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Abstract: With the fast development of infrastructure and communication technology, the Internet
of Things (IoT) has become a promising field. Ongoing research is looking at the smart home
environment as the most promising sector that adopts IoT and cloud computing to improve resident
live experiences. The IoT and cloud-dependent smart home services related to recent researches
have security, bandwidth issues, and a lack of concerning thermal comfort of residents. In this
paper, we propose an environment optimization scheme based on edge computing using Particle
Swarm Optimization (PSO) for efficient thermal comfort control in resident space to overcome the
aforementioned limitations of researches on smart homes. The comfort level of a resident in a
smart home is evaluated by Predicted Mean Vote (PMV) that represents the thermal response of
occupants. The PSO algorithm combined with PMV to improve the accuracy of the optimization
results for efficient thermal comfort control in a smart home environment. We integrate IoT with edge
computing to upgrade the capabilities of IoT nodes in computing power, storage space, and reliable
connectivity. We use EdgeX as an edge computing platform to develop a thermal comfort considering
PMV-based optimization engine with a PSO algorithm to generate the resident’s friendly environment
parameters and rules engine to detects the environmental change of the smart home in real-time to
maintain the indoor environment thermal comfortable. For evaluating our proposed system that
maintenance resident environment with thermal comfort index based on PSO optimization scheme
in smart homes, we conduct the comparison between the real data with optimized data, and measure
the execution times of optimization function. From the experimental results, when our proposed
system is applied, it satisfies thermal comfort and consumes energy more stably.

Keywords: edge computing; EdgeX; microservice; optimization; smart home; thermal comfort

1. Introduction

With the fast development of infrastructure and information technology, the IoT
has become a promising field in the domain of global information and communication
technology. Several industries have integrated the concept of the IoT into their traditional
products and services to facilitate their use by consumers. In addition, the practice and
scientific fields of the ICT domain have also changed. Previous studies have shown
that the IoT has significantly influenced the overall structure, business philosophy, and
future direction of the industry [1]. Current research is also looking at the smart home
environment, one of the most promising environments for the adoption and employing of
the IoT [2].

A smart home is one of the applications of the IoT, which is the connectivity of physical
objects that allows a digital device, sensor, application, and network communication inside
a home [3]. Many definitions have been used to design and define smart homes. Definitions
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vary depending on the point of view. The author [4] describes a smart home as a user
armed with a technology of computing and information, which inference and reacts to the
requirement of the residents, trying to improve their living experiences such as convenience,
comfort, and security by the control system within the home environment and connections
to the world beyond. The author [5] introduces a smart home as a combination of every
service within a home through adopting a common internet protocol. The system provides
an intelligent ability and flexibility to assures the users with a secure, economic, and
comfortable life at home. The author [6] explain smart homes are a building that armed
with sensors and actuators. The control devices could be ventilation, lighting, heating, air
conditioning. There is a control system called “gateways”, which provides communication
ability to connect switches and sensors. The control system develops a user interface that
allows consumers to interact with the system through a smartphone, a tablet, or a laptop.

With the advancement of technology, more and more people are working at home and
wherever they feel comfortable place [7]. Since the mood of the residents and productivity
of the employees are influenced by the quality of the place where they working and living,
thermal comfort management is an important task [8]. There are studies to implement a
smart home control system using the IoT and microcontrollers to manage the attributes
of the environment. It detects and controls the home environment through IoT devices,
and monitors manage environmental changes through mobile devices or web pages. The
study [9] develops remote and microcontrollers with Android mobile phones to deploy a
control system on Arduino Uno and provide connectivity through Wifi to create a smart
home control system. The system provides capabilities such as turning lights on and off,
opening and closing the door of the home, turning faucets on and off, and monitoring
the condition of the house via video surveillance. The test results of home prototypes
with Android mobile phones show us that the manage distance of household electronic
devices is up to 150 m, and media can directly monitor the condition of the house through
CCTV at a distance of monitor up to 100 m. Research [10] is working to make their homes
environmentally friendly. The system enables users to manage energy usage and decrease
cost by controlling light, watering, and usage monitoring. Mobility and smartphone
technology provides users the ability to manage their home electronic devices through
smartphones. The remote devices control enables users to complete manages before
going home. The proposed home control system prototype allows users to remotely
turn on or off any device of the IoT via an improved solar charger. However, the IoT is
typically characterized by widely distributed devices with limited processing capabilities
and storage. These IoT devices encounter issues regarding performance, reliability, privacy,
and security [11]. In addition, it lacks an automation function that monitors the indoor
environment of a smart home in real-time to maintain an optimized environment for
the occupant.

