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Abstract: A typical man–machine coupling system could provide the wearer a coordinated and
assisted movement by the lower limb exoskeleton. The process of cooperative movement relies on
the accurate perception of the wearer’s human movement information and the accurate planning and
control of the joint movement of the lower limb exoskeleton. In this paper, a neural network and a
Long-Short Term Memory (LSTM) machine learning model method is proposed to predict the actual
movement trajectory of the human body’s lower limbs. Then a wearable joint angle measurement
device was designed for gait trajectory prediction, which can be used for predictive control through
machine learning methods. The experimental results show that the LSTM model can accurately
predict the gait trajectory with an average mean square error. This method has practical significance
for prediction the trajectory of the lower limb exoskeleton.

Keywords: lower limb exoskeleton; gait trajectory prediction; Long Short-Term Memory (LSTM);
wearable measurement device

1. Introduction

The exoskeleton is a mechanical device that can enhance a human’s strength and
endurance. It detects the position of the exoskeleton and the movement intention of the
human body in real-time through several kinds of sensing technology [1]. The brain
is responsible for sending out movement intention and maintaining it [2]. The human
body is responsible for issuing movement intentions and maintaining movement stability.
Simultaneously, the exoskeleton coordinates movements with the human body and bears
loads according to the human movement intentions [3]. In this way, the human body
and the exoskeleton robot are combined. The assisted exoskeleton can guide the wearer’s
movement in a predetermined trajectory by applying the necessary torque around the
joints. Therefore, generating motion trajectories is a prerequisite to controlling exoskeleton
robots [4,5]. Suppose motion trajectories can be predicted and incorporated into the control
algorithm. In that case, this may help with delays in control response time due to the
inclusion of feedforward terms to compensate for the system’s data operations. Both
model-based and machine learning-based approaches have been extensively investigated
in motion trajectory prediction [6].

Model-based optimization methods are popular for predicting motion trajectories
from biomechanical models, such as hill-type muscle models, musculoskeletal models,
and models that calculate energy loss under specific constraints. BLEEX in the USA was
the first to use sensitivity amplification control (SAC) [7], which does not require any
sensors in the human body or between the human body and the machine. Instead, it
follows a predetermined ideal motion trajectory based on plantar sensor signals. This
method requires identifying the physical parameters of the exoskeleton and the human
body accurately, such as mass and inertia, to achieve the control effect. Otherwise, the
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higher sensitivity will enlarge the system’s response due to the inconsistency of the motion
between the human and machine. In some research, the control strategies are altered
to position control to minimize the interacting forces between the human body and the
exoskeleton during movement. In this case, an electromyographic (EMG) signal is used to
detect the wearer’s moving intention. Potentiometers and gyroscopes are also employed to
detect the operating state of the exoskeleton system. Some researchers also use mapping
relations to obtain the ideal torque required for the knee joint.

According to the actual angle of joint measured by the encoder of the serial elas-
tic actuator (SEA), the inference result of SEA can be attained. With this method, the
proportional-differential control of the DC motor can be realized. The reliability and appli-
cability of these methods rely on accurate biomechanical models. As such, deviations in
the model will affect the prediction of the gait trajectory. In short, to achieve precise control
of the exoskeleton, we must first accurately predict the gait trajectory [8].

There are many gait detection methods. Such as [9], the plantar force was predicted
using only data measured by inertial measurement unit sensors. In [10], surface electromyo-
graphy (sEMG) was used to reflect the motion intention of the human body ahead of muscle
action. In [11], the foot trajectory estimated by an IMU was used to derive the inclination
grade of the terrain that they traverse to identify the locomotion mode. In [12], human
motion was analyzed, and the accuracy of predicting lower extremity joint angular position
based on cane motion was investigated. Data processing methods include threshold meth-
ods, machine learning methods, etc., and the simplest calculation method in gait detection
is the threshold value. There are different thresholding algorithms as the value rules to
determine specific characteristics of gait phases or events. Machine learning (ML) methods
are used to classify gait phase offline data and real-time data. Different machine learning
methods, such as HMMs, NN models, DLNNs, and CNNs, have been used for gait stage
recognition [13]. ML methods are among the most popular techniques used to classify gait
phases in offline data and real-time data. These methods are based on a large amount of
data, and can get rid of complex biomechanical models and energy loss equations, so many
studies regard the gait trajectory as a time series [14]. In this way, the prediction of the gait
trajectory is essentially a time series prediction. The gait trajectory can be predicted based
on the previous state parameters [15]. Zaroug et al. [16] used automatic coding to predict
the kinematics trajectory of the lower limbs. Using primarily linear acceleration and angular
velocity, the correlation coefficient between the predicted gait trajectory and the measured
trajectory was 0.98. Many methods have been developed based on an artificial neural
network to estimate parameters of the gait phase [17–19]. Liu et al. [20] presented a neural
network model that could detect eight phases offline with an accuracy of only 87.2–94.5%.
Moreira et al. [21] applied an LSTM model to generate reference ankle torques for a healthy
human walking on level ground. Using this model, they achieved a normalized RMSE
of 4.31% and demonstrated the potential of LSTM to be integrated into a robot assistive
device control. However, it is worth noting that gait trajectory prediction without accurate
lower limb exoskeleton motion information is verified only at the simulation stage.

