
Citation: Ye, S.; Zhao, P.; Zhao, Y.;

Kavousi, F.; Feng H.; Hao, G. A

Novel Radially Closable Tubular

Origami Structure (RC-ori) for Valves.

Actuators 2022, 11, 243. https://

doi.org/10.3390/act11090243

Academic Editor: Bing Li, Wenfu Xu

and Chenglong Fu

Received: 26 July 2022

Accepted: 22 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

A Novel Radially Closable Tubular Origami Structure (RC-ori)
for Valves
Siyuan Ye 1 , Pengyuan Zhao 1 , Yinjun Zhao 1, Fatemeh Kavousi 1 , Huijuan Feng 2 and Guangbo Hao 1,*

1 School of Engineering and Architecture, University College Cork, T12 K8AF Cork, Ireland
2 Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment,

Northumbria University, Newcastle upon Tyne NE1 8ST, UK
* Correspondence: g.hao@ucc.ie

Abstract: Cylindrical Kresling origami structures are often used in engineering fields due to their
axial stretchability, tunable stiffness, and bistability, while their radial closability is rarely mentioned
to date. This feature enables a valvelike function, which inspired this study to develop a new origami-
based valve. With the unique one-piece structure of origami, the valve requires fewer parts, which
can improve its tightness and reduce the cleaning process. These advantages meet the requirements
of sanitary valves used in industries such as the pharmaceutical industry. This paper summarizes
the geometric definition of the Kresling pattern as developed in previous studies and reveals the
similarity of its twisting motion to the widely utilized iris valves. Through this analogy, the Kresling
structure’s closability and geometric conditions are characterized. To facilitate the operation of the
valve, we optimize the existing structure and create a new crease pattern, RC-ori. This novel design
enables an entirely closed state without twisting. In addition, a simplified modeling method is
proposed in this paper for the non-rigid foldable cylindrical origami. The relationship between the
open area and the unfolded length of the RC-ori structure is explored based on the modeling method
with a comparison with nonlinear FEA simulations. Not only limited to valves, the new crease
pattern could also be applied to microreactors, drug carriers, samplers, and foldable furniture.

Keywords: cylindrical origami; Kresling; radially closable; valve

1. Introduction

In recent years, continuous manufacturing (CM) technology in the pharmaceutical
industry has been a hot topic [1]. Continuous feeding, as the front-end process of CM, has
an important influence on the uniformity of material, which in turn determines the quality
of the resulting product. Most continuous feeding equipment are loss-in-weight feeders
(Figure 1), including ConsiGmar [2], the powder-to-tablet CM solution developed by GEA
Group, MODCOS [3], and Glatt GmbH’s concept. To maintain uninterrupted operations,
a sufficient amount of material must be present in the hopper, which means the refilling
process is essential. Additionally, this process is the main cause of deviation. When the
refilling device is turned on, the rapid increase in material density causes the powder to flow
uncontrollably through the screw, resulting in overfeeding. Engisch and Muzzio [4] analyzed
various methods currently applied to address the problem and proposed that the deviation
could be reduced by gently controlling the refill flow to replenish the feeder hopper.

There are several types of refill devices, including knife valves, modulating butterfly
valves, and rotary valves [5]. The rotary valve can only roughly control the material flow,
and it may tend to block when dealing with materials with poor fluidity [5]. Butterfly
valves are not recommended for half-opening applications because their gaskets are prone
to wear, and the valve disc is located in the middle of the flow path, which causes some
damage to the product [6]. The same problems also exist in knife valves. In addition, on–off
valves are not recommended to control flow [7]. Given the preceding, it is necessary to
create a new flow control valve for pharmaceutical continuous feeders. It needs to comply
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with sanitary valve standards and avoid the above problems. A one-piece origami structure
may provide an effective solution to these issues.

Figure 1. Loss-in-weight continuous feeder . Adapted with permission from Ref. [4]. Copyright
2015 Elsevier.