There is a paradigm that encompasses a huge network with unlimited repository
capacity and computing power, which is called cloud computing. In addition, it provides
flexibility to the data managed by cloud computing through dynamic data combinations
from different resources of data [12]. The IoT has challenges with reliability, security,
privacy, and performance that are raised by limited possibilities such as computing power
and storage. The combination of IoT with cloud computing is a solution to deal with most
of the issues [13]. In addition, the cloud is user-friendly and reduces costs for end-users
who use applications and services. With the cloud, the process of IoT data collection
and processing is simplified, and it provides fast and low-cost setup and integration for
comprehensive data treating and provisioning [14]. The research [15] suggests using
several IoT devices with some digital assistants provided by Amazon, Google, Apple, or
Microsoft to receive voice commands of people who have physical disabilities to manage
the smart home devices. The research [16] introduces a small house IoT convection device
with the implemented system which provides remote control. To provide a comfortable
environment to the resident, the control module collects data from sensors and residents to
calculate optimized environment parameters, and adopt the results to the IoT convection
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system. Cloud computing is used to store all the data collected from IoT sensors and
produce optimal parameters for thermal comfort inside the home. The system enables
users to adjust the temperature of a smart home not only from a smartphone or web page
but also from the local home networking system. However, security is a problem in the
integration of IoT and cloud computing. Since the IoT devices and cloud-connected by
the internet, there are many possibilities of attacks on both the IoT devices and cloud
side [17]. In the context of IoT, encryption can be used to maintain data confidentiality and
integrity. However, with the limited capabilities, insider attacks are hard to resolve by the
IoT [18]. With constrained bandwidth for transfer data, cloud computing with centralized
architectures has a problem in computing and analyzing the huge data gathered from IoT
sensors [19].

In this paper, we propose a thermal comfort considering optimization scheme based
on edge computing using the PSO algorithm for efficient thermal comfort control in a
smart home environment. We integrate IoT with edge computing to extend the resources
of the IoT devices. Edge computing assists computing and storing resources with reliable
connectivity close to the IoT devices. We use EdgeX as an edge computing platform to
develop a PMV-based optimization engine with a PSO algorithm to generate the resident’s
friendly environment parameter and rules engine to detects the environmental change of
the smart home in real-time to maintain the indoor environment thermal comfortable.

The following is our contributions:
We developed an autonomous thermal comfort maintenance system through the

integration of the PSO algorithm and the PMV model for a smart home.
We overcome the shortcoming of IoT devices by using edge computing.
The rest of this paper is structured as follows. In Section 2, we explored research

related to edge computing and research related to optimization. In Section 3, the design
of the smart home space and environment optimization scheme for efficient thermal
comfort control is presented. In Section 4, introduces the development environment and
experimental results. The evaluation results are presented in Section 5. Concludes our
work in Section 6.

2. Related Works

Smart homes communicate with a lot of electronic home appliances based on IoT to
support residents effectively. All the IoT devices in smart homes would interoperate with
one another in the ideal future. The IoT-based smart home paradigm has significantly
influenced the quality of human life by enables communications to everybody regardless
of space and time [4]. The connected smart home appliances support an opportunity
for the occupant of a smart home to effectively control their energy consumption while
improving experience and comfort [20]. The automated control system has the possibility to
enhance the experience of life and facilitate independent living [21]. Users can benefit from
maintaining a convenient living environment or reducing energy consumption through a
smart home, but at the same time, there are shortcomings. Various standards of IoT devices
and their dependence on the cloud affect the performance of smart homes [22].

