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Abstract: Active hydraulic mounts with an inertia track, decoupler membrane, and oscillating coil
actuator (AHM-IT-DM-OCAs) have been studied extensively due their compact structure and large
damping in the low-frequency band. This paper focuses on a comprehensive analysis of the active
and passive dynamics and their fixed points in mid-low-frequency bands, which will be helpful
for parameter identification. A unified lumped parameter mechanical model with two degrees-of-
freedom is established. The inertia and damping forces of the decoupler/actuator mover may be
neglected, and a nonlinear mathematical model can be obtained for mid-low-frequency bands. Theo-
retical analysis of active and passive dynamics for fluid-filled state reveals the amplitude dependence
and a fixed point in passive dynamic stiffness in-phase or active real-frequency characteristics. The
amplitude dependence of local loss at the fluid channel entrance and outlet induces the amplitude-
dependent dynamics. The amplitude-dependent dynamics constitute a precondition for fixed points.
A single fixed point in passive dynamics is experimentally validated, and a pair of fixed points in
active dynamics for an AHM-IT-DM-OCA is newly revealed in an experiment, which presents a new
issue for further analysis.

Keywords: fixed point; active hydraulic mount; hydraulic engine mount; amplitude-dependent
dynamics; active dynamics; passive dynamics

1. Introduction

Fixed points are common phenomena in mechanical vibrations theory and practices.
They often appear in frequency-response functions (FRFs) of damped systems and have
rich physical meanings and wide applications. A pair of fixed points, P and Q in a damped
dynamic absorber, has become a classic case in the research and application concerning
fixed points, which have played a huge role in vibration engineering. Ormondroy and Den
Hartog [1] proposed that the damping in a vibration absorber could make the absorber
work better over a wider range of frequencies. They analyzed the FRFs of vibration
absorbers with or without damping and pointed out the existence of optimum damping.
Hahnkamm [2] referred to the intersections of P and Q on the FRFs of damped absorbers
as fixed points and pointed out that the fixed points were independent of damping. The
variation of fixed points with parameters was investigated and a method was proposed
for obtaining the optimum natural frequency ratio by equalizing the heights of P and Q.
Additionally, this work also proposed that the damping ratio was optimal when the fixed
points were at the peaks, but no analytical solution was provided. Brock [3] obtained
the optimum damping ratios for three cases, i.e., the optimum natural frequency ratio,
a natural frequency ratio of 1, and a natural frequency of 0 (with only linear damping
and no spring), by making the FRF curve of a damped absorber pass through the two
fixed points horizontally, i.e., making the fixed points P and Q have peak values. Finally,
Den Hartog [4] summarized research results concerning dynamic absorber fixed points
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in his book “Mechanical Vibrations”, referring to the fixed point theorem. This theorem
provides a classical optimization method, which is still widely used in dynamic absorber
optimization. Regarding the literature, this research was the first whereby vibration theory
paid any attention to the fixed-point phenomenon. It has not only led to fruitful theoretical
results, but has also played an important role in the practice of vibrations.

As a typical damped system, the hydraulic mount also has fixed points in its dynamic
characteristics. Fan et al. [5] have shown experimentally that the dynamic characteristics
of a first-generation of hydraulic mount, i.e., a passive hydraulic mount with inertia track
(PHM-IT), has fixed points in five different dynamics (dynamic stiffness modulus, loss
angle, dynamic stiffness in-phase, dynamic stiffness out-of-phase, and viscous damping),
as shown in the following expression:

k∗ = k(cos ϕ + j sin ϕ) = k′ + jk′′ = k′ + jωc (1)

where k* is dynamic stiffness, a complex number, k is dynamic stiffness modulus, a positive
real number, which is also called dynamic stiffness, ϕ is loss angle, k′ is dynamic stiffness in-
phase, an in-phase component of dynamic stiffness, k” is dynamic stiffness out-of-phase, an
orthogonal component of dynamic stiffness, and c is viscous damping. That study has also
demonstrated an analytical solution for the fixed point in dynamic stiffness in-phase, and
then a parameter identification method has been proposed based on the distinct features of
a fixed point and a horizontal segment in dynamic stiffness in-phase.

Based on the study of distinct features in the dynamics of PHM-IT [5], the active and
passive dynamic characteristics of active hydraulic mounts with an inertia track, decoupler
membrane, and oscillating coil actuator (AHM-IT-DM-OCAs) are studied in this paper.
The distinct features are systematically explored for the dynamic characteristics in the
fluid-filled state in terms of amplitude dependence, fixed point, resonance peak, and
horizontal segment.