Origami technology, which originated in China and was popular in Japan, has been
widely used in various fields. In addition to the typical applications used in aerospace
(solar panels [8], inflatable booms [9], bellows for harsh environment [10], drilling-debris
containment [11], and antennas [12]), medical support systems [13], robotic grippers [14],
energy-absorbing devices [15,16], mechanical metamaterials [17], and even generators [18]
also use origami for innovative research. Widely used origami crease patterns in engineer-
ing include Miura-ori, Yoshimura, waterbomb, Kresling, twist square, and Resch [19–21]. A
variety of geometric forms can be created from these patterns, such as checkerboard, spiral,
cylindrical, and spherical. Among them, cylindrical origami is highly suitable for valve
design. Not only the structural shape is similar to the valve, but it can also support loads
while offering tunable mechanical responses [22]. Typical cylindrical origami patterns
include Yoshimura [23], Kresling [24], waterbomb [25], and Tachi–Miura [23] (Figure 2).
Unlike the aerospace engineering field, which focuses on deployability, stowability, and
portability [26], the valve is more concerned with the flat-foldability, radial closability, and
the end shape’s consistency. The Kresling cylindrical structure can satisfy the above three
points simultaneously.

The Kresling pattern was accidentally discovered in 1993 by a student of Biruta
Kresling during a bionic class [27]. Almost simultaneously, Guest and Pellegrino also found
a similar triangulated cylinder [28]. Over the past thirty years, the Kresling pattern has
been used in many fields [8–18], and its monostable/bistable properties [29–32], non-rigid
foldability [33–36], and flat-foldability [37,38] have attracted many researchers’ attentions.
An analysis by Kidambi and Wang [30] showed that by changing the geometric parameters,
the energy distribution of the Kresling pattern could be changed between monostable,
asymmetric bistable, and symmetric bistable states. Masana and Daqaq [31] performed a
detailed static analysis of the Kresling crease and constructed five springs with different
properties. Cai et al. [29,34] demonstrated that the Kresling structure is non-rigid foldable
and has a bistable behavior. Bhovad and Li [37] proposed a “generalized” Kresling pattern
that can feature a non-zero length when fully folded. Apart from these, there are still many
other characteristics to be explored, for example, radial closability, which is an essential
feature when designing valves.
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Figure 2. Cylindrical origami. (a) Yoshimura pattern. Reprinted with permission from [23]. Copyright
2010 Royal Society. (b) Kresling pattern. Reprinted with permission from [24]. Copyright 2008 Royal
Society. (c) Waterbomb pattern. Reprinted with permission from [25]. Copyright 2016 Royal Society.
(d) Tachi–Miura pattern. Reprinted with permission from [23]. Copyright 2010 Royal Society.

Twisting and folding the Kresling structure creates a diaphragm perpendicular to
the tube axis [39]. Radial closability refers to the fact that, when the diaphragm intersects
the tube axis, a complete barrier is created within the tube, which works similarly to the
iris valve (Figure 3b). Iris valves, also known as diaphragm valves, are generally used
for discharging the hoisted materials. They may be a good option for continuous feeding
refill devices since they can ensure the integrity and uniformity of the material. However,
their flexible sleeves make them impossible to support load and control flow accurately.
Arora et al. [40] proposed a stiffness-based design approach for a compliant iris mechanism,
but the sleeve is still a necessary component when used in valves. The Kresling structure
may help to solve the problems. First, the inner diameter of the Kresling tube can be
precisely adjusted by controlling the vertical length. Second, the Kresling panels can be
rigid enough to withstand the load compared with the iris flexible sleeves, and the fully
folded (unfolded) state of Kresling is a stable one without panel deformation. Additionally,
the one-piece structure makes the valve easy to clean and assemble. To the best of our
knowledge, the radial closability of the Kresling structure is rarely studied, and no one
mentions its potential for valves when the diaphragm is fully closable.