Edge computing is a promising technology that provides sufficient connectivity and
stable computing power in terms of smart home applications [23]. The advent of the
edge computing paradigm is the achievement of low latency, a bandwidth-efficient goal
that can not only implement processes but also process large amounts of data at the
network edge [24]. Edge computing supports compute and storage resources by providing
reliable connections near IoT devices. Edge computing has several advantages over cloud
computing. First, edge computing supports lower connection costs, by reducing data
transmission and storing data locally [25]. Second, edge computing provides better security
because less sensitive information is sent to cloud servers. In addition, it provides a reliable
and uninterrupted network connection, more specifically, the local data processing and
storage of IoT applications consume less bandwidth [26]. The study [27] introduces an
edge computing platform-dependent smart home power demand inferencing system. The
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system uses an electric meter as a sensor to collect data to forecast the next day’s power
demand. The system integrates with edge computing to provide capabilities such as
collecting power usage data in real-time, improving data privacy, fast processing, low
latency, and sufficient computing resource. Besides, using edge computing instead of cloud
to offloading tasks to reduce bandwidth and response time. To satisfy the smart home
application and power control, the study [28] proposes a sustainable edge computing-
based power controlling framework. the purpose of this framework is to reduce the electric
cost while making full use of renewable energy. The framework was developed with
tiny and affordable computers. The study [29] using multiple microcontrollers to design
an edge gateway for providing enhanced computing power to the IoT devices. With
the enhanced computing power of the gateway, the industrial IoT system reduces the
delay time of transferring the information to the cloud and decreases the response time
of communication with IoT nodes. The edge gateway selects low-cost microcontrollers to
conduct distributed computing that further shortens the power usage.

There are the following frameworks to implement edge computing. Microsoft Azure
introduce Azure IoT Edge to develop edge computing. To simplify the implementation
of services of image recognition and machine learning and other services, there are many
functionalities provided such as Azure ML, Azure stream analytics, and Azure functions.
The edge nodes could be any devices supporting computing capabilities [30]. AT&T initiate
an ONF project CORD [31] to use the resource of network infrastructures to construct
edge data centers. Network equipment providers offer closed proprietary integrated
network infrastructure systems. Due to the reliance on network equipment suppliers,
networking opportunities with network operators are difficult to manage. Therefore,
computer and network resources are wasted. CORD utilizes the wasted resource of
network infrastructures to construct data centers through network function virtualization
and software-defined networks functionalities. It uses reconstructed data centers to provide
clouds capabilities at the edge of the network. EdgeX edge computing platform is a vendor-
neutral open source for implementing an edge computing paradigm. Since EdgeX is
a vendor-neutral platform, it could be installed on any device that provides computing
resources including routers, gateways, and other nodes. EdgeX is implemented by dividing
functions into several layers. In particular, in the connection layer, there are microservices
implemented with various protocols, and by providing a framework, users can easily
implement connection services using the desired connection protocol. In the development
language, not only Java but also C and Go lang languages can be used to implement
services [32]. When comparing the investigated platforms, EdgeX was selected as the
development platform, which can satisfy the requirements of heterogeneous devices of the
IoT devices without depending on the development language as well as on the device.

The optimization problems consist of finding the best solution from all possible so-
lutions that can be solved by optimization functions. There are exact and approximate
optimization methods [33]. The small-scale optimization problems are suitable with exact
methods. Instead, the high-dimensional optimization problems are suitable with approx-
imate methods [34]. Due to their performance in investigating high dimensional search
spaces, approximation methods are more effective than precision methods in solving the
problem of power scheduling in a smart home. The approximation functions are compris-
ing approximation algorithms and heuristic/metaheuristic algorithms [35]. Some studies
implement a smart home energy management system using a metaheuristic algorithm to
optimize the power consumption of home appliances. The author [36] introduces Binary
PSO (BPSO) and Genetic Algorithm (GA) to optimize Peak-to-Average Ratio (PAR) and
Electricity Bill (EB). The total EB is calculated with the time of use pricing mechanism in
the scheduling tasks for the executions of smart home appliances for a day. The author [37]
presents a home energy management system to deficiently control home appliances. The
objective of the system reduces EB while peak periods. To generate an appropriate schedul-
ing scheme for home appliances the PSO and GA metaheuristic optimization algorithms
are adopted. The author [38] uses the BPSO optimization algorithm to balance the working
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capacity in a smart home. The power is supported by traditional and green energy. The
optimization problem is aim at minimizing the EB and maximizing the power consumption
of green energy. The researchers are considering user comfort level as one of the objectives
of optimization problems. The delay time rate of the executing for actuators is used to eval-
uate the user comfort level [39]. However, the authors ignore the user’s thermal comfort
by focusing on minimizing energy use and maximizing user satisfaction, i.e., the running
time of home appliances.