The discussion is divided into three sections. Section 1 introduces the typical structure
and working principle, establishes a unified lumped parameter mechanical model, and
explains the definition of active and passive dynamics and the meanings of high-, mid-,
and low-frequency bands. In Sections 2 and 3, a nonlinear lumped parameter mathematical
model with two degrees-of-freedom (DOF) is proposed. The mathematical model contains
an inertia track and a mover, and the active and passive dynamics are focused on sepa-
rately. Since the mover resonance frequency is far greater than the fluid channel resonance
frequency, the model is simplified into a 1-DOF nonlinear model for mid-low-frequency
bands, which is used to study the amplitude dependence and fixed point of the dynamic
properties, and then validated experimentally.

2. Mechanical Model of Active Hydraulic Mount (AHM)

Figure 1 shows the schematic diagram of (a) a passive hydraulic mount with inertia
track and decoupler membrane (PHM-IT-DM) and (b) an AHM-IT-DM-OCA. The upper
end is connected to engine, and the lower end is connected to body or chassis. In AHM-IT-
DM-OCA, the coil skeleton is rigidly connected to the skeleton of the decoupler membrane
to serve as an actuator mover. Alternating current (AC) power is applied to the coil. Then,
the coil oscillates up and down under the alternating ampere force, which is induced in a
constant magnetic field of a permanent magnet. The ampere force is the active force to be
controlled. The active force is transmitted to the vehicle body through a secondary path
to have the force transmitted from the engine to the vehicle body through the primary
path canceled. The active force received by the actuator mover acts on the decoupler and
simultaneously changes the dynamics of the hydraulic mount. The working mechanism of
AHM-IT-DM-OCA can be understood either from the perspective of the actuator actively
reducing the force transmitted to the vehicle body or from the perspective of the actuator
actively adjusting the dynamic characteristics of the hydraulic mount.



Actuators 2021, 10, 225 3 of 14
Actuators 2021, 10, x FOR PEER REVIEW 3 of 15 
 

 

  
(a) (b) 

Figure 1. Configuration schematics for PHM-IT-DM and AHM-IT-DM-OCA. (a) PHM-IT-DM; (b) AHM-IT-DM-OCA. Key: 
1. rubber bellow; 2. lower chamber; 3. inertia track; 4. decoupler membrane; 5. upper chamber; 6. main rubber spring; 7. 
decoupler/actuator mover; 8. coil; 9. permanent magnet. 

Referring to the hydraulic mount mechanical models [5–9], a unified lumped param-
eter mechanical model for AHM-IT-DM and PHM-IT-DM is built, as shown in Figure 2. 
The displacement of the engine side is y1 and the corresponding reaction force, i.e., the 
force acting on the mount, is f1. The displacement of circularly flowing fluid in a horizontal 
plane relative to the wall of the fluid channel is y2, and the mover displacement is y3 (i.e., 
the decoupler for PHM-IT-DM). The displacement of the chassis side is y5, and the force 
transmitted to the chassis is f5. The pressure fluctuations in the upper and lower fluid 
chambers relative to the static state are p1 and p2, respectively. The active force of the ac-
tuator is fa. These are variables for the lumped parameter model. 

 
Figure 2. Unified lumped parameter mechanical model for AHM-IT-DMs and PHM-IT-DMs. 

The vertical dynamic stiffness in-phase of main rubber spring is denoted as k1, the 
viscous damping is c1, and the equivalent mass on engine side is m1. The reciprocating 
motion of the main rubber spring squeezes out and pumps in the fluid for the upper fluid 
chamber. The equivalent pumping piston area is denoted as A1. Define bulk stiffness as a 
ratio of pressure change to corresponding volume change of a fluid chamber, i.e., dp/dV, 
in units of GN/m5; denote the bulk stiffness of main rubber spring as K1 and that of rubber 
bellow as K2. Due to the wrinkled rubber bellow, K2 is several orders of magnitude smaller 
than K1. Thus, K2 is set to zero, and the pressure fluctuation in the lower fluid chamber is 
ignored and set p2 = 0 [5,7−9]. Denote the length of inertia track as l2, the cross-sectional 
area as A2, the wet perimeter of cross section as L2, and the hydraulic diameter as d2 = 
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Figure 1. Configuration schematics for PHM-IT-DM and AHM-IT-DM-OCA. (a) PHM-IT-DM; (b) AHM-IT-DM-OCA. Key: 1.
rubber bellow; 2. lower chamber; 3. inertia track; 4. decoupler membrane; 5. upper chamber; 6. main rubber spring; 7.
decoupler/actuator mover; 8. coil; 9. permanent magnet.

Referring to the hydraulic mount mechanical models [5–9], a unified lumped parame-
ter mechanical model for AHM-IT-DM and PHM-IT-DM is built, as shown in Figure 2. The
displacement of the engine side is y1 and the corresponding reaction force, i.e., the force
acting on the mount, is f 1. The displacement of circularly flowing fluid in a horizontal
plane relative to the wall of the fluid channel is y2, and the mover displacement is y3
(i.e., the decoupler for PHM-IT-DM). The displacement of the chassis side is y5, and the
force transmitted to the chassis is f 5. The pressure fluctuations in the upper and lower
fluid chambers relative to the static state are p1 and p2, respectively. The active force of the
actuator is f a. These are variables for the lumped parameter model.
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Figure 2. Unified lumped parameter mechanical model for AHM-IT-DMs and PHM-IT-DMs.