Figure 3. Iris valves. (a) Different sizes of iris valve. (b) The folding process of iris valve sleeves.
(Images from https://www.mucon.com/ (access on 25 August 2022)).

Nevertheless, the inherent coupled twisting motion of the Kresling structure requires
more parts and actuation design for the valve. Therefore, a new crease pattern is created
in this paper, named RC-ori(radial closable origami). It enables a completely closed state
without creating the undesired twisting, which reduces parts and simplifies assembly for

https://www.mucon.com/
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easy cleaning and sealing. Moreover, this new structure is non-rigidly foldable like most
cylindrical origami. Rigid foldability means that the small planes remain consistent during
the continuous folding movement [23]. Cai et al. [34] conducted studies on the non-rigid
foldability of cylindrical Kresling creases. Ma et al. [41] offered a mixed mode of mechanism–
structure–mechanism transition in the folding process of the tubular waterbomb structure.
Miura and Tachi [23] mentioned that the Yoshimura cylinder is not continuously foldable,
and they created a rigid foldable cylindrical origami by combining Miura-ori and its mirror
pattern. Non-rigid foldable structures often face challenges when modeling. Cai et al. [42]
proposed to treat the crease as an axially deformed truss, which has been shown to be
effective. Adding additional virtual folds to the triangular panels is also a good approach
when studying the deformation of the panels [43]. In this paper, we propose a different
method for the kinematic analysis of the new structure, which makes the structure a
kirigami by eliminating the over-constraint of the connections between the elements.

The main contributions of this paper are summarized here:

i The radial closability of the Kresling structure is first studied targeting for valve
applications.

ii A new crease pattern is created without twisting motion for the valve application.
iii A simplified kinematic modeling method is proposed for the non-rigid foldable

cylindrical origami.

This paper is organized as follows. Section 2 describes the geometric definition of
the general Kresling pattern and its radial closability. Section 3 introduces a new crease
pattern, RC-ori. By analyzing its non-rigid foldability, a simplified kirigami modeling
method is proposed for the kinematic analysis. Section 4 is the conclusion. This new design
can be used not only for valves but also for microreactors, drug carriers, samplers, and
foldable furniture.

2. Radial Closability of the Kresling Pattern
2.1. Geometric Definition of the Kresling Pattern

The geometric definition of the Kresling pattern is established before exploring its
radial closability. This paper only discusses the single-stacked Kresling structure and
assumes that the tube ends remain parallel during the folding process. It is generally
accepted that the Kresling structure is a cylinder composed of multiple parallelograms,
each of which is separated diagonally by a valley crease (Figure 4). Biruta [24,39] narrowed
this definition according to the shape generated by natural twist buckling:

Figure 4. Generic Kresling pattern. (a) Kresling pattern in a planar form. (b) Three-dimensional state
of the Kresling structure. (n = 6).

(1) The parallelograms are inclined and elongated;
(2) The valley-folds are long diagonals;
(3) The structure will create a two-dimensional diaphragm perpendicular to the axis of

the cylinder when fully collapsed;
(4) The axial length of the fully deployed diaphragm is less than the diameter of the

cylinder (Figure 4b).

Under these conditions, Biruta [27] concluded that three parameters could fully de-
fine the natural Kresling pattern: modes, chirality, and the number of polygonal sides.
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However, most researchers use different parameters from a purely geometric perspective.
For example, some researchers use the number of polygonal sides, the side length of the
polygon (or the cylinder radius), and a planar angular fraction [32,33]. Similarly, Kidambi
and Wang [30] considered the third parameter as a stress-free orientation angle, and Hunt
and Ario [44] considered it as the axial length. Sargent et al. [13] and Herron [45] defined
the Kresling structure by the outer diameter, folded-state inner diameter, and the number
of polygonal sides.