This paper proposed and verified a LSTM model for gait prediction by the CMU
human gait database. Then, a wearable joint angle measurement device was designed. The
experimental results show that the LSTM prediction model can effectively predict human
walking data.

2. LSTM Gait Prediction Model

The gait trajectory can be predicted by collecting the human trajectory. These pre-
diction methods only predict the human trajectory but not the lower limb exoskeleton
system’s trajectory. This paper presents a machine learning algorithm for motion trajectory
prediction based on the Long Short Term Memory network (LSTM). This machine-learning
algorithm has been widely used for temporal signal prediction and classification.

The LSTM is a particular type of RNN. The underlying structure of an LSTM, like an
RNN, is a chained form of repeating neural network modules. However, in an RNN, the
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repeating module is a straightforward tanh layer. The LSTM has four unique layers for
interaction between the input and output, as Figure 1. A key concept in the LSTM network
is the cell state, which is like a constantly updated cell. It can remove or add information to
the cell state through an elaborate structure called a gate. There are three gates to update
the cell state: the forget gate, the input gate, and the output gate. The forget gate and
the input gate are the main parts of the LSTM, as Figure 2, that keep the network active
and determine the information which to be discarded and retained when the network is
iteratively updated.
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The first step in the LSTM is to decide what information it will discard from the cell
state. This decision is made through a sigmoid layer called the forget gate by reading the
output information ht−1 from the previous moment and the input information xt from the
current moment. It outputs a value ft between 0 and 1 to each number in the cell state. One
means full retention, and zero means full discard; the expression is as follows:

ft = σ(W f ∗ [ht−1, xt] + b f (1)

The next step is to determine what new information is stored in the cell state. Firstly,
a sigmoid layer called an input gate determines the values it to be updated. Secondly, a
vector C̃t of new cell state candidates is created using a tanh layer.

it = σ(W f ∗ [ht−1, xt] + bi) (2)

Ĉt = tanh(Wc ∗ [ht−1, xt] + bc) (3)

The old cell state Ct−1 is then multiplied by ft obtained from the “forgetting gate”, and
the updated value it obtained from the “input gate” is then added to the product of the
new cell candidate vector C̃t. to obtain the latest cell state Ct ; the expression is as follows:

Ct = ft ∗ Ct−1 + iy ∗
_
Ct (4)

Ultimately, the output, or predicted outcome, needs to be determined. The result will
be based on the current state of the cell Ct. The input information xt at the present moment
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is passed through a sigmoid layer to determine the outcome of the pending output Ot. The
uncertain production Ot is multiplied by the cell state Ct and is processed by the layer to
obtain the result ht determined at the current moment.

Ot = σ(Wo ∗ [ht−1, xt] + bo) (5)

ht = Ot ∗ tanh(Ct) (6)

For the motion trajectory prediction model, the input to the LSTM network is the
sampled joint angle trajectories from the lower limb exoskeleton, defined as Xt = {xt

RH, xt
RK,

xt
RA, xt

LH, xt
LK, xt

LA,}, and the output Yt + 1 = {yt + 1
RH, yt + 1

RK, yt + 1
RA, yt + 1

LH, yt + 1
LK,

yt + 1
LA,}, which is the predicted value of each joint angle trajectory for the next moment. To

evaluate the performance of the LSTM network for motion trajectory prediction, we used
the root mean square error (RMSE) to quantify the variability between the predicted and
actual observed values of the motion trajectory.