The vertical dynamic stiffness in-phase of main rubber spring is denoted as k1, the
viscous damping is c1, and the equivalent mass on engine side is m1. The reciprocating
motion of the main rubber spring squeezes out and pumps in the fluid for the upper fluid
chamber. The equivalent pumping piston area is denoted as A1. Define bulk stiffness
as a ratio of pressure change to corresponding volume change of a fluid chamber, i.e.,
dp/dV, in units of GN/m5; denote the bulk stiffness of main rubber spring as K1 and
that of rubber bellow as K2. Due to the wrinkled rubber bellow, K2 is several orders of
magnitude smaller than K1. Thus, K2 is set to zero, and the pressure fluctuation in the
lower fluid chamber is ignored and set p2 = 0 [5,7–9]. Denote the length of inertia track as
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l2, the cross-sectional area as A2, the wet perimeter of cross section as L2, and the hydraulic
diameter as d2 = 4A2/L2. For laminar flow (Reynolds number Re < 2320) [10], the loss factor
of fluid flowing along the inertia track is ξl2 = 64µl2/(ρ

∣∣ .
y2
∣∣d2

2), and denote the local loss
factor of flowing fluid at entrance and outlet as ξd2 . Denote the mass of decoupler/mover
as m3, the linear stiffness as k3, and the viscous damping as c3. Denote the equivalent piston
area of the decoupler membrane as A3 and the bulk stiffness equivalent to linear stiffness
k3 as K3. The equivalency relationship is as follows:

A2
3K3 = k3 (2)

These are parameters for the lumped parameter model.
It should be noted that, for the active and passive hydraulic mounts shown in Figure 1,

the basic structure is a hydraulic engine mount with inertia track and decoupler membrane,
so the mechanical model can be unified. As to specific components, the model parameter
values are different. Specifically, the mass m3 in the mechanical model refers to the mass of
the decoupler for a PHM-IT-DM in Figure 1a and refers to the mass of the actuator mover
for an AHM-IT-DM-OCA in Figure 1b. The active force f a is always zero for a PHM-IT-DM,
while for an AHM-IT-DM-OCA, the f a is related to the excitation current i(t) or voltage u(t).
When the actuator is powered off, an AHM-IT-DM-OCA will degenerate to a PHM-IT-DM.

The dynamic characteristics for an AHM can be divided into active and passive
dynamics. The so-called passive dynamics refer to FRFs with input being the engine-
side displacement and outputs being the reaction force of the engine side and the force
transmitted to the chassis side when the chassis side is fixed and the actuator is powered off.
These are drive-point and cross-point dynamic characteristics, respectively. The cross-point
dynamics are primary path transfer functions in the control of an AHM. The so-called
active dynamics refer to FRFs with input being current or voltage applied to actuator and
outputs being engine-side reaction force and the force transmitted to chassis side when the
engine side and chassis side being fixed. The active dynamics from the excitation current
or voltage to the force transmitted to the chassis side are secondary path transfer functions
in the control of an AHM. The transfer functions of primary and secondary paths affect the
performance, stability, and the operating bandwidth for an active control mount.

An AHM-IT-DM involves the resonance of two subsystems, namely the resonance
of the fluid channel and the resonance of mover. Experimental studies have shown that
the natural frequency f n3 of a fluid-filled mover is typically above 200 Hz, which is far
greater than the natural frequency f n2 of the fluid channel (typically less than 20 Hz).
Because the two natural frequencies are far apart and based on the desire to simplify the
inertia and damping forces in different frequency bands based on mechanical vibrations
theory, the frequency bands are divided into low-, mid-, and high-frequency bands, as
shown in Figure 3. The frequency bands below the natural frequency f n3 of the mover shall
also be referred to as mid-low-frequency bands and the corresponding dynamics as the
mid-low-frequency dynamics. The frequency bands above the natural frequency f n2 of
the fluid channel shall be referred to as mid-high-frequency bands and the corresponding
dynamic characteristics as the mid-high-frequency dynamics.
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3. Analysis and Experimental Validation of Passive Dynamics

In this section, a nonlinear mathematical model for mid-low-frequency bands is
established for passive dynamics of AHM-IT-DM-OCA, and the FRFs in fluid-filled state
with the electromagnetic actuator off are studied. The engine-side displacement y1 is used
as an excitation, while the engine-side reaction forces f 1 and the force transmitted to chassis
side f 5 are used as outputs. These are the drive-point dynamic stiffness and cross-point
dynamic stiffness of a mount.