Nevertheless, manual replication can create cylinders with different Kresling pat-
terns [24]. In general, at least four parameters are needed to define the pattern in this
case [31,35,46]. For example, when the valley-folds are short diagonals, four parameters
are required to determine the crease uniquely. This structure can be applied to metama-
terials [17] and non-volatile mechanical memory storage devices [47]. Meanwhile, four
parameters are also required when the diaphragm thickness is non-zero in the fully folded
state. Bhovad et al. [37] and Berre et al. [48] investigated the properties of this particular
structure, which provided new ideas for Kresling’s design. A special case arises when using
parallelograms such as rhombus [49] or rectangles [12]. Only three parameters are required
since the basic elements only need two parameters to define. The rectangular Kresling
pattern will be used in the next section on the Kresling structure’s radial closability.

The suitable parameters and their value range are defined here based on the above
studies. Since a flat 2D diaphragm is easy to operate and control for the valve, conditions
(2) and (3) are necessary. The diagonal length is a crucial parameter, as the diagonal is
folded towards the tube axis and forms the inner polygon during the folding process [27].
When the diagonal length is larger than the cylinder diameter, the 2D diaphragm cannot be
formed. Conversely, when the diagonal length is less than or equal to the diameter of the
cylinder, it is possible to generate the 2D diaphragm. Still, it depends on the covered angle
α because the panels will partially overlap when generating the diaphragm (Figure 4), then,
we have the following expression:

(n− 2)π
n

= π − 2α (1)

Thus,
α =

π

n
(2)

In this condition, three parameters can completely define the Kresling pattern: the number
of polygonal sides n, the side length of the polygon c, and the diagonal length l. The
following are their value ranges:

(a) n ≥ 3, n ∈ N+;
(b) c > 0;
(c) 0 < l ≤ c/sin π

n

2.2. Radial Closability of the Kresling Pattern

Radial closability refers to the intersection of the diagonal of each element with the
tube axis when fully folded, which creates a barrier that completely closes the tube. It
is different from the closure condition stated by Zhang et al. [50], which refers to the
horizontal creases that constitute regular polygons from the initial planar configuration to
the folded configuration. The radial closure conditions can be derived from the fully folded
state since the diagonal’s midpoint falls at the polygon’s center (Figure 5). Then,

l = c/sin
π

n
(3)

Only two parameters (n, c) are enough to fully define a radially closable Kresling structure.
Substituting Equation (2) into Equation (3), we can see that the geometric element is a
rectangle rather than an inclined and elongated parallelogram (Figure 6). This can also be
verified with Thales’ theorem [51].
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Figure 5. Kresling pattern folding process. (n = 6) (a) Fully unfolded state. (b–d) Folding process.
(e) Fully folded state. Line AE represents a diagonal, and C is the midpoint of the diagonal.

Figure 6. Radial closable Kresling pattern in a planar form. (n = 6).

When this structure is applied to a valve, the unfolded length H between the two
polygons can be used as a controllable variable (Figure 5a),

0 ≤ H ≤ b (4)

where b is the side length of the right angle (Figure 6).

b =
c

tan α
(5)

Since the Kresling structure is non-rigid foldable, we assume that the diagonal length l
is constant when deriving the relationship between the inner radius Ri and the unfolded
length H, and the deformation only happens inside the panel. As shown in Figure 7, when
point E1 moves along the big arc, the midpoint of the diagonal projection C1 moves along
the small arc.

The inner radius Ri equals the distance between the polygon center B and midpoint
projection C1. Thus, Ri can be expressed as:

Ri =

√
|AB|2 − |AC1|2 =

√(
Do

2

)2
−
(

l1
2

)2
(6)

Do = l (7)

l1 =
√

l2 − H2 (8)
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Do is the diameter of the circumcircle, and l1 is the projected length of the diagonal.
Combining Equations (6)–(8), Ri is written as:

Ri =
H
2

(9)

As an important parameter in valve flow control, the area of the hollow polygonal region
(inner yellow hexagon) Si can be obtained as:

Si =
nH2

4
tan

π

n
(10)

Figure 7. Top view of the half-folded state of the Kresling structure. The small dashed arc is the
midpoint trajectory of the diagonal, and the big dashed arc is the endpoint trajectory of the diagonal.
(n = 6).

