
Citation: He, N.; Yang, Z.; Fan, X.;

Wu, J.; Sui, Y.; Zhang, Q. A

Self-Adaptive Double

Q-Backstepping Trajectory Tracking

Control Approach Based on

Reinforcement Learning for Mobile

Robots. Actuators 2023, 12, 326.

https://doi.org/10.3390/

act12080326

Academic Editors: Zhuming Bi

and Ahmad Taher Azar

Received: 30 June 2023

Revised: 7 August 2023

Accepted: 8 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

A Self-Adaptive Double Q-Backstepping Trajectory Tracking
Control Approach Based on Reinforcement Learning for
Mobile Robots
Naifeng He 1, Zhong Yang 1,*, Xiaoliang Fan 2, Jiying Wu 1 , Yaoyu Sui 1 and Qiuyan Zhang 3

1 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China; nfhe@nuaa.edu.cn (N.H.); wujiying@nuaa.edu.cn (J.W.); suiyaoyu@nuaa.edu.cn (Y.S.)

2 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110017, China; fanxiaoliang@sia.cn

3 Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China;
zhangqycsg@163.com

* Correspondence: yangzhong@nuaa.edu.cn

Abstract: When a mobile robot inspects tasks with complex requirements indoors, the traditional
backstepping method cannot guarantee the accuracy of the trajectory, leading to problems such
as the instrument not being inside the image and focus failure when the robot grabs the image
with high zoom. In order to solve this problem, this paper proposes an adaptive backstepping
method based on double Q-learning for tracking and controlling the trajectory of mobile robots. We
design the incremental model-free algorithm of Double-Q learning, which can quickly learn to rectify
the trajectory tracking controller gain online. For the controller gain rectification problem in non-
uniform state space exploration, we propose an incremental active learning exploration algorithm
that incorporates memory playback as well as experience playback mechanisms to achieve online
fast learning and controller gain rectification for agents. To verify the feasibility of the algorithm, we
perform algorithm verification on different types of trajectories in Gazebo and physical platforms.
The results show that the adaptive trajectory tracking control algorithm can be used to rectify the
mobile robot trajectory tracking controller’s gain. Compared with the Backstepping-Fractional-Older
PID controller and Fuzzy-Backstepping controller, Double Q-backstepping has better robustness,
generalization, real-time, and stronger anti-disturbance capability.

Keywords: reinforcement learning; double Q-backstepping control; mobile robot; trajectory tracking
control

1. Introduction

Autonomous navigation and motion controls are essential indicators and core tech-
nologies for the autonomy of mobile robots. Mobile robots with autonomous navigation
and motion capabilities are widely used in industries such as agriculture, machining,
rescue, scientific research, services, and almost all mobile application fields, presenting
broad needs and extensive application prospects. In the global revolution of Industry 4.0,
increasingly mobile robots assume a critical role in human life. They will also occupy an
essential part of industrial production and manufacturing systems. Mobile robots must
have the ability to navigate autonomously, make decisions, have good perception, and can
accurately complete the tasks required. Furthermore, the working environment of these
mobile robots entails various uncertain factors that pose significant challenges to their
autonomous navigation and decision-making capabilities.

Wounded rescue missions and critical facility inspections represent typical applications
of mobile robots. In such scenarios, to ensure the personal safety of the wounded and
the safety of essential facilities, the robot must move quickly, stably, and accurately along
the planned trajectory [1]. To fulfill all mission requirements with minimal tracking error,

Actuators 2023, 12, 326. https://doi.org/10.3390/act12080326 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12080326
https://doi.org/10.3390/act12080326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-3959-8946
https://doi.org/10.3390/act12080326
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12080326?type=check_update&version=2

Actuators 2023, 12, 326 2 of 24

mobile robot trajectory tracking control algorithms that have superior adaptability, real-time
capability, and robustness are often necessary to tackle the different expected trajectories.
In this domain, the challenges associated with most trajectory-tracking control algorithms
remain a subject of intense research [2,3]. Therefore, under the requirements of such tasks,
it is imperative to have trajectory tracking control algorithms that can adapt quickly and
have real-time capability to cope with dynamic and unpredictable changing environments.