ERMS =
1
n∑n

i=1 (y
joint
i −_

yi
joint

)
2
, (joint = RH, RK, RA, LH, LK, LA) (7)

3. Prediction and Analysis of Gait Trajectory

CMU Graphics Lab Motion Capture Database gives an overview of the mocap process
at CMU. The mocap lab in the basement of Wean contains 12 Vicon infrared MX-40 cameras,
each of which can record 120 Hz with images of 4-megapixels of resolution. The cameras
are placed around a rectangular area of approximately 3 × 8 m in the centre of the room and
small grey markers are placed on it. Humans wear a black jumpsuit, which has 41 markers
taped on it. The Vicon cameras see the markers in infra-red. The images that the cameras
pick up are triangulated to obtain 3D data. We used walking gait data in the CMU database
as a data source for analysis and use MATLAB 2020b to build an LSTM prediction model.

For an LSTM model, it was defined as follows. The number of input features and
the number of output responses were six, and the number of hidden units in the network
was set to 200. The training solver was set to 250 rounds of training. To prevent gradient
explosion, we set the gradient threshold to 1. The initial learning rate was 0.005, which was
reduced by multiplying by a reduction factor of 0.5 after every 50 rounds of training.

The dataset is a sampling of joint angle trajectories from the lower limb exoskeleton in
the co-movement experiment, including the right hip (RH), right knee (RK), right ankle
(RA), left hip (LH), left knee (LK), and left ankle (LA). First, the training data must be
normalized to a dataset with a zero mean and unit variance to prevent training scatter.
The dataset was divided into a training dataset and a test dataset in a ratio of 6:4. Our
goal was to use past historical joint trajectories to predict joint trajectories for the next
time step, where we defined the prediction time step as 1 sample point. The exoskeleton’s
historical joint angle trajectory vector was used as the input vector to the LSTM network.
The predicted joint motion trajectory was the output vector of the LSTM.

3.1. Conventional LSTM

In a conventional LSTM prediction model, continuously predicting the motion trajec-
tory at the next moment requires continuous input to the LSTM network based on data
from the previous moment, followed by a prediction result. We first used a conventional
LSTM model to predict the motion trajectory. The following Figure 3 displays the results.
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From the data in Figure 3, we can observe that the predicted motion trajectories of
the left and right legs at the hip, knee, and ankle joints on both sides of the lower limb are
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significantly different. The predicted motion trajectories of the left and right legs at the hip
joint are significantly similar to the actual motion trajectories. Still, the predicted trajectories
do not overlap with the actual trajectories, indicating that the predicted trajectories at the
hip joint were too far ahead. The predicted trajectories at the knee joints of the left and right
legs showed the good accuracy in the beginning, then the accuracy gradually decreased as
time goes on. They could not accurately predict the motion trajectories for an extended
period, and the predicted trajectories at the ankle joints of the left and right legs showed
a certain amount of over-advancement. However, they showed an inevitable trend of
similarity with the actual trajectories, but the overall prediction results also deviated
significantly.

3.2. LSTM Prediction Model with Observation Update

For the lower limb exoskeleton measurement device, which can obtain the motion
trajectory data in real-time, we used the real-time signal (observation) from the sensor to
update the LSTM so that the LSTM network could meet the demand of the real-time motion
trajectory prediction better. The predicted results show in Figure 4. From the top to the
bottom, the trajectories of the right hip, right knee, right ankle, left hip, left knee, and left
ankle are shown, respectively.
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Two hundred fifty training iterations are performed in each round of computation.
Although there will be slight changes in the results of each operation, it does not affect our
evaluation of the two methods. From Figure 4, we can observe that the motion trajectories
of the left and right legs on both sides of the lower limb are better predicted at the hip,
knee, and ankle joints. Compared to the conventional LSTM model, the LSTM model with
real-time observations was more accurate in predicting the motion trajectory, and this can
be seen in the results for the hip, knee, and ankle joints. To compare the prediction results
with those of the conventional LSTM model, we calculated the root mean square error of
the predicted trajectory against the actual trajectory for both sets of experiments, and the
maximum and minimum values of the difference between the two were also calculated, as
shown in Table 1.