The radial closability of the Kresling structure is well worth studying. In addition to
the application potential of valves, other fields such as drug carriers, locking mechanisms,
and folding furniture can also benefit from this feature. Multiple radially closable structures
in series or parallel can even be used in microreactors or samplers. The same properties
and applications are also applicable in the new crease pattern mentioned below.

3. New Radially Closable Structure(RC-ori)

Although the twisting motion of the Kresling structure has been used for many
innovative designs such as generators [18], mechanical metamaterials [17], and crawling
robots [33], it makes valves more difficult to manufacture and control. Avoiding the twisting
motion could simplify the valve design. Although the already developed double-stacked
symmetrical Kresling structure also requires no twisting, it increases the axial length. This
paper, therefore, proposes a new closable mechanism that requires neither twisting motion
nor additional axial length. This novel structure is named RC-ori.

The goal-directed creation process of the RC-ori is explained in detail as follows.
The diaphragm consists of multiple identical isosceles triangles in the fully closed state
(Figure 5e). When these isosceles triangles are drawn on flat paper, the pattern shown in
Figure 8a can be obtained. The white area is folded into four overlapping right triangles
along the centerline and sandwiched between the upper and lower isosceles triangles when
the cylinder is fully folded. They help the isosceles triangles form the complete one-piece
structure of the origami. So far, the single element of the new crease is similar to the
waterbomb pattern, and the arrangement makes it look more like a Yoshimura pattern.
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Figure 8. (a) Preliminary new crease pattern in a planar form. (b) Optimized new crease pattern,
RC-ori. Red dashed lines are valley-foldlines, and blue lines are mountain-foldlines. (n = 6).

To avoid unnecessary overlap, the white areas are folded in the same direction, which
means two creases are redundant in each element, as shown in Figure 8b. According to
Kawasaki’s and Maekawa’s Theorems, every vertex of the RC-ori crease pattern is flat-
foldable. Now, it looks like a combination of two truncated Kresling patterns with opposite
chirality, which can also be used to explain why the twist motion is canceled. Meanwhile,
the new crease pattern is also analogous to an irregular sequence of Miura-ori pattern. Two
parameters can fully define the RC-ori crease pattern, the number of polygon sides n and
the polygon side length 2a, other parameters can be derived by the following:

β =
π

2
− π

n
(11)

h0 = 2a tan β (12)

do = 2a/ cos β (13)

where β is the base angle of the isosceles triangle and is also half of the polygon interior angle,
h0 is the initial axial length of the diaphragm, and do is the polygon circumcircle diameter.

3.1. Non-Rigid Foldability of RC-ori

When considering a single element of RC-ori, it is a typical four-degree vertex crease
pattern with one degree of freedom (Figure 8b). It is well-known that the four-degree vertex
can be represented by a spherical four-bar linkage and is often used as the base model for
thick origami research due to their commonality and simplicity [52–57]. By applying rigid
material to the panel and revolute joints to the creases, we find that the RC-ori structure is
not rigid foldable when all vertices are fixed to one another. However, it is easy to rigidly
fold from a flat state to a polygonal prism. A similar feature can also be found in the Kresling
structure [58]. This is because when fully defining the position of each vertex relative to its
neighbors, additional constraints are created, which makes the design no longer have an
available degree of freedom [33]. In short, each element has its own motion trajectory, and
the motion trajectories of the connected edges do not always coincide during the folding
process, as shown in Figure 9a. https://youtube.com/shorts/E0uF6XN1cNQ (accessed on
25 August 2022) (see video in Appendix A).This can be proved by establishing a coordinate
system and analyzing the motion trajectories of the midpoints N5 and M0 separately. This
makes the structure a kirigami model, where we cut the crease AiMi(Ni−1)Oi while keeping
the endpoints (Ai/Oi) connected. Figure 9b takes n = 6 as an example to establish the D-H

https://youtube.com/shorts/E0uF6XN1cNQ
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coordinate system and obtains the position of each point during the folding motion, as
shown in Table 1.

