
need to apply air braking. Then, we use the collected train operation information and
line information as a training feature set and use the random forest algorithm to build a
better performance classifier, so as to obtain the 10th degree of ability of each indicator.
The specific processes are shown as follows:

1. Data pre-processing.
According to the method described in Section 3, we first complement and normalize
the data and then combine the train operation data with the static line information.

2. Randomly extract sample sets.
In this step, we randomly select 70 data sets from Shenchi South Station to Suning
North Station on the Shuohuang Railway as the training sample set and randomly
extract 2/3 of the data from the entire sample set each time through replacement.
Finally, we extract a total of 100 new data sets as {S1, S2, S3, · · ·, S100}.

3. Randomly extract feature sets.
We use the above 100 new data sets to build 100 decision trees to form a random
forest. Each decision tree contains five layers, and the random forest does not need
to be pruned. Because the random extraction of sample sets and feature sets has
been guaranteed randomness, the resulting random forest will not appear over-fitting.
Each tree has 15 non-leaf nodes, that is, 1500 nodes need to be branched, so as to
extract 1500 random feature sets as the basis for node branching.
The collected data set contain 35 indicators, 1/3 of which is selected as the reference
feature of each node, that is, the number of features at each node is 11. Eleven
features are randomly selected from the entire feature set as a new feature set as
{Xi,1, Xi,2, Xi,3, · · ·, Xi,11}, and 1500 sets are extracted to form the training feature set.

4. Build a decision tree.
In this step, we use the process described in Section 5 to construct a CART decision
tree. Each decision tree uses the data sets obtained in step 2. The feature set considered
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at each node in the decision tree is selected in turn from step 3 to construct 100 CART
decision trees.

5. Build a random forest.
Finally, we use the 100 decision trees constructed above to combine a random forest
through voting.

When the random forest construction is completed, we will quantify the contribution
value of the feature by using the Gini coefficient, and if the feature Cj is used for the
division of a node in the decision tree, we then calculate the change value of the Gini
coefficient before and after the split at the node. Finally, we add the change value of the
Gini coefficient of all nodes that use the feature for division as the contribution value of the
feature. The expression of the Gini coefficient is shown in Formula (2).

Gm = ∑|K|
k=1 ∑k′ 6=k pmk pmk′ = 1−∑|K|

k=1 p2
mk (2)

where pmk is the proportion of K category at node m, K = 2.
On this basis, the final contribution evaluation value can be obtained, and the processes

are as follows:

1. Firstly, we calculate the contribution value of feature Cj at the node, that is, the change
of Gini impurity before and after the node branch:

SIGGini
jm = Gm − Gl − Gr (3)

where Gl and Gr denote the Gini impurity of the nodes corresponding to the left and
right subtrees of node m after branching.

2. Secondly, if feature Cj is extracted during the training process of decision tree i, then
we can compute the importance of Cj in the i− th tree:

SIGGini
ij = ∑m∈M SIGGini

jm (4)

where M refers to the set of nodes where feature Cj appears in decision tree i.
3. When there are n trees in the random forest, we can calculate the contribution value

of feature Cj in the random forest:

SIGGini
j = ∑n

i=1 SIGGini
ij (5)

4. Finally, we normalize the obtained contribution value to obtain the final contribution
evaluation value:

SIGj =
SIGGini

j

∑34
i=1 SIGGini

i

(6)

After obtaining the quantified value of each feature contribution and sorting from
largest to smallest, we select the features with the contribution value in the top 1/3 as the
feature set for the final model training, and the first 17 are selected as candidate features.
When the subsequent model selects features, the feature with the smallest contribution
value is sequentially deleted from the candidate feature set using the backward elimination
method for training until the optimal model is obtained [23].

4.3. Analysis of the Feature Extraction Results

In this paper, the number of decision trees is 100, and the number of decision trees is
constantly adjusted to make the performance of random forests better. The relationship
between the number of different decision trees and random forest performance is shown
in Table 2.
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Table 2. The relationship between the number of decision trees and the performance of ran-
dom forests.