Table 1. The prediction result comparison of two models.

Model Joint Error Max. Error Min. RMSE

Conventional
LSTM

Right Hip 11.3266 0.0044 7.0156
Right Knee 49.4928 0.1100 18.0525
Right Ankle 13.8521 0.0022 3.7387

Left Hip 17.6255 0.0410 7.4895
Left Knee 34.4416 0.1452 11.1979
Left Ankle 27.8332 0.0615 13.2130

Optimized
LSTM using
observation

update

Right Hip 1.6232 0.0012 0.4719
Right Knee 1.4851 0.0001 0.3920
Right Ankle 2.4044 0.0021 0.7781

Left Hip 1.1495 0.0016 0.4797
Left Knee 1.5634 0.0012 0.4855
Left Ankle 2.6134 0.0019 0.6349

The analysis of the RMSE data of the table is available. The LSTM using an observation
update prediction model was better than the Conventional LSTM prediction model.

The maximum error values in the conventional LSTM network were significantly
larger than below. The RMSE also varies significantly. Regardless of the maximum error or
the RMSE values, the conventional LSTM’s prediction accuracy for the gait trajectory was
low. The prediction error of the knee joint was too large, making it undesirable to use the
predicted trajectory to plan a dynamic exoskeleton.
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In the observation-based update LSTM network, compared with conventional LSTM,
there was a significant reduction in error maximum, error minimum, and evaluation factors
such as root mean square error.

4. Experimental Verification

The gait trajectory prediction method of LSTM has been introduced above, and we
used experiments to verify it.

(a) The wearable joint angle measurement device collects gait data and conducts
collaborative control experiments with the lower limb exoskeleton measurement device.

(b) The wearable joint angle measurement device was used for gait data collection,
and the LSTM prediction model was used for prediction and error analysis.

4.1. The Wearable Joint Angle Measurement Device

During the development and testing phase of the prototype, it was dangerous to strap
the human body directly to the lower limb exoskeleton, even though it was possible to limit
the position of the drive joint angle mechanically. Thus, we designed a wearable joint angle
measurement device that has the same DOF configuration as the lower limb exoskeleton.
The main components of the wearable joint angle measurement device include the hip
measurement unit, the knee measurement unit, the ankle measurement unit, adjustable
length thigh linkage, calf linkage, and shoes. The auxiliary components included the
connections between the angle measuring units and the rods and shoes, the nylon bayonet
straps, the signal wires, and the necessary connection terminals. The main movements of
the human body during walking occurred in the flexion and extension of the hip, knee, and
ankle joints. There was also a tiny amount of motion in each joint’s remaining degrees of
freedom. We have developed a flexible spiral component to be mounted on the rotational
output of the sensor, which can withstand a certain amount of bending moment while
ensuring that the sensor can rotate to transmit the rotation angle of the physiological joint.

The sensor used in the measurement device is a rotating potentiometer (rotational
range 0–210◦) shown in the diagram, whose internal resistance changes in response to
different rotational angles (0–10 k ohms). The measurement device only needs an external
5 V power to detect the sensor’s voltage signal.

digit = (R/R0) ∗ VREF ∗ 2bit, (R ∝ θ) (8)

In this equation, digit represents the converted numerical signal; R represents the
resistance of the resistor, which is positively related to the angle θ of the potentiometer; R0
represents the resistance of the potentiometer at full range; VREF is the sensor reference
voltage; and bit represents the number of bits of resolution of the analogue-to-digital
converter, here in the sensing system as VREF = 5, bit = 10, R0 = 10 k.

The lower limb dimensions vary from person to person, and different wearers need to
adjust the length of the linkage accordingly to ensure joint alignment. Therefore, to obtain
a mapping relation between the sensor signals of the wearable joint angle measurement
device and the actual physiological joint angles, the calibration process needs to be repeated
at each time. After the Analogue to Digital Converter (ADC) has obtained the digital signal,
the physiological joint angle is calculated by solving each joint angle’s reference in a
specific posture.

The angle information of a total of 6 joints on both sides of the lower limbs on the
sagittal plane was collected through the joint angle measuring device, including the right
hip joint (RH), right knee joint (RK), right ankle joint (RA), left hip joint (LH), left knee joint
(LK), and left ankle joint (LA). The collected data were recorded in the SD memory card by
the microprocessor for offline data analysis.