Figure 9. (a) Folding process of RC-ori structure in the kirigami model when the trajectory of each
point is taken separately. The trajectories of connection points (N0 and M1)are not coincident. (b) The
coordinate system of the RC-ori structure. (n = 6).

Table 1. The position of each point in the coordinates.

Point x y z

A0 0 0 h
A1 2a 0 h
M0 xM0 yM0 h/2
P0 a yP h/2
N0 2a yP h/2
O1 2a 0 0
O0 0 0 0

h is the unfolded length of the diaphragm during the folding process, which is the
only independent variable, and yP is the y coordinate value of point P0.

yp =

√
(a tanβ)2 − (

h
2
)2 (14)

Mi moves around a sphere centered at Oi and a sphere centered at Pi. Ni is the
midpoint of the connection side which moves around a sphere centered at Oi+1. The points
Mi, Ni, and Pi are at the same height. Therefore, the motion trajectory of point Mi can be
obtained by combining the Equations (15)–(17).

xMi
2 + yMi

2 + zMi
2 = (h0/2)2 (15)(

xMi − xPi

)2
+
(
yMi − yPi

)2
+
(
zMi − zPi

)2
= a2 (16)

zMi = h/2 (17)

The position of N5 in the O0 coordinate system can be obtained by the transformation
matrix (18) and Equation (19):

0T1 =


cos(2π/n) − sin(2π/n) 0 2a
sin(2π/n) cos(2π/n) 0 0

0 0 1 0
0 0 0 1

 (18)
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N5 = (0T1)
5N0 (19)

Since the z-axis coordinates of N5 and M0 are consistent, their trajectories can be
expressed by the trajectories on the x–y plane. As shown in Figure 10c, we find that the
position of N5 and M0 coincide in the fully folded and fully unfolded state, while their
trajectories do not overlap during the folding process, which indicates that deformation
occurs. Meanwhile, we suspect this is a bistable structure, but verification will need to be
carried out through further analysis.

Figure 10. The trajectories of the connection’s midpoints on the x–y plane.

Researchers have used different methods to verify the rigid foldability of cylindrical
origami [23,34,41,58,59]. This paper proposes another approach for the new structure RC-
ori: under the condition that the cylindrical origami is composed of uniform elements and
each element is working the same way, when a single element of the cylindrical origami
structure has one degree of freedom, if the motion trajectories of the connection’s vertices
do not always coincide during folding, then the design is non-rigid foldable. Although this
method works well in the new structure, it may not suit all cylindrical origami.

3.2. Kinematic Analysis of RC-ori

The RC-ori structure presents different opening areas S at different unfolded lengths
h, which meets the basic design requirements of flow control valves. Therefore, it is
necessary to obtain the relationship between S and h to control the flow rate accurately.
Since the overconstraints occurred at the connection of each element, we apply the kirigami
model for the kinematic analysis, in which only the endpoints Ai and Oi of each element
connection remain. To verify the feasibility of this arrangement, the motion trajectory of
point P in the finite element analysis results and the rigidly foldable kirigami counterpart
results (Equation (20)) are analyzed and compared, as shown in Figure 11. Additionally, for
a better understanding, we also make some prototypes, as shown in Figure 12.

RP = a tan β−
√
(a tan β)2 − (

hP
2
)2 (20)
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Figure 11. (a) FEA simulation folding process. (b) The trajectories of point Pi under the FEA results
and the rigidly foldable kirigami counterpart result. (n = 6).