The PSO is a promising optimization algorithm. Due to its ease of implementation,
high convergence speed, parallel operation, it has been employed by a variety of applica-
tions [38]. To satisfy resident thermal comfort in smart homes, we select the PSO algorithm
to develop our proposed PMV based optimization scheme for efficient thermal comfort
control in a smart home environment.

3. Design of Smart Home Space and Environment Optimization Scheme for Efficient
Thermal Comfort Control

Due to the continuous development of the Internet of Things, people’s living environ-
ments are greatly affected. In particular, the study of the smart home is transforming the
house into a more intelligent and smarter object rather than a simple living environment.
Through smart homes, people are benefiting from the customized housing environment
in the popular housing environment. In order to provide a residential environment cus-
tomized for resident thermal comfort, we propose an environment optimization scheme
based on edge computing using PSO for efficient thermal comfort control in resident space.
The proposed housing environment was designed as follows.

As shown in the following Figure 1, the proposed system consists of edge computing
and a smart home environment component. The smart home environment is a space where
the occupant lives. The environment is equipped with temperature, humidity sensors, and
heating actuators. Temperature sensors are installed both inside and outside the house
to collects temperature information around the house. Similarly, humidity sensors are
used to collect information about the humidity around the house. The edge computing
components connect with sensors and actuators via the internet. The smart home-related
software services are located on the edge computing component. The service consists of
three layers. The devices connectivity layer provides a connection to IoT devices, the core
services layer conducts supporting services, and the environment optimization services are
located on the top of the layers.

To provide the best living environment to users, we propose the following system
structure. It consists of three tiers: smart home, IoT device, and edge computing platform.

Since it is not possible to build a smart home physical environment, we design a
smart home environment emulator as follows. The smart home environment emulator
consists of an indoor environment inference model, a power inference model, an outdoor
environment generator, and a smart home environment data. The smart home emulator
trained an indoor environment inference model based on the smart home environment
data to generate the parameters of the indoor home environment. In response to the data
transmitted from the actuator, it outputs the indoor home environment data for the next
period. Also, the power inference model is trained with the LSTM deep learning algorithm
based on smart home environment data. Based on the external input data, the energy used
in the next period is output. The outdoor environment data is extracted based on the smart
home environment data. All data is input to the edge computing platform through the
sensors of the IoT devices layer.

IoT devices are directly connected to the smart home and serve to transfer data be-
tween the edge computing platform and the smart home. The edge computing platform is
running services to provide a suitable living environment for residents. It mainly includes
the EdgeX framework and optimization engine. Core data stores data input from IoT
devices and transmits it to the rule engine at the same time. The rule engine compares it
with a predefined rule and, if matched, proceeds with a corresponding reaction. EdgeX
framework detects environmental changes through the rules engine. Core commands are
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responsible for sending commands to IoT devices. To optimize the thermal comfortable in-
door environment parameters, the optimization engine initializes a population of candidate
solutions based on data that feed on the rules engine and updating these candidates around
in the search space according to the best PMV level over the particle’s attributes such as
velocity and position. With each iteration, each particle is updated by its local best position,
but it is also guided to the best position in the search space and these positions are updated
as other particles find better positions. Finally, it prints out the optimal temperature and
humidity values to the rules engine. The detailed information please refer to Figure 2.

The well-known thermal comfort model PMV [40] is developed in 1970 and employed
by Standard 55 of ASHRAE [41]. To design a ventilation system and evaluate acceptable
indoor air quality, the standard is adopted. The thermal comfort level is ranging from −3
to 3 to represent the thermal response of occupants such as cold, cool, slightly cool, neutral,
slightly warm, warm, and hot. The PMV level is influenced by environmental factors
and vital factors such as air temperature, mean radiant temperature, relative humidity, air
velocity, metabolic rate, and clothing insulation. The corresponding comfort level takes the
form of the regression function.

In this paper, we use the following features to training the PMV inference linear
regression model. There are environmental features such as indoor air temperature (Top),
relative humidity (Rh), outdoor temperature (Tout) as well as personal features like clothing
insulation (Clo) and metabolic rates of activity (MET). The factors of the PMV inference
model are presented in Table 1.
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Table 1. The Factors of PMV Inference Model.