Tree Number Accuracy Rate Recall Rate

100 0.890 0.784
150 0.904 0.802
200 0.916 0.818
250 0.926 0.818
300 0.926 0.815
350 0.925 0.815

As can be known from Table 2, when the number of decision trees is 250, the per-
formance requirements of feature extraction are met, so we select the top 17 features as
an alternative feature set when the number of decision trees is 250. Furthermore, as can
be known from Figure 4, the 17 characteristics such as slope, speed, and target distance
have a great influence on whether it is necessary to output air braking. Thus, we use the
extracted 17 features as a feature set and construct a random forest again. The quantified
performance of the random forest is shown in Table 3.

Table 3. The relationship between the number of decision trees and random forest performance after
feature extraction.

Tree Number Accuracy Rate Recall Rate

100 0.923 0.829
150 0.938 0.839
200 0.943 0.848
250 0.944 0.850
300 0.939 0.847
350 0.948 0.850

As can be found in Table 3, the classification effect of the random forest classifier is
obviously improved after feature extraction, but the prediction effect is still far from good
enough, so the AdaBoost algorithm is introduced to further optimize.
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MA distance
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Speed limit -speed

Speed limit

Train weight

Tuning radius

Distance to next speed limit 

section

Next section speed limit
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pressure value
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Figure 4. Contribution value of the features.
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5. AdaBoost-Based Intelligent Control Algorithm for Air Braking on Heavy-Haul Trains
5.1. AdaBoost Algorithm

Heavy-haul trains have strong inertia due to their large mass, so air brakes are used
instead of electric brakes as the main braking force to ensure a short braking distance.
Through the preliminary analysis of data, the decompression of the air brake is mainly
concentrated among 40 kPa, 60 kPa, 80 kPa, 100 kPa, 120 kPa, and 140 kPa. In this paper,
the intelligent control of the air brake of the heavy-haul trains is modeled as a multi-class
problem. The different gears that do not need to apply the air brake and those that apply
the air brake are used as class labels of the classifier, and the model outputs the operation
strategies in different states through the extracted feature set to realize the intelligent
control of the train air brake.

However, the trains do not need to apply air brakes most of the time during operation.
When the trains are on a long downhill slope, the electric brake alone cannot control the
train speed below the speed limit. At this time, the driver will consider applying the air
brake. Such characteristics mean that the Shuohuang Railway operating data presents
a typical imbalance with respect to the air brake output, among which the category of
applying the air brake belongs to a minority category.

For such an unbalanced data set, the traditional classifier algorithm cannot achieve
high-precision prediction of minority classes. Just as the random forest algorithm used
in Section 4 has a poor prediction effect, the scene that needs to output the air brake is
misjudged as not needing to be applied, posing a major threat to the safe operation of
trains. The AdaBoost algorithm has a high degree of recognition for unbalanced data sets.
This paper introduces the AdaBoost algorithm into the intelligent control of the air brake
of heavy-haul trains. AdaBoost is a kind of ensemble boosting algorithm, which constructs
a strong classifier through several weak classifiers. The weak classifier here means that
the performance of the classifier is better than the result of random prediction, that is,
the accuracy of the classifier is more than 50%. The AdaBoost algorithm allows the weak
classifier to continue to expand until the error rate reaches a certain set value.

AdaBoost is an iterative algorithm that first samples the training sample set by random
sampling and then obtains different subsets. Then, it uses these different subsets to train
different base classifiers and finally combines the base classifiers to obtain the final strong
classifier through voting.

Since the samples are typically unbalanced data sets, and traditional classifier al-
gorithms can only implement high-precision predictions for majority classes and ignore
minority classes, an AdaBoost algorithm is adopted to solve this problem effectively.

AdaBoost needs to solve the problem through continuous iteration. The first step of
the algorithm is random sampling. In the second step, we train the base classifier with each
subset obtained from the samples. The third step is to obtain a strong classifier based on the
weight combination of these base classifiers [24]. The AdaBoost algorithm flow is shown
in Figure 5. The base classifier selected in this paper is the decision tree algorithm, which
is a tree structure with multiple nodes, among which each internal node represents a test
on a property, each branch represents a test output, each leaf node represents a category,
and the last leaf node represents the final result. The classification results are obtained by
training the data in the sample space and judging their characteristics.