The backstepping controller [4] demonstrates a global stabilization effect in nonlinear
and non-holonomic constrained systems, making it a popular choice for a variety of
mobile robot platforms [5–8]. It is widely used to control the trajectory tracking of mobile
robots. The adoption of a Backstepping controller in mobile robot systems often involves
expert tuning to find the optimal control gain. However, modern control theory provides
methods and suggestions for tuning the parameter gain of the Backstepping controller.
Wang [9] proposed a new Backstepping controller gain adjustment method that employs
compensation terms in the control law to resolve the over-parameterization problem in
parameter estimation. Similarly, Wang [10] designed a nonlinear Backstepping controller
gain adjustment method based on linearity, separating the linear part from the nonlinear
system to form a linear auxiliary system to determine the additional linear system. The
state feedback gain is converted into the Backstepping gain through state feedback to
determine the gain of the Backstepping controller for the nonlinear system. However,
the high-complexity dynamics, high coupling, and nonlinearity of mobile robots lead to
difficulties in parameter gain tuning for the Backstepping controller, which often results
in poor real-time performance, low control accuracy, and poor robust performance. This
usually necessitates expert-level a priori knowledge to make on-line adjustments to the
controller parameter gain as per the task requirements and changes in the mobile robot’s
operating environment.

The traditional backstepping controller cannot adjust the parameter gain in real time
during the trajectory tracking control process of the mobile robot, making it challenging to
achieve precise and optimal control of the robot. To address this issue, some researchers
have proposed a trajectory-tracking controller with self-adaptive control. Hu [11] proposed
a robot tracking controller based on self-adaptive backtracking to solve the tracking control
problems of inaccurate Robot Kinematics/Dynamics modeling and external environment
disturbance. By designing an appropriate Lyapunov function, the stability of the robot
tracking controller is guaranteed. Van [12] proposed and designed a self-adaptive Backstep-
ping robot tracking control algorithm that employs nonsingular fast terminal sliding mode
control (NFTSMC) to handle uncertainties, external disturbances, and fault compensation
in the robot control system. The controller maintains the merits of NFTSMC with high
robustness, fast transient response, and finite-time convergence. However, the primary lim-
itation of this controller is its reliance on prior knowledge of disturbances and uncertainty
bounds during the design process. Sun [13] designed a self-adaptive tracking controller
that compensates for errors and automatically tunes parameters based on the nonlinear
system of mobile robots to solve the trajectory tracking problem of mobile robots with
parameter uncertainty. Based on the dynamic model of the mobile robot, a self-adaptive
controller based on state feedback is designed by selecting the appropriate Lyapunov
function through the pursuit recursive method so that the mobile robot can gradually track
the desired trajectory. However, traditional self-adaptive backstepping control algorithms
usually cannot achieve optimal robot control under varying robot environments and task
requirements, such as underlying drive control of mobile robots, path tracking, and tra-
jectory tracking, requiring expert knowledge and multiple adjustments to obtain optimal
controller parameters.

Reinforcement Learning (RL) methods [13], a significant branch of artificial intelli-
gence, have developed rapidly in the field of control. The RL algorithm is an iterative
learning process that involves continuous interaction between the robot system and its
environment. RL is a hybrid control strategy that employs a reward value function to evalu-
ate action quality during interaction between the robots and their environment. Compared

Actuators 2023, 12, 326 3 of 24

with traditional control algorithms, RL has significant potential advantages; it continually
learns the optimal control strategy through the reward value function until the optimal so-
lution surfaces. RL can better solve control problems that are difficult to solve in traditional
algorithms owing to its unparalleled robustness, real-time performance, and generaliza-
tion [14]. Advanced RL methods can address high-dimensional disasters and problems
with optimal control policies that are difficult to converge, and achieve exemplary per-
formance in complex environments. Q-learning in RL and its derivatives [15] are among
the most widely used and successful RL algorithms, which have found applications in
various domains such as mobile robot path planning [16,17], underlying control [18], game
development [19,20], natural language processing [21,22], autonomous driving [23,24],
and others.

To summarize, many researchers have made significant contributions to the adaptive
control of mobile robots in the field of reinforcement learning. Their work involves adapt-
ing traditional control algorithms by optimizing their parameters. For instance, Ignacio [25]
proposed an incremental Q-learning strategy of adaptive PID control for parameter tuning
when the system and operating conditions are unknown and variable. The feasibility
of the algorithm is verified by simulation and physical experiments. Ignacio [26] then
added a multi-function value update experience replay mechanism to adjust the controller
parameters according to the double-q incremental model-free algorithm. After conducting
simulation and physical comparison experiments, it has been demonstrated that the pro-
posed algorithm for adjusting the adaptive parameters of the controller has good real-time
performance and robustness. However, these experiments only involved ground robots,
and thus further research is necessary to determine the algorithm’s feasibility in other
scenarios. Cheng [27] exploited the adaptive controller with fast estimation and active
compensation capabilities for continuous state and action spaces, improving the success
rate of RL control algorithms in different training environments or external disturbances.
The controller has strong robustness and can effectively reduce the training time of the
controller. Still, it is difficult to obtain an effective solution for continuous action space
or high-dimensional action space problems, and it is easy to fall into the trap of local
optimality. Subudhi [28] proposed an Actor/Critic-LQR adaptive control method based on
reinforcement learning for the adaptive control of multi-link flexible manipulators under
different load conditions. The algorithm does not depend on the dynamic model of the
system, and the method has less computational complexity than other adaptive control
algorithms. However, the disturbance between the robot and the external environment
is not considered. Khan S G [29] developed an adaptive control strategy online using a
combination of dynamic programming and reinforcement learning for a humanoid robot
arm’s two joints (shoulder flexion and elbow flexion). The effect of simulation and physical
experiments has been significantly improved. However, compared with the traditional
methods, the computation is huge, the control response time is longer, and the requirements
for robot hardware are very high.