Definition Description

Top Indoor air temperature

Rh Indoor relative humidity

Met Metabolic rates of activity

Tout Outdoor temperature

Clo Clothing insulation

For the convergence of the PMV inference linear regression model, we use the stochas-
tic gradient descent scheme (SGD). The SGD is an iterative function to optimize an objective
function with suitable smoothness properties. Linear regression is machine learning which
trying to minimizing a loss function that has the form of a sum:

L(w) =
1
n

n

∑
i=1

li(w) (1)

In the formula, for minimizing L(w), the parameter w is to be estimated. The ith
observation from the dataset (for training) is associated with every summand Li. The
following formula is adopted to perform a standard gradient descent method:

w = w− α∇L(w) = w− a
n

n

∑
i=1
∇Li(w) (2)

The α is called the learning rate and affects the convergence rate of machine learning.
In general, the evaluation of the summation gradient may require an expensive evaluation
of the gradients of all added functions. If the training set is large and there is no simple for-
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mula, the sum of the evaluation gradients becomes very expensive because the evaluation
gradient has to evaluate the gradients of all added functions. To save the computational
cost of each iteration, the stochastic gradient descent samples a subset of the added function
at each step. This is very effective for large-scale machine learning problems.

We integrate the PSO mechanism with the PMV model to find out the comfortable
temperature and humidity of the indoor environment for the occupant. PSO iteratively
improves a candidate solution with a given measure of quality to optimize a problem. To
optimize a problem, it initializes a population of candidate solutions, here dubbed particles,
and updating these candidates around in the search space according to a given formula
over the particle’s attributes such as velocity and position. The movement of each particle
is influenced by its local best position, but it is also guided to the best position in the search
space and these positions are updated as other particles find better positions.

We instance a PMV model as pmv and initialize target thermal comfort level and target
error as target and target-error accordingly. We initialize the S as the number of particles
in the swarm, each having a position xi in the search space and a velocity vi. The xi is
Initialized with a random vector from current temperature and humidity that is feed from
a smart home. The pi are the best-known position of particle i and the g be the best-known
position of the entire swarm. The particles represent the candidate solution which is the
comfortable temperature and humidity. With the iteration, each particle would have a
thermal comfort level (TCL) through the PMV model. To find the best environmental
variable under a termination criterion, pi or g compares the distance from the target value
in each iteration and substitutes a closer value. The break criterion would be a number of
iteration or a condition that the PSO finds the best environment parameter. The particles
and velocity are updated at the end of an iteration through a simple formula. Figure 3,
introduces the PSO algorithm of PMV based optimization scheme.
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To evaluate the performance of our proposed system, an experiment is conducted
according to the following procedure. First, in the smart home environment emulator, envi-
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ronment parameters request current data from smart home environment data. The smart
home environment data includes ts indicating the order, it and ih indicating the indoor
temperature and humidity, and ot and oh indicating the external environment temperature
and humidity. Finally, power data used to maintain the environment is included. The
requested data is delivered as an event to the core data of the edge computing platform.
Core data stores the received data and then publishes it as an event for the rules engine
to process. The rule engine detects events and maps them to the registered rules. After
mapping, processing proceeds according to the rules. Here, the optimal environmental
data is requested based on the currently collected data through the optimization engine.
The optimized data is transmitted back to the smart home environment emulator. Based on
the optimization data, the smart home environment uses the power inference model, the
indoor environment inference model, and the outdoor environment generator to generate
the indoor temperature and humidity at the next time, the energy used, and the outdoor
temperature. Finally, it passes back to the edge computing platform to get back the optimal
parameters. This cycle goes 96 times. Figure 4, illustrates the sequence diagram of the
proposed system operation for efficient thermal comfort in the smart home.
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Figure 4. Sequence Diagram of Proposed System Operation for Efficient Thermal Comfort.