The key issue of applying the decision tree algorithm is which feature in the data set
plays a decisive role in node classification, that is, the selection of features at each non-leaf
node. Therefore, each feature must be evaluated. This process is called the feature selection
process of the algorithm. According to the difference of feature selection, commonly used
decision tree algorithms include the C4.5 algorithm and CART algorithm. This paper
applies these two algorithms to the study of air brake selection strategies for heavy-haul
trains and selects a more suitable algorithm through comparison. The comparison and
analysis of simulation results between C4.5 and CART are introduced in Section 5.2.
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Figure 5. A flow of the AdaBoost algorithm.

5.2. Comparison and Analysis of Simulation Results between C4.5 and CART Algorithms

We use the C4.5 and CART algorithms to model the decompression amount applied to
the air brake during the operation of the heavy-haul trains to realize its intelligent control.
The air brake decompression volume is concentrated among 0 kPa, 40 kPa, 60 kPa, 80 kPa,
100 kPa, 120 kPa, and 140 kPa. Therefore, this article regards these seven category labels as
the final air brake pressure reduction output decision Y. In addition, the 17 key features
extracted in Section 4 are selected as the feature set of the model {X1, X2, · · ·X17}. In this
way, an 18-dimensional array {X1, X2, · · ·X17, Y} composed of feature sets and class labels
is obtained, 2/3 of the data in the array is randomly selected as the training sample set,
and the remaining data are used as the test sample set to build two decision tree models.

The number of seven categories in the data set is shown in Table 4. When randomly
sampling the training sample set and the test sample set, randomly sample 2/3 of the data
of each category as the training sample set to ensure the number of minority samples.

Table 4. Number of samples for each category in the data set.

Category Number Category Number

0 kPa 1,606,540 40 kPa 30,028
60 kPa 63,815 80 kPa 95,716
100 kPa 43,166 120 kPa 22,521
140 kPa 15,014 - -

The C4.5 algorithm model and the CART algorithm model are obtained through the
training of the training sample set for the two decision numbers, and the two models are
used to predict the test data set. The verification results are for different air brake output
prediction accuracy comparisons. As shown in Figure 6, it can be seen that the accuracy of
the two algorithms has a small difference. Due to the imbalance of the data, this indicator
cannot fully evaluate the accuracy of the model.
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Figure 6. Prediction precision of C4.5 and CART algorithms.

The predicted recall rates of the two algorithms for different air brake outputs are
shown in Figure 7. From the figure, it can be seen that the recall rate of the CART algorithm
is significantly higher than that of the C4.5 algorithm in the prediction of the need to output
the air brake. That is, when air brakes need to be applied, CART’s predictive performance
is better.
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Figure 7. Prediction recall of C4.5 and CART algorithms.

In addition to the above experimental results, in terms of execution efficiency, the C4.5
algorithm uses information gain rate selection features and makes judgments based on
the entropy model of information theory. In the calculation process, a large number of
logarithmic operations will be designed, and the computer consumes a lot of resources.
Whether it is in the model training stage or the final use of the model to predict unknown
data, there is a problem of low efficiency. The CART algorithm is more of a square operation,
which is more efficient. It is possible that a single decision tree cannot reflect the difference
in efficiency, but after a large number of decision trees are integrated through AdaBoost,
the performance difference will be magnified, even reaching the level of tens of milliseconds.
In the process of heavy-haul train operation, in order to make faster adjustments to the
real-time environment and ensure the safety of train operation, the CART algorithm, as the
base classifier, undoubtedly has higher execution efficiency.

In summary, the CART algorithm has obvious advantages over the C4.5 algorithm
in terms of the prediction effect reflected by the experimental results and the execution
efficiency of the theoretical analysis. Thus, we ultimately use the CART decision tree
algorithm as the base classifier of the AdaBoost ensemble algorithm.
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5.3. CART Model Building

The CART decision tree algorithm uses a binary split binary tree, which divides the
data set by using a feature threshold and uses the Gini coefficient as an evaluation indicator
when selecting the best split point [25]. The Gini coefficient describes the purity of the
data set: the larger the Gini coefficient, the less pure the data, and the smaller the Gini
coefficient, the more uniform the data set. Each iteration of the CART algorithm produces a
feature that reduces the Gini coefficient after the data are divided, so that the classification
effect of the dataset is gradually enhanced. Assuming that the selected sample set X has a
total of K kinds, and Nk is the number of the k− th category, the Gini coefficient expression
of the sample can be shown in Formula (7).