3.1. Nonlinear Lumped Parameter Mathematical Model for Passive Dynamics

Based on the unified mechanical model as shown in Figure 2, set m1 = 0, y5 = 0, and
f a = 0 to obtain the following nonlinear mathematical model for passive dynamics [8,9]:

ρl2
..
y2 +

1
2 ρ
(
ξl2 + ξd2

)∣∣ .
y2
∣∣ .
y2 = −p1

m3
..
y3 + c3

.
y3 + k3y3 + A3 p1 = 0

A2y2 + A3y3 = A1y1 + p1/K1
f1 = c1

.
y1 + k1y1 − A1 p1

f5 = c1
.
y1 + k1y1 + c3

.
y3 + k3y3 − (A1 − A3)p1

= f1 −m3
..
y3

(3)

The equations are, in order, the Bernoulli equation for fluid flowing in inertia track,
differential equation for mover motion, and the fluid continuity equation and equilibrium
equation for engine-side reaction forces f 1 and transmitted force to chassis side f 5, respec-
tively. For the fluid flowing in the inertia track, a nonlinear Bernoulli equation is used to
account for the loss factor of fluid flowing along the fluid channel and local loss at the
entrance and outlet [10].

3.2. Analysis of Mid-Low-Frequency Passive Dynamics and the Amplitude Dependence and Fixed
Points (f << fn3)

As stated above, the natural frequency f n2 of the inertia track is much smaller than
f n3 of the mover, that is, f n2 << f n3. Considering mechanical vibrations theory [11], for
an excitation frequency f << f n3 in mid-low-frequency bands, the decoupler displace-
ment y3 is essentially in-phase with excitation. The excitation force is mainly balanced
by elastic restoring force. Under this condition, the inertia and damping forces of the
decoupler [6–8,11] may be neglected. Simplification of Equation (3) leads to the following
mathematical model:

ρl2
..
y2 +

1
2 ρ
(
ξl2 + ξd2

)∣∣ .
y2
∣∣ .
y2 = −p1

k3y3 + A3 p1 = 0
A2y2 + A3y3 = A1y1 + p1/K1
f1 = c1

.
y1 + k1y1 − A1 p1

f5 = c1
.
y1 + k1y1 + k3y3 − (A1 − A3)p1 = f1

(4)

where f 5 = f 1 indicates that, in mid-low-frequency bands, drive-point passive dynamics
are the same as cross-point ones, so there is no need to treat them differently. Eliminating
the intermediate variables p1 and y3, it can be rewritten as follows:

..
y2 +

(
32µ

ρd2
2
+

ξd2
2l2

∣∣ .
y2
∣∣) .

y2 +
A2Ku1

ρl2
y2 = A1Ku1

ρl2
y1

f5 = f1 = c1
.
y1 + k1y1 + A2

1Ku1y1 − A1 A2Ku1y2

(5)

where Ku1 is bulk stiffness of upper fluid chamber surrounded by main rubber spring and
decoupler membrane. It consists of K1 and K3 in-series [12], as follows:

1
Ku1

=
1

K1
+

1
K3

(6)
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The in-series relationship makes the total bulk stiffness smaller than the smaller one
of two bulk stiffnesses, that is, Ku1 < min (K1, K3). Equation (5) also shows that the various
DOFs in AHM-IT-DM are decoupled from each other.

The multiple-scales perturbation analysis of second-order nonlinear damped vibration
system has shown that [13], in terms of first-order approximation, the natural frequency is
not affected by damping. In this case, the natural frequency of inertia track is as follows:

fn2 =
1

2π

√
A2

ρl2
Ku1, ωn2 = 2π fn2 (7)

Experiments and numerical simulations have shown that [5], under excitation of
harmonic displacement y1, the responses of upper chamber pressure p1, inertia fluid
displacement y2, decoupler/mover displacement y3, and force transmitted to the chassis f 5
are all simple harmonics with the same frequency. Therefore, the following expressions
can be assumed for the excitation and response:

y1 = Y1ejωt, y2 = Y2ej(ωt−ϕ2), f1 = f5 = F1ejωt = F5ejωt (8)

where Y1 is excitation displacement amplitude, a positive real number; Y2 is response
amplitude of inertia fluid displacement, a positive real number, ϕ2 is loss angle of y2
with respect to y1; F1 and F5 are drive-point and cross-point response force amplitudes,
respectively, which are complex numbers.