4. Implementation and Result

The structure of our proposed system is implemented as shown in Figure 5. Indoor or
outdoor data is generated in a virtual smart home environment, and the generated data is
transmitted to the edge computing platform by sensors, which are IoT devices. The data
collected from sensors would feed to the optimization engine as input. The optimization
engine returns the optimum temperature and humidity for the current environment state
based on the temperature and humidity which is input from sensors. Finally, the optimal
temperature and humidity are transferred to the actuator, which is an IoT device, and
applied to the virtual smart home environment. By repeating the above procedure, it is
always executed to keep the virtual smart home environment in an optimal state.
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Figure 5. Developed Structure of Smart Home Environment Optimization Scheme based on Edge
Computing Platform.

Our proposed system was implemented in the following development environment.
To better understand and reflect the patterns of given environmental data, we developed
PMV inference models, Power inference models, and Indoor environment inference models
using the TensorFlow platform and Python language. The PSO algorithm based on the
PMV inference model that optimizes the user’s appropriate environment temperature
and humidity was also developed based on the Python language. The rule engine is
implemented based on Java to detect changes in the environment of the smart home in
real-time and respond according to appropriate rules. The overall development was carried
out using a Windows-based desktop. Refer to Table 2 for specific development environment
settings.

Table 2. Specifications of Development Environment for Environment Optimization Scheme based on Edge Computing
Platform.

Hardware Software

Desktop

OS Windows 10 Library
Java A statically typed and compiled language

Python A dynamically typed and interpreted language

CPU Intel® core™
i5-8500

Application
Eclipse An integrated development environment for java

Pycharm An integrated development environment for
python

Memory 64 GB Framework
Spring boot It easy to create stand-alone, production-grade

Spring based Applications that you can “just run”

Flask A microframework for Python web application

Hard Disk 500 GB Platform TensorFlow An opensource platform for machine learning

Figure 6, presents the source code of implemented PMV based PSO algorithm. The
PSO algorithm has been implemented in several classes. The Particle class at line 5 is
a set of optimum temperature and humidity for our purposes. At the beginning of the
program execution, values are generated randomly based on the current temperature and
humidity mentioned in line 7. Depending on the value of the variable called velocity, the



Actuators 2021, 10, 241 11 of 16

value is repeatedly updated until the optimal value is found. The Space class at line 15
is responsible for finding the optimal value for each loop. In the fitness function at line
23, we find the values of temperature and humidity that generate the optimal thermal
comfort index by finding the PMV for the parameters of the temperature/humidity set in
the particle. Lastly, the PSOAlgorithm class at line 51 is a class where the main function to
find the optimal value using space and particles is located. When the PSOAlgorithm class is
created, the initialization function is executed. The number of iterations, the error range, the
number of particles, the target value, and the current temperature and humidity is entered
as parameters. Here, the number of iterations refers to the number of attempts to find
the optimal environmental variable, the target value refers to the optimal environmental
variable to be found, that is, the thermal comfort level and the error range expresses the
allowable error value. When the optimization function in line 59 is called, the Space class
and particles are initialized by the number of particles and the temperature and humidity
values. And the while function is executed, the break criterion of the while function would
be a number of iteration or a condition that the PSO finds the best environment parameter.
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5. Performance and Evaluation

For evaluating our proposed resident environment maintenance with thermal comfort
index based on PSO optimization scheme in smart homes. We conduct a comparison
between the real data with optimized data. We experiment with our proposed system
with one day of the ORNL dataset [42]. The ORNL dataset was sensing from a home
where it is located in Campbell, United States. The dataset is composed of 35,040 rows and
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several sensing data of indoor and outdoor climate such as temperature and humidity. We
predict the PMV of thermal comfort, which is inference with the optimized temperature
and humidity for maintenance house thermal environment. Once the indoor environment
data is provided from the simulated smart home, then the PSO-based optimization engine
would invoke to predict the optimized temperature and humidity then applied to the smart
home to maintain thermal comfort of resident in a house.

The following Figure 7 shows the results of the temperature data collected in our
experiment. With the graph, you can easily understand the difference in temperature that
using the optimization method and the unused data. The bottom graph reflects changes
from the original temperature data. The indoor temperature varies between 18.37 and
20.21, with an average temperature of 18.90, with most readings below 20. Conversely, the
experimental results using our proposed optimization method lie between 18.65 and 21.92.
Compared to the original data, the average temperature using our proposed optimization
method is 21.25, maintaining a warmer environment.
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Figure 7. Comparison Results between Current and Optimized Indoor Temperature for Efficient
Thermal Comfort Control.