Gini(X) = 1−∑K
k=1 (

Nk
X

)
2

(7)

In addition, when the CART algorithm classifies discrete features, it uses the classi-
fication criteria of whether the node is a discrete value [26]. Therefore, for a dataset X,
the sample set is divided into X1 and X2 based on the value m of the feature M, and the
Gini coefficient of the feature M pair to the collection is shown as Formula (8), which is
used as the basis for selecting a specific feature value.

Gini(X, M) =
|X1|
|X| Gini(X1) +

|X2|
|X| Gini(X2) (8)

The specific processes of the algorithm are shown as follows:

1. Initialize the Gini coefficient threshold ξ and the number of samples threshold δ;
2. If the Gini coefficient of the current node is more than ξ, and the number of samples

is more than δ, then return to the node and stop downward recursion;
3. Calculate the Gini coefficient of all feature values of each feature of the current node

to the data set;
4. Select the feature value m corresponding to the smallest Gini coefficient and divide

the data set into two parts, X1 and X2, according to m, so as to establish left and
right nodes.

5. Recursively call steps 1–3 to the left and right nodes to complete the establishment of
the CART decision tree.

5.4. Modeling of Air Braking for Heavy-Haul Trains Based on the AdaBoost Algorithm

Through the research of the data, it is learned that the output of air brake pressure
values falls in seven categories, including 0, 40, 60, 80, 100, 120, and 140 kPa, so we intro-
duce the classification idea and consider the above category labels as the final air brake
decompression output decision Y. In addition, we select the 17 key features mentioned
above, namely line slope, km mark, current train speed limit, next segment speed limit,
train weight, train number, train speed, MA distance, train current speed and speed limit
difference, electric traction/brake handle position, turning speed, turning radius, train
distance from the next speed limit section starting distance, train pipe wind pressure value,
sub-wind cylinder wind pressure, bending rate, and whether it is a bridge as a feature
set {X1, X2, · · ·X17} of the model. Thus, an 18-dimensional array {X1, X2, · · ·X17, Y} con-
sisting of feature sets and class labels is obtained. The specific processes of modeling are
shown as follows [27,28]:

1. Initialize the maximum number of iterations Tmax of the AdaBoost algorithm and the
number of samples p of the training base classifier and set the maximum error rate
threshold of the base classifier εmax = 0.3;

2. Enter all sample data Q =< (x1, y1), (x2, y2), · · ·(xn, yn) >, among them yi ∈ Y =
{0, 40, 60, 80, 100, 120, 140};

3. Initialize sample weights: D1(i) = 1/n;
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4. Randomly select P groups of sample data with the maximum value Dt in the sample
set Q and use this as the training sample set Pt =< (x1, y1), (x2, y2), · · ·

(
xp, yp

)
> of

the basic classifier trained in the current iteration cycle;
5. Use sample set P to train the CART decision tree ht(Pt);
6. Calculate the error rate of the iterative period base classifier:

ht : εt = ∑
j:ht(xj) 6=yi

Dt(j) (9)

7. If εt ≥ εmax, reduce the Gini coefficient threshold of the CART decision tree nodes by
0.01 and turn back to step 5;

8. Calculate the voting weight of the iterative period base classifier:

αt = 0.5 ln[(1− εt)/εt] (10)

9. Update the sample weight D:

Dt+1(i) =
Dt(i)

Zt
·
{

e−αt , ht(xi) = yi
eαt , ht(xi) 6= yi

(11)

where Zt is the normalization constant;
10. t = t + 1, if t < T, then turn to step 4; otherwise, turn to step 11;
11. Combine the base classifier to obtain the air brake intelligent controller model:

H(x) = arg max
y

(
T

∑
t=1

αt · [ht(x) = yi]

)
(12)

According to Formula (11) we can see that in the iterative cycle, in order to gradually
improve the accuracy of the model, AdaBoost increases the proportion of the predicted
error samples in the previous cycle in this sample extraction, thus giving the minority
classes of samples more opportunities to be trained after being misrated. At the same
time, as can be seen from Formula (10), the final vote will give a higher weight to the
better performing basic classifier to reduce the error impact of the poorly performing base
classifier. In addition, the base classifier with high error rate is eliminated according to the
set maximum error value to further improve the optimal performance of the algorithm.