For a steady-state harmonic motion, the second-order nonlinear damping ξd2 /2l2
due to local loss factor ξd2 may be equivalised to a viscous damping of 4ξd2 ωY2/3πl2
according to the principle of equivalent energy [11]. Substituting it into the first formula in
Equation (5), we obtain the following:

..
y2 +

(
32µ

ρd2
2
+

4ξd2

3πl2
ωY2

)
.
y2 + ω2

n2y2 =
A1Ku1

ρl2
y1 (9)

Substituting Equation (8) into Equation (9) and the second formula of Equation (5), a
set of algebraic equations are obtained. Solving them, the FRF of H2 for fluid channel and
the dynamic stiffness k* for a hydraulic mount can be obtained:

H2 =
Y2

Y1
e−jϕ2 =

A1

A2

1
1− λ2 + j(Cλ/ωn2 + DY2λ2)

(10)

k∗ =
F5

Y1
=

F1

Y1
= k1 + A2

1Ku1 + jωc1 − A2
1Ku1

1
1− λ2 + j(Cλ/ωn2 + DY2λ2)

(11)

where C = 32µ/ρd2
2, D = 4ξd2 /3πl2, λ = λ2 = ω/ωn2 = f / fn2.

Equation (10) shows the FRF, H2, contains response amplitude Y2 of inertia fluid, an
unknown variable. Y2 and H2 may be calculated using a search method. For a given excita-
tion amplitude Y1, H2 is calculated while Y2 gradually increases from 0. When |H2|Y1 = Y2,
Y2 is the response amplitude of inertia fluid. Then, H2 and k* can be determined. Numerical
simulations have shown the searched solutions have good properties, and each excitation
amplitude has a unique response [5].

Equation (11) shows the mid-low-frequency passive dynamics are dependent on
the response Y2, which is uniquely determined by the excitation Y1. Therefore, the mid-
low-frequency passive dynamics of AHM-IT-DM are not only frequency-variant, but also
amplitude-variant, i.e., there are different frequency-variant dynamic characteristics curves
for different excitation amplitudes. The fundamental cause for amplitude-variant dynamics
lies in the amplitude-dependent damping caused by local loss at the entrance and outlet.
The amplitude-variant dynamic characteristics is a prerequisite for the existence of fixed
points. In other words, for a lumped parameter model that only considers linear damping
of the fluid, the dynamic characteristics are independent of the excitation amplitude,
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and it is impossible to express amplitude-variant dynamics. Thus, the linear model for
AHM-IT-DM could not reveal the phenomenon concerning fixed points.

Based on Equation (11), the passive dynamics in mid-low-frequency bands can be
analyzed, and a fixed point will be shown in passive dynamics. The following three
situations are discussed:

(1) Low-frequency band when λ→ 0 (f << f n2):

k∗0 = k1 + jωc1 = k′0 + jk′′0
k′0 = k1, k′′0 = ωc1

(12)

where k∗0, k′0, and k′′0 are dynamic stiffness, dynamic stiffness in-phase, and dynamic
stiffness out-of-phase when λ→ 0 , respectively. This result shows that, when the excitation
frequency approaches to zero, the dynamics are that of the main rubber spring.

(2) Mid-frequency band when λ→ ∞ (f n2 << f << f n3):

k∗∞ = k1 + A2
1Ku1 + jωc1 = k′∞ + jk′′∞

k′∞ = k1 + A2
1Ku1 = k′∞,1, k′′∞ = ωc1

(13)

where k∗∞, k′∞, and k′′∞ are dynamic stiffness, dynamic stiffness in-phase, and dynamic
stiffness out-of-phase when λ→ ∞ , respectively. The result shows, when the fluid channel
becomes almost turned off due to increasing fluid resistance with frequency, the passive
dynamic stiffness in-phase in the mid-frequency band becomes constant, k′∞,1 = k1 + A2

1Ku1,
an identical horizontal segment in amplitude-dependent dynamic stiffness in-phase.

(3) Resonance frequency band when λ→ 1 ( f → fn2 ):

H2,1 =
Y2

Y1
e−jϕ2 = −j

A1

A2

1
C/ωn2 + DY2

(14)

k∗1 = k1 + A2
1Ku1 + jωn2c1 + jA2

1Ku1
1

C/ωn2 + DY2
(15)

Note that Y1 and Y2 in Equation (14) are always positive, so H2,1 is a pure imaginary
number, and the imaginary part is negative. The loss angle is therefore ϕ2 = π/2, indicating
that the inertia fluid has a phase resonance when λ = 1. By equating the real and imaginary
parts on both sides, the following can be obtained:

ωn2DY2
2 + CY2 −ωn2EY1 = 0 (16)

where E = A1/A2. Solving Equation (16) while keeping Y2 positive, Y2 is obtained:

Y2 =
−C +

√
C2 + 4ω2

n2DEY1

2ωn2D
(17)

Substituting Y2 back into Equation (15), the dynamics can be obtained:

k∗1 = k1 + A2
1Ku1 + jωn2

(
c1 +

2A2
1Ku1

C+
√

C2+4ω2
n2DEY1

)
= k′1 + jk′′1

k′1 = k1 + A2
1Ku1 = k′∞,1, k′′1 = ωn2

(
c1 +

2A2
1Ku1

C+
√

C2+4ω2
n2DEY1

) (18)

where k∗1, k′1, and k′′1 are dynamic stiffness, dynamic stiffness in-phase, and dynamic
stiffness out-of-phase when f → fn2 , respectively. Noted that equation (11) reveals the
amplitude dependence of mid-low-frequency dynamics. However, Equation (18) shows
that, when λ = 1, the dynamic stiffness in-phase k′1 is a constant and independent of
excitation amplitude Y1. That is, under different amplitude excitations, the family of
frequency-variant curves of dynamic stiffness in-phase all pass through the point where
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the frequency is f n2 and the dynamic stiffness in-phase is k′1 = k1 + A2
1Ku1. This is the fixed

point, referred to as R, on passive dynamic stiffness in-phase.