Figure 12. Simplified rigid RC-ori prototype made by 3D printer. (n = 6) (a–c) is the folding process
of a paper model. (d–f) is the folding process of a Solidworksr model. (g–i) is the folding process of
a printed model connected by flexible lines. https://youtube.com/shorts/E0uF6XN1cNQ (accessed
on 25 August 2022) (video).

We set flexible material at the crease to make the structure fold along with the crease
pattern in the simulation with ABAQUS. The model is a prism shell with a side length of
100 mm and a thickness of 1 mm. The crease width is 4 mm and its Young’s modulus is

https://youtube.com/shorts/E0uF6XN1cNQ


Actuators 2022, 11, 243 12 of 16

0.1 MPa, while the Young’s modulus of the panels is 1 MPa (paper). We fix one end and
apply a displacement of 160mm on the other end. Moreover, to make the crease fold in the
desired direction, we apply a disturbance moment load of 0.005 Nmm (Figure 11a).

In Figure 11b, the x-axis is the height of the Pi point hP, and the y-axis is the distance
from the Pi point to the polygon axis RP. It can be seen that there is only a small difference
in the motion trajectories of the point Pi, indicating that this arrangement is applicable for
the kinematic analysis.

Therefore, the kinematic analysis is simplified by considering each element separately.
As can be seen from Figure 13a, in the half-folded state, the open area is equal to the
polygon area S0 minus the covered area, which is

S = S0 − (S1 + S2) (21)

Figure 13. (a) Half-folded state of the RC-ori structure (kirigami counterpart). (b) The relationship
between unfolded length and cross-section area. (n = 6).

Figure 13b shows the relationship between h and S. It can be seen that there is only
one circumstance for the open area when n = 3 and n = 4, while there are three cases when
n > 4, as shown in Figure 14. When it starts to fold, there are three covered triangles of each
element in the top view. When it is folded to a certain extent, one of the covered triangles
is overlapped. Nonetheless, the difference in the curve trend between the three cases is
small. Meanwhile, when the structure is fully folded (h = 0), the tube is completely closed
(S = 0), and when it is fully unfolded (h = h0), the opening area is equal to the polygonal
area (S = S0), which meets the valve control requirement well. Figure 13b also shows that
the adjustment range of the opening area expands with the increase in n, and the expansion
is insignificant when n > 6, which means the hexagonal prism(n = 6) is an ideal option
for modeling.

Figure 14. Top view of the three situations of the opening area during the folding process. (n > 4).
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More importantly, when comparing with the Kresling structure, as shown in Figure 15,
the RC-ori design is ideal for micro-feed control because there is little change in the opening
area when the tube is folded to a certain extent.

Figure 15. Comparison of the relationship between S and h of the RC-ori structure and the Kresling
structure. (n = 6).

4. Conclusions

Oriented by the application of the valve, this paper analyzes the geometry and the
radial closability of the Kresling structure and proposes its potential for valve application.
Additionally, a new crease pattern (RC-ori) is created to avoid a twisting motion, which
can simplify valve operation without adding extra length to the tube. The new tubular
structure is a combination of two symmetrical truncated Kresling patterns and a new
method is proposed to check its non-rigid foldability. Inspired by the kirigami technique,
the overconstrained connections are removed, which provides a new modeling method
for non-rigid cylindrical origami in its kinematic analysis. Meanwhile, the relationship
between the unfolded length and the open area of the RC-ori structure is obtained. The
result shows little change in the opening area when the tube is nearly fully folded, making
the new design a good choice for micro-flow control valves.

5. Future Works

This is very much the key component in future attempts to overcome the gap of the
kirigami structure of the RC-ori and its non-rigid foldability. We will try to add virtual
creases [20,33] or use flexible membrane [60,61] or compliant joints [62–64] to solve the
above and convert the overall deformation to the local compliant joints deformation. A
prototype for the valve application will be produced to verify its function and to optimize
the structure design.
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