After modeling according to the steps above, we next obtain the best performance
by adjusting the number of features and the maximum number of iterations. We use the
sequence back search method, remove the features with the lowest contribution value in
the 17 indicators obtained by the feature extraction process, and train it to make the feature
set optimal. In addition, the number of iterations has a great impact on the performance
of the algorithm: if Tmax is too small, the model cannot accurately understand the data,
and if Tmax is too large, the model identifies the data as too redundant. Therefore, in order
to mitigate the impact of the number of iterations on the performance of the algorithm,
this paper assumes that the starting point Tmax = 500 and the end point Tmax = 1000 to
optimize the number of iterations.

The algorithm has a certain universality. In the algorithm, the input is 17 key train
operating characteristics and the output is seven different air brake decompressions. Using
these data as a training set, the AdaBoost algorithm is used to learn the potential charac-
teristics of the data set, so as to build a high-precision model to predict the decision of air
braking on trains. The input train operating characteristics can be collected on each line,
not unique to a particular line, so for other lines, as long as the train operating data can
be collected, the train driving strategy can be modeled into a choice of different discrete
values, such as the implementation of brake gear and brake pressure, which can use the
algorithm designed in this paper to achieve intelligent driving. Among them, the input is
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the most important factor for the train driving strategy in the train operation data, and the
output is different discrete strategy values.

5.5. Improved AdaBoost Algorithm Based on Heavy-Haul Trains

In this paper, the AdaBoost algorithm is improved from two aspects, namely the selec-
tion of the training subset and the determination of the voting weight.

1. Improve the training subset.
The traditional AdaBoost algorithm will consider the importance of the samples to
randomly select a training subset with a certain capacity, and the sampling method is
sampling with replacement, which will make the selection of a more important sample
more likely than a less important sample, resulting in the loss of key information, and
the accuracy of the base classifier cannot be guaranteed [29]. In addition, the output
air brake pressure values are mainly 40, 60, 80, 100, 120, and 140 kPa, but they are
all minority classes. As the algorithm is repeated again and again, the data of not
needing to output air braking in the randomly selected samples may drop drastically.
Therefore, it will cause difficulties for the classifier not only in determining the timing
of applying the air brake but also in determining the specific decompression value,
which makes the final classifier performance worse.
To eliminate the above disadvantages, we present a plan to optimize the method of
training sets. Specifically, the number of training sets is not set in stone and is not
obtained by sampling. In contrast, any data from the sample set are selected, and the
data can be selected multiple times. The number of selections is the importance of the
data multiplied by the total number of sample sets, rounded to the nearest integer.
So the number of times a sample appears in the training set generated for the t− th
cycle is

nt(i) = [Dt(i) • |L|] (13)

The improved scheme prevents minority classes from being discarded on the basis
of ensuring the correct classification rate, prevents the loss of critical information,
and prevents the overfit of minority classes.

2. Improve the voting weight.
The research shows that under the condition of data imbalance, the traditional Ad-
aBoost algorithm cannot fit minority data accurately and cannot grasp their important
characteristics accurately [30]. In order to improve the prediction accuracy of minority
data, we adopt cost-sensitive unbalanced learning, the main idea of which is that
when the base classifier correctly classes minority data, the well-performing base
classifier should be properly rewarded through the loss function, thereby enhancing
its importance. Correspondingly, when the minority class is misclassified, its loss
function should be increased.
The idea is to set the majority data in the samples to 1, minority to −1, and calculate
the ratio of minority and majority classes. The final voting weight is shown in
Formula (14):

αt =
(K− 1)2

K
[ln(

1− εt

εt
) + ln(

K− 1
√

η
)] (14)

where K is the number of sample class labels; εt is the error rate of the classifier; and
αt needs to satisfy Formula (15).