Figure 8 shows the current indoor humidity and optimized indoor humidity data.
When using our optimization method, changes in humidity are not as sharp as changes
in temperature. The current humidity fluctuates at 45.49 degrees left and right, while the
optimized temperature is changing at 43.02 degrees left and right. However, we have much
better humidity stability since the deviation was less than 1.3, where for original data it
was almost 2.

Figure 9 shows the current indoor thermal comfort index and optimized indoor
thermal comfort index data. The current PMV fluctuates at −0.280 degrees left and right,
while the optimized temperature is changing at 0.228 degrees left and right. The results
show us that the optimized PMV is warmer than the current PMV.

Figure 10 is the result of power usage. The following figure shows the data of energy
used to maintain the indoor environment as a graph. As can be seen from the figure, the use
of energy is more stable while using the optimization method. The current indoor overall
power usage is 3667 and the optimized power usage is 3871. Our proposed system maintains
a comfortable indoor environment for residents and uses more energy than the original data
in terms of power, but there is no noticeable difference, with a difference of 204.

Figure 11 shows the result of measuring the time required of the optimization function.
The unit is milliseconds and the maximum time required is 54, which returns optimal
results in a very short time. Most of the travel time is on the left and right of 33 and 42. In
conclusion, it can be seen that it is executed almost in real-time.



Actuators 2021, 10, 241 13 of 16
Actuators 2021, 10, x FOR PEER REVIEW 13 of 16 
 

 

 

Figure 8. Comparison Results between Current and Optimized Indoor Humidity for Efficient Ther-

mal Comfort Control. 

 

Figure 9. Comparison Results between Current and Optimized Indoor PMV for Efficient Thermal 

Comfort Control. 

 

Figure 10. Comparison Results between Current and Optimized Indoor Consumption Power. 

0

10

20

30

40

50

60

1 5 9 131721252933374145495357616569737781858993

Humidity

Without Optimization With Optimization

-0.6

-0.4

-0.2

0

0.2

0.4

1 5 9 131721252933374145495357616569737781858993

PMV

Without Optimization With Optimization

0

20

40

60

80

1 5 9 13172125293337414549 53 57 6165 69 737781858993

Power

Without Optimization With Optimization

Figure 8. Comparison Results between Current and Optimized Indoor Humidity for Efficient Thermal Comfort Control.

Actuators 2021, 10, x FOR PEER REVIEW 13 of 16 
 

 

 

Figure 8. Comparison Results between Current and Optimized Indoor Humidity for Efficient Ther-

mal Comfort Control. 

 

Figure 9. Comparison Results between Current and Optimized Indoor PMV for Efficient Thermal 

Comfort Control. 

 

Figure 10. Comparison Results between Current and Optimized Indoor Consumption Power. 

0

10

20

30

40

50

60

1 5 9 131721252933374145495357616569737781858993

Humidity

Without Optimization With Optimization

-0.6

-0.4

-0.2

0

0.2

0.4

1 5 9 131721252933374145495357616569737781858993

PMV

Without Optimization With Optimization

0

20

40

60

80

1 5 9 13 1721252933374145495357616569737781858993

Power

Without Optimization With Optimization

Figure 9. Comparison Results between Current and Optimized Indoor PMV for Efficient Thermal Comfort Control.

Actuators 2021, 10, x FOR PEER REVIEW 13 of 16 
 

 

 

Figure 8. Comparison Results between Current and Optimized Indoor Humidity for Efficient Ther-

mal Comfort Control. 

 

Figure 9. Comparison Results between Current and Optimized Indoor PMV for Efficient Thermal 

Comfort Control. 

 

Figure 10. Comparison Results between Current and Optimized Indoor Consumption Power. 

0

10

20

30

40

50

60

1 5 9 131721252933374145495357616569737781858993

Humidity

Without Optimization With Optimization

-0.6

-0.4

-0.2

0

0.2

0.4

1 5 9 131721252933374145495357616569737781858993

PMV

Without Optimization With Optimization

0

20

40

60

80

1 5 9 131721252933374145495357616569737781858993

Power

Without Optimization With Optimization

Figure 10. Comparison Results between Current and Optimized Indoor Consumption Power.