3.3. Experimental Validation of Amplitude Dependence and Fixed Point for Mid-Low-Frequency
Passive Dynamics

The analysis shows that the distinct feature of the passive dynamics of AHM-IT-
DM-OCAs is that a fixed point appears in mid-low-frequency bands due to amplitude
dependence. To verify the amplitude dependence and fixed point, the following experi-
ments are designed and carried out.

Two types of hydraulic mount, as shown in Figure 1, are tested. Figure 1a is PHM-IT-
DM and Figure 1b is AHM-IT-DM-OCA, which degenerates to a PHM-IT-DM when the
actuator is turned off. Their passive dynamics are used in verification of the features above.
The tested results and associated experimental setups are shown in Figures 4 and 5. As
shown in Figures 4f and 5f, the displacement y1 and the transmitted force f 5 are tracked by
the professional sensors of MTS Elastomer Test System.
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Figure 4. Experimental validation of the passive dynamic properties in mid-low-frequency bands and the fixed points
Pi, Qi, Ri, Si, and Ti (i = 1,2) of a PHM-IT and a PHM-IT-DM. (a) Dynamic stiffness modulus; (b) loss angle; (c) dynamic
stiffness in-phase; (d) dynamic stiffness out-of-phase; (e) viscous damping; (f) test rig. Key: The numbers 1–4 correspond to
the PHM-IT under excitation amplitudes of Y1 = 0.4, 0.6, 0.8, and 1.0 mm, respectively [5]; the numbers 5–8 correspond to
the PHM-IT-DM under excitations of Y1 = 0.4, 0.6, 0.8, and 1.0 mm, respectively.
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Figure 5. Experimental validation of the passive dynamic properties in mid-low-frequency bands and the fixed points
P3, Q3, R3, S3, and T3 of an AHM-IT-DM-OCA. (a) Dynamic stiffness modulus; (b) loss angle; (c) dynamic stiffness in-
phase; (d) dynamic stiffness out-of-phase; (e) viscous damping; (f) test rig. Key: The numbers 1–4 correspond to excitation
amplitudes of Y1 = 0.4, 0.6, 0.8, and 1.0 mm, respectively.

Figure 4a–e show the experimental mid-low-frequency dynamics and fixed points of a
PHM-IT-DM shown in Figure 1a. When excitation amplitude Y1 is 0.4, 0.6, 0.8, and 1.0 mm
(curves 5–8, respectively), the dynamics, i.e., the dynamic stiffness k, loss angle ϕ, dynamic
stiffness in-phase k′, dynamic stiffness out-of-phase k”, and viscous damping c, exhibit
their fixed points P2, Q2, R2, S2, and T2, respectively. The fixed points R2 and the amplitude
dependence in mid-low-frequency dynamics are clearly demonstrated as theoretically
predicted in the analysis above. Curves 1–4 are the dynamics of a first-generation hydraulic
mount, i.e., a PHM-IT, and the corresponding fixed points P1, Q1, R1, S1, and T1, have been
reported in [5]. It is noted that, due to differences in the construction and rubber materials
between the previously tested PHM-IT and newly tested PHM-IT-DM, the parameter
values are different, as are the fixed points.

Figure 5a–e show the experimental mid-low-frequency passive dynamics and fixed
points of an AHM-IT-DM-OCA shown in Figure 1b. When the excitation amplitude Y1 is
0.4, 0.6, 0.8, and 1.0 mm (curves 1–4, respectively), the passive dynamics also exhibit fixed
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points P3, Q3, R3, S3, and T3, respectively, and amplitude dependence, as predicted in the
analysis above.

Note that, in five different dynamics curves, as shown in Figures 4 and 5, there always
exists a peak in each curve, which is the resonance peak induced by fluid channel resonance.

Experimental studies have shown that there exists a single fixed point on each of the
five dynamics curves in mid-low-frequency bands. Equation (18) just gives the theoretical
solution of the fixed point, R, in dynamic stiffness in-phase. The solutions of the other four
fixed points involve a challenging mathematical problem, i.e., solvable in terms of radicals
of fifth order and higher algebraic equations. Abel rigorously proved that general algebraic
equations higher than fourth order could not have general-form radical solutions, named
the Abel–Ruffini theorem [14,15]. To determine whether the solutions of the other four
fixed points belong to special equations with solutions in terms of radicals, it is necessary
to study their solvability criteria based on the group theory, and this remains a topic for
further investigation.