εt <
K− 1

K− 1 +
√

η
(15)

Combining these two scenarios, the improved AdaBoost algorithm flow is shown
as follows:
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1. Set the maximum number of iterations to Tmax, set the sample category that does not
require air brakes to φ(xi) = 1, and set the sample category that requires air brakes to
φ(xi) = 0;

2. Enter all sample data Q =< (x1, y1), (x2, y2), · · ·(xn, yn) >, among them yi ∈ Y =
{0, 40, 60, 80, 100, 120, 140};

3. Initialize sample weights: D1(i) = 1/n;
4. When t = 1, the original training sample set was used as the training subset Pt of the

iteration period; when 1 < t ≤ Tmax, the number of times each sample appeared in
the training subset was calculated according to the weight distribution Dt and the
size of the original training sample set |Q| using Formula (13), and then the training
subset Pt is obtained;

5. Use sample set P to train the CART decision tree ht(Pt);
6. Calculate the error rate of the iterative period using Formula (9);
7. According to φ(xi), calculate the ratio of the minority class to the majority class in the

training subset of the iterative period:

θt =
Nφ(xi=0)

Nφ(xi=1)
(16)

8. Calculate the highest misclassification threshold εt max of the base classifier according
to Formula (15). If εt ≥ εt max, reduce the Gini impurity threshold of the CART
decision tree node by 0.01, return to step 5 and retrain until εt < εt max, and obtain the
qualified base classifier, restoring the CART decision tree Gini impurity threshold;

9. Calculate the voting weight of the iterative period base classifier according to For-
mula (14);

10. Update the sample weight D according to Formula (11);
11. t = t + 1. If t < T, go back to step 4, otherwise, go to step 11;
12. Combine the base classifier according to Formula (12) to obtain the air brake intelligent

controller model;

6. Simulation Results Analysis
6.1. Simulation Results before Optimization

In order to evaluate the algorithm more comprehensively, the evaluation index used
in this paper is the weighted harmonic average of the precision rate and the recall rate,
that is, the F1-measure value. The F1-measure value of different decompression prediction
results is averaged as the final evaluation index.

Figure 8 shows the average F1-measure value after the number of combined tuning
features and the maximum number of iterations. According to Figure 8, the algorithm
performance is optimal when the number of iterations is 160 and the number of features is
15. We delete the two indicators with the lowest contribution value of the above 17 features,
namely the position of the traction/brake handle and whether it is a bridge. The analysis
of these two indicators is as follows:

1. Electric traction/brake cannot be applied at the same time as air braking, and the in-
dicator has little effect on air braking.

2. When the running line is a bridge, the main factor affecting the decision of air braking
is the line slope.

The F1-measure values for the output of different decompression predictions are
shown in Table 5. From Table 5, we can see the model has an average F1-measure value of
only 0.9502, which does not meet the expected performance.
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Features number

Iterations number
120

Figure 8. Tuning results of AdaBoost before optimization.

Table 5. AdaBoost performance before optimization.

Category Precision Recall F1-Measure

Majority 0.9937 0.9972 0.9854
Minority 0.9943 0.8491 0.9097

Comprehensive - - 0.9502

6.2. Optimization Simulation Results

The AdaBoost algorithm was optimized above by adjusting the training methods for
sample creation and adjusting the voting weight of the underlying classifier. The optimized
model performance validation results are shown in Figure 9.

KM mark (km)

Iterations number

AdaBoost

Sample creation optimzation

Voting weight optimzation

Comprehensive optimization

F
1
-M

ea
su

re

Figure 9. Comparison of AdaBoost model optimization results.

As can be seen from Figure 9, after only changing the voting weight of the basic
weight, the performance of the model has been greatly improved, but the stability period is
later. When the number of iterations is small, the change in the number of basic classifiers
will have a greater impact on the classification effect; after only adjusting the training
subset, the performance of the model will also increase, but the rising speed is slower and
the stabilizer is relatively late. With comprehensive optimization after the two algorithms,
the performance of the model is significantly improved, the speed is stable, and the optimal
number of iterations is 180.

The F1-measure value of the predicted results is shown in Table 6.
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Table 6. Optimized AdaBoost performance.