Actuators 2021, 10, 241 14 of 16

Actuators 2021, 10, x FOR PEER REVIEW 14 of 16 
 

 

Figure 11 shows the result of measuring the time required of the optimization func-

tion. The unit is milliseconds and the maximum time required is 54, which returns optimal 

results in a very short time. Most of the travel time is on the left and right of 33 and 42. In 

conclusion, it can be seen that it is executed almost in real-time.  

 

Figure 11. Results of Optimization Engine Execution Time for Environment Optimization. 

We experiment with the proposed system in a simulated smart home environment. 

The smart home environment parameters are supported from one day of the ORNL da-

taset. From the experimental results, our proposed system maintained a better environ-

ment than the original data in temperature and humidity. Although the energy consump-

tion was slightly overdone, it did not negatively affect the real-time processing capability 

of the IoT. The shortcomings of the resource shortage of IoT devices were covered by the 

introduction of edge computing, and the thermal comfort level was automatically main-

tained in the smart home through the integration of the PSO algorithm and the PMV 

model. 

6. Conclusions 

In this research, we investigate smart home control-related technologies. We discover 

that IoT devices not only lack processing and storage capabilities but also lack an automa-

tion function that monitors the indoor environment of a smart home in real-time to main-

tain an optimized environment for the occupant. To maintain an indoor environment with 

optimized temperature and humidity, we Implement an environment optimization 

scheme for efficient thermal comfort control in a smart home environment. The optimiza-

tion scheme depends on the PMV index to consciousness thermal comfort of smart home, 

realized with PSO algorism. We integrate IoT with the edge computing paradigm to en-

hance the capability of IoT devices. The EdgeX platform is used to develop a rules engine 

to sense the environment parameter of the smart home and control the indoor environ-

ment thermal comfortable. With the experimental results, the proposed system provides 

a better environment than the original data. Although the power consumption is not ideal, 

it did not affect the real-time processing capability of the IoT. Through edge computing 

and IoT integration, the drawbacks of the IoT are solved, and the thermal comfort level 

was automatically maintained in the smart home through the implementation of the PSO 

algorithm and the PMV model. 

The future work would be oriented on executing the system for a real smart home 

environment or integrate a cloud computing paradigm to offloading powerful computing 

tasks to it to improve computing performance. Cloud computing provides flexible com-

puting and storage space, but network latency would be a challenge to integrate with IoT 

and edge computing. 

Figure 11. Results of Optimization Engine Execution Time for Environment Optimization.

We experiment with the proposed system in a simulated smart home environment.
The smart home environment parameters are supported from one day of the ORNL dataset.
From the experimental results, our proposed system maintained a better environment than
the original data in temperature and humidity. Although the energy consumption was
slightly overdone, it did not negatively affect the real-time processing capability of the IoT.
The shortcomings of the resource shortage of IoT devices were covered by the introduction
of edge computing, and the thermal comfort level was automatically maintained in the
smart home through the integration of the PSO algorithm and the PMV model.

6. Conclusions

In this research, we investigate smart home control-related technologies. We dis-
cover that IoT devices not only lack processing and storage capabilities but also lack an
automation function that monitors the indoor environment of a smart home in real-time to
maintain an optimized environment for the occupant. To maintain an indoor environment
with optimized temperature and humidity, we Implement an environment optimization
scheme for efficient thermal comfort control in a smart home environment. The optimiza-
tion scheme depends on the PMV index to consciousness thermal comfort of smart home,
realized with PSO algorism. We integrate IoT with the edge computing paradigm to en-
hance the capability of IoT devices. The EdgeX platform is used to develop a rules engine
to sense the environment parameter of the smart home and control the indoor environment
thermal comfortable. With the experimental results, the proposed system provides a better
environment than the original data. Although the power consumption is not ideal, it
did not affect the real-time processing capability of the IoT. Through edge computing
and IoT integration, the drawbacks of the IoT are solved, and the thermal comfort level
was automatically maintained in the smart home through the implementation of the PSO
algorithm and the PMV model.

The future work would be oriented on executing the system for a real smart home
environment or integrate a cloud computing paradigm to offloading powerful computing
tasks to it to improve computing performance. Cloud computing provides flexible comput-
ing and storage space, but network latency would be a challenge to integrate with IoT and
edge computing.
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