4. Analysis and Experimental Validation of Active Dynamics

In this section, the FRFs of a fluid-filled AHM-IT-DM-OCA with both the engine side
and chassis side fixed and with the electromagnetic actuator operating are studied. The
current i serves as an input excitation, and the reaction force f 1 and the force transmitted f 5
to the chassis side are outputs.

4.1. Nonlinear Lumped Parameter Zodel for Active Dynamics

Based on the AHM-IT-DM mechanical model in Figure 2, setting y1 = 0 and y5 = 0, the
relationship between the actuator active force and excitation current is considered. With
the oscillating coil as actuator, the following relationship exists:

fa(t) = Bli(t) = kMi(t) (19)

where B is magnetic induction intensity, l is length of coil, and kM is the voice coil constant,
or so-called electromechanical coupling coefficient. The nonlinear mathematical model for
active dynamics of AHM-IT-DM-OCAs is as follows:

ρl2
..
y2 +

1
2 ρ
(
ξl2 + ξd2

)∣∣ .
y2
∣∣ .
y2 = −p1

m3
..
y3 + c3

.
y3 + k3y3 + A3 p1 = fa

A2y2 + A3y3 = p1/K1
fa(t) = Bli(t) = kMi(t)
f1 = −A1 p1
f5 = c3

.
y3 + k3y3 − (A1 − A3)p1 − fa = f1 −m3

..
y3

(20)

4.2. Analysis of Mid-Low-Frequency Active Dynamics and the Amplitude Dependence and Fixed
Points (f << fn3)

Using the same simplification as in passive dynamics (Section 3.2), we neglect the
inertia and damping forces of the actuator mover in mid-low-frequency bands, f << f n3.
The following nonlinear mathematical model is obtained:

ρl2
..
y2 +

1
2 ρ
(
ξl2 + ξd2

)∣∣ .
y2
∣∣ .
y2 = −p1

k3y3 + A3 p1 = fa
A2y2 + A3y3 = p1/K1
fa(t) = Bli(t) = kMi(t)
f1 = −A1 p1
f5 = k3y3 − (A1 − A3)p1 − fa = f1

(21)



Actuators 2021, 10, 225 11 of 14

After erasing the intermediate variables p1 and y3 and converting the second-order
nonlinear fluid damping in a steady-state harmonic motion into an equivalent viscous
damping, we have:

..
y2 +

(
32µ

ρd2
2
+

4ξd2
3πl2

ωY2

)
.
y2 + ω2

n2y2 = − Ku1
ρl2 A3K3

kMi

f5 = f1 = −A1 A2Ku1y2 − A1Ku1
A3K3

kMi
(22)

where i = Iejωt, and y2, f 1, and f 5 are the same as in Equation (8). The first expression
shows that the active and passive dynamics in mid-low-frequency bands shared the same
fluid channel resonance frequency shown in Equation (7). In the second expression, f 5 = f 1,
which means, in mid-low-frequency bands, the FRFs are from current to engine side, and
those to the chassis side have the same active dynamics.

From Equation (22), we have the following FRFs for y2 and f 5, respectively:

H2a =
Y2

I
e−jϕ2 = − kM

A2 A3K3
· 1

1− λ2 + j(Cλ/ωn2 + DY2λ2)
(23)

− F5

I
= − F1

I
=

A1Ku1

A3K3
kM −

A1Ku1

A3K3
kM ·

1
1− λ2 + j(Cλ/ωn2 + DY2λ2)

(24)

where C, D, and λ are the same as those in Equations (10) and (11). Equations (23) and (24)
show that the mid-low-frequency active dynamics F1/I and F5/I are also frequency- and
amplitude-dependent. If the amplitude I of excitation current is different, the response
amplitude Y2 will also be different. Then, the FRF curves are different. The amplitude
dependence of the active dynamics may also imply the existence of a fixed point. We
discuss the following three cases.

(1) Low-frequency band when λ→ 0 (f << f n2):

− F5

I

∣∣∣∣
λ→0

= − F1

I

∣∣∣∣
λ→0

= 0 (25)

(2) Mid-frequency band when λ→ ∞ (f n2 << f << f n3):

− F5

I

∣∣∣∣
λ→∞

= − F1

I

∣∣∣∣
λ→∞

=
A1Ku1

A3K3
kM = Fi,∞,4 (26)

This result means the following. First, f 5 and f a have opposite directions in the
mid-frequency band, or f 5 lags f a by a phase angle of π, and the two are synchronously
reversed. Second, the active FRFs of the mid-frequency band have only a real part, while
the imaginary part is zero, which indicates the amplitude-frequency characteristics are
equal to the real-frequency characteristics. Third, the active dynamics in the mid-frequency
band tend to a constant, Fi,∞,4, an identical horizontal segment in the curves.