Category Precision Recall F1-Measure

Majority 0.9984 0.9942 0.9962
Minority 0.9978 0.9827 0.9913

Comprehensive - - 0.9942

6.3. Algorithm Simulation Verification

To verify the performance of the model, a set of unused data in the data set is selected
as the verification set, and the following evaluations are made on the train operation results.

6.3.1. Security

Comparing the actual driving curve between Shenchi South Station and Suning North
Station with the simulation curve, the result is shown in Figure 10. The simulation running
speed did not exceed the speed limit curve during the whole journey, and there was no
stopping phenomenon, which guaranteed the safety of train operation.
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Figure 10. Comparison of simulation results and driving results.

In Figure 10, the position where the speed limit protection is triggered during the
simulation process is partially enlarged, and the whole line is triggered once, and the
train is safely protected. It can be seen that the trains correct the abnormal situation in
time after the trigger, and the trains can continue to run through emergency braking and
alleviating braking.

In addition, we verify the performance of the model in dealing with temporary speed
limits by modifying the line speed limit. When the train travels to the 250 km mark,
the speed limit of 300 km/h is changed from 80 km/h to 45 km/h. The result is shown
in Figure 11, and we can see that the model responds well to the temporary speed limit
and improves the efficiency of the train operation. Figure 12 compares the prediction of the
model on the Shenchi South Station to the Sanji Station line with the results of the actual
output of the driver. As can be seen from the figure, because the driver does not output the
brake and the model has a small probability of discrete prediction of the braking situation,
the wrong brake will be immediately removed in the next control cycle, which will not
cause problems for the safety of the train. When the driver outputs air braking, the model
also predicts output braking, only if the output values are different, and this error is within
a reasonable range.
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Figure 11. The v-s curve under temporary speed limit.
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Figure 12. Comparison of the air brake output.

6.3.2. Air Braking Effectiveness

The line conditions of the ShuoHuang Railway are very complex, including many
continuously growing downhill ramps. If the air brake is applied at the wrong time, it will
make the cylinder pressure of the train sub-cylinder insufficient and the air brake ineffective.

By comparing the driving of the driver with the speed-distance curve of the model
simulation in Figure 13, we can know that between 8 and 40 km, both of them output three
air brakes, as indicated by brake recording in Table 7; the model simulation has a braking
speed of 60–70 km/h. The mitigation speed is 28 km/h, and the braking charge time is
300–600 s, which meets the safety of brake requirements.
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Figure 13. Comparison of v-s on continuous growth downhill.
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Table 7. Record of the cycle braking on the long downhill.

Segment Category Serial Number Brake Location
(m)

Brake First Speed
(km/h)

Ease Location
(m)

Ease Speed
(km/h)

Charge Time
(s)

1 8440 62 11,440 28 563
Intelligent control 2 18,900 62 20,700 28 302

8000 m– 3 25,580 67 28,410 28 0

40,000 m 1 10,700 58 12,650 28 424
The driver is driving 2 19,500 64 21,150 32 278

3 25,130 72 28,590 32 0

7. Conclusions

This paper introduces the classification ideas in machine learning into the intelligent
control of the air brake of heavy-haul trains, collects the operation data of heavy-haul
trains in different formations of the Shuohuang Railway, and introduces a random forest
algorithm to evaluate the characteristics of the train operation data. The AdaBoost algo-
rithm is used to model the intelligent control of the air brake of the heavy-haul trains with
the CART decision tree as the base classifier, and the AdaBoost algorithm is optimized by
improving the generation method of the training subset and the voting weight.

In order to verify the feasibility of the intelligent control model, Shenchi South Station
to Suning North Station is selected as the verification interval. By comparing the control
results of the intelligent control model with the speed limit information, it is verified
that the trains will not stop halfway, and the trains are guaranteed to run at a safe speed.
By comparing the intelligent control model with the average driving speed and running
time of the driver, the punctuality of the model is verified by using the punctuality index.
By comparing the output of the intelligent control model and the air brake driven by the
driver on the long downhill, it is confirmed that the two have similar cyclic brake output
results, and the recharge time meets the minimum requirements for safe driving.

In short, the feasibility of the algorithm is confirmed from the above indicators, and it
is proved that it can ensure the safe and stable operation of trains after being applied to the
intelligent driving process of heavy-haul trains.
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