4.2. Gait Data Collection and Analysis

The motion cooperation experiment was carried out as follows. First, the wearable
joint angle measurement device was adjusted to the appropriate length for the subject’s
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thighs and lower legs to ensure that the rotational spindle of the rotary potentiometer was
aligned with the central axis of rotation of the physiological joint. Because of the ingenious
design of the wearable joint angle measurement device and the absence of a drive motor,
the wearer can efficiently experiment by their usual activity habits.

First, we carried out experiments in a laboratory environment and used an in situ
stepping motion to represent the dynamic experiment of a walking motion. Figure 5
shows the images of the dynamic exoskeleton and the subject’s coordinated movement
under several different actions. From Figure 5, it can be observed that the lower limb
exoskeleton completely reproduced the human body’s lower limb movements, including
one-leg forward extension, left and right knee joints, squatting movements, etc. These
movements can entirely affect the six joints of the lower limbs.
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Figure 5. The wearable joint angle measurement device.

In Figure 6, the test subject did walk test in the same place. At first, the test subject
was put on the joint angle measuring device and walked 80 m at a speed of 1 m/s. Then,
The SD card in the wearable joint angle measurement device was equipped with a memory
reader, and the angle change data during walking was recorded and stored. After collecting
a set of data, data analysis was carried out. The Kalman filter algorithm processes the
joint angle data to reduce the interference items in the data acquisition process [22]. The
LSTM prediction algorithm model trained and predicted the processed data. Finally, the
processing results are as follows in Figure 7.
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The LSTM model used to predict the actual gait trajectory when the test subject put on
wearable joint angle measurement device. In detail, we can obtain the prediction values of
maximum error, minimum error, and RMSE of the actual trajectory with update observation
LSTM model in Table 2.
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Table 2. The prediction result of actual trajectory with wearable joint angle measurement device.

Model Joint Error Max. Error Min. RMSE

Update
observation

LSTM model of
actual trajectory

Right Hip 3.7063 0.0001 1.6745
Right Knee 11.8466 0.0001 4.7809
Right Ankle 18.4221 0.0004 6.8895

Left Hip 4.4236 0.0001 1.9261
Left Knee 11.2138 0.0002 4.3218
Left Ankle 17.3263 0.0001 5.2871

5. Conclusions

This paper used the LSTM prediction algorithm to predict the human gait and also
used a wearable joint angle measurement device to verify the algorithm. Experimental
results show:

(1) In the lower limb exoskeleton man–machine coupling system, the coordinated
movement between the human body and the mechanical exoskeleton can be reliably sensed
and recorded by the wearable joint angle measurement device. On the other hand, the
recorded data can drive and control the power exoskeleton movement.

(2) On the one hand, using the LSTM prediction model can eliminate the complex
process of establishing dynamic exoskeleton human–machine coupling kinematics and
dynamics models. On the other hand, it can keep the gait prediction method active to deal
with the subsequent actions that may change.

(3) The article uses the conventional LSTM prediction model and the LSTM using an
observation update prediction model to predict and generate gait trajectories, which can
provide predictions for the trajectory data of the power exoskeleton mechanical joints. In
particular, the LSTM model that uses real-time updates of observations can more accurately
predict the power movement trajectory of exoskeleton mechanical joints.

(4) In the LSTM prediction model, the RMSEs were: left hip joint 0.4662, right hip
joint 0.4665, left knee joint 0.3246, right knee joint 0.5037, left ankle joint 0.7416, and right
ankle joint 0.5548. The data show that the LSTM prediction algorithm has certain practical
significance for predicting human gait data.

(5) The research results in this paper can be used for the gait trajectory planning
of the human–machine cooperative movement of the lower extremity exoskeleton robot.
Moreover, it can provide a reliable predictive gait reference trajectory for the lower limb
exoskeleton so that the lower limb exoskeleton can perceive and plan the human–machine
coupling system. Exercise provides a new idea for dynamic exoskeleton movement control.

In future, the experimental gait data collection should be performed in different
complex environments, such as climbing stairs, going up and down in slope. Then, a
variety of sensors data should be comprehensively considered for prediction. Finally,
we could use physical information of the whole body to predict body posture for the
development of exoskeleton suit.
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