(3) Resonance frequency band where λ→ 1 ( f → fn2 ):
Using the same analysis method as in Section 3.2, we obtain the following:

− F5

I

∣∣∣∣
λ=1

= − F1

I

∣∣∣∣
λ=1

=
A1Ku1

A3K3
kM + j

A1Ku1

A3K3
kM ·

2ωn2

C +
√

C2 + 4ω2
n2DEa I

(27)

where Ea = kM/A2 A3K3. This result shows, when λ = 1, i.e., the excitation frequency is
equal to the fluid channel resonance frequency, the imaginary part still exhibits amplitude
dependence, but the real part is a constant, which is independent of excitation amplitude.
This means that, under different excitation amplitudes, the real-frequency characteristic
curve family all pass through the point where the frequency is f n2 and the real part is
A1Ku1kM/A3K3, which is another fixed point on active real-frequency characteristics.
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4.3. Experimental Validation of Amplitude Dependence and Fixed Point for Mid-Low-Frequency
Active Dynamics

The analysis shows that the distinct features of active dynamics of AHM-IT-DM-OCAs
are amplitude dependence and a fixed point in mid-low-frequency bands.

Figure 6 shows the test rig for active dynamics of an AHM-IT-DM-OCA. The upper
and lower ends of the mount are fixed, and the actuator is excited with a burst random
current i. The forces f 1 and f 5 at upper and lower ends are tracked by two force sensors of
PCB 208C02 and the current is tracked by a current clamp of CHAUVIN ARNOUX E3N.
The FRF curves of f 1 and f 5 with current i as input are obtained, as shown in Figure 7.
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Figure 6. Experimental setup for active dynamics of an AHM-IT-DM-OCA in fluid-filled state.
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Figure 7. Experimental validation for the active dynamic properties in mid-low-frequency bands and the paired fixed
points P5–P5-2, Q5–Q5-2, R5–R5-2, and S5–S5-2 of an AHM-IT-DM-OCA in fluid-filled state. (a) Amplitude and real part of
the FRFs; (b) phase of the FRFs; (c) real part of the FRFs; (d) imaginary part of the FRFs. Key: The numbers 1–5 correspond
to excitation current amplitudes of I = 1, 3, 5, 7 and 9 A, respectively.

Figure 7 shows the tested active dynamics in mid-low-frequency bands, which clearly
reflect the amplitude dependence and fixed points. Figure 7a also shows that the mid-band
amplitude–frequency characteristics and their real part tend to be the same constant, i.e.,
the curves converge to an identical horizontal segment. The experimental phenomena,
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such as amplitude dependence, resonance peak, and horizontal segment, agree well with
theoretical predictions in mid-frequency band. However, Figure 7 also shows the paired
fixed points on each characteristic curve of amplitude, phase, and real and imaginary parts,
such as P5-P5-2, Q5-Q5-2, R5-R5-2, and S5-S5-2, respectively. This is the first time that the
paired fixed points have been demonstrated in experimental results. The analytical results
regarding passive dynamics of AHM-IT-DM-OCA agree well with experiment, while the
active dynamics also agree with the experiment, except the fixed point. The fundamental
difference in active and passive dynamics is that the electromagnetic actuator is powered
on or powered off. The mechanism for paired fixed points in active dynamics should be
investigated in the future, considering the actuator structure and dynamic characteristics
of electromagnetic induction.

5. Conclusions

• A unified lumped parameter mechanical model with two DOFs is established for PHM-
IT-DMs and AHM-IT-DMs. Considering that the fluid channel resonance frequency
is far less than the resonance frequency of the decoupler/mover, the active and
passive dynamics may be divided into mid-low-frequency dynamics and mid-high-
frequency dynamics. In mid-low-frequency bands, the inertia and damping forces
of decoupler/mover may be neglected, and a 1-DOF nonlinear lumped parameter
mathematical model can be obtained.

• The 1-DOF nonlinear lumped parameter mathematical model for mid-low-frequency
bands exhibits several distinct features in active and passive dynamics, such as ampli-
tude dependence, fixed point, resonance peak, and horizontal segment.

• The fundamental reason for amplitude-dependent dynamics is the amplitude de-
pendence of local loss at the entrance and outlet. Amplitude-dependent dynamics
represent a precondition for the existence of a fixed point.

• Since the inertia of the decoupler/mover may be neglected in mid-low-frequency
bands, the drive point and cross point dynamics are identical.

• A single fixed point in passive dynamics for an AHM-IT-DM-OCA is revealed in the
analysis and experiment. In the meantime, a pair of fixed points in active dynamics is
newly revealed in the experiment. This paired appearance of fixed points is a new is-
sue, and its mechanism should be investigated considering the dynamic characteristics
of electromagnetic induction.
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