In the field of RL, the double Q-learning algorithm [30] is widely used in the industry
due to its good learning characteristics, which can effectively reduce the typical overestima-
tion in the Q-learning algorithm. Ou [31] proposed a new reinforcement learning-based
framework to realize the quadrotor autonomous obstacle avoidance method. A double-
depth loop is used to solve the error problem of the observation capability of the airborne
monocular camera. Behzad [32] proposed a double Q-learning algorithm to solve the prob-
lem of aircraft trajectory optimization. Under the premise of meeting the communication
connectivity constraints required for the safe operation of the aircraft, the aircraft can be
operated in the shortest time. Through two assumptions: the short-term absence of GPS
signal and the problem of the GPS signal missing for a certain period, the feasibility of
the algorithm is verified by experiments. Faezeh [33] uses double Q-learning and a* with
an offline policy reinforcement learning algorithm to build a new controller. Compared
with the traditional A* and Q-learning algorithms, the algorithm is more reliable and has a
stronger ability to avoid collisions with obstacles. Khan [34] proposed an algorithm based

Actuators 2023, 12, 326 4 of 24

on deep double Q-learning to solve the motion planning problem of robots in complex en-
vironments. By using multiple gaits, the robot is trained to minimize the distance between
its current position and the training target point. Extensive tests conducted across various
terrains have demonstrated the algorithm’s efficacy in all unknown complex environments
with 100% performance efficiency.

Robots controlled by RL and backstepping methods must have high control accu-
racy for typical complex application situations such as casualty rescue and power facility
inspection. In summary, the contributions of this paper are highlighted as follows:

1. Aiming at the trajectory tracking control problem of mobile robots, the idea of artificial
intelligence is introduced into the backstepping trajectory tracking controller. A
control scheme combining backstepping with reinforcement learning is proposed;

2. Compared with the traditional algorithm, it is not required for the proposed method to
be trained with a large number of samples offline. It achieves high-precision tracking
control by fast online learning for controller gain optimization without the expert-level
gain adjustment capability.

3. The new algorithm combines the double Q-learning incremental discretization strat-
egy with a subregional active learning strategy. In order to improve the learning
efficiency, an experience replay mechanism and a time–memory function are intro-
duced for online gain adjustment, so that online learning can be completed faster, and
optimal control can be realized.

The rest of the paper is organized as follows: In Section 2, the problem statement
is presented. In Section 3, we point out the details of the online gain tuning of the high-
accuracy trajectory tracking controller. Section 4 presents the simulation and physical
experimental results of this control algorithm. Finally, conclusions are drawn in Section 5.

2. Problem Statement and Analysis

The traditional backstepping trajectory tracking controller is difficult to use to track
the desired trajectory with high precision, speed, and stability in an unknown and variable
environment. In the past, the parameter gains of the backstepping trajectory tracking
controller usually needed to be adjusted repeatedly through numerous experiments with
the help of expert-level prior knowledge to achieve optimal control. Therefore, to avoid the
tedious process of tuning the controller parameter gains for different tasks. This paper will
study a self-adaptive trajectory tracking control method based on double Q-learning to solve
the problem of automatic tuning of the parameter gains of the trajectory tracking controller
for different task requirements. This section will detail the backstepping trajectory tracking
control theory, reinforcement learning theory, and double Q-learning control algorithm.
These basic concepts are the basis for our proposed self-adaptive trajectory tracking control
for mobile robots.

2.1. Backstepping Trajectory Tracking System for Mobile Robots
2.1.1. Mobile Robot Kinematics Model

Differential mobile robots are underactuated systems with typical non-holonomic
constraints. Its typical geometry is shown in Figure 1.

In Figure 1, it is assumed that the center of mass of the mobile robot is located at
point C. The mobile robot platform has three degrees of freedom in a smooth horizontal
plane, defined in the body coordinate system and represented by a vector ∑ XRCYR. The
XR is the forward direction of the mobile robot, and the YR is the lateral movement direction
of the mobile robot. The global coordinate system based on the current environment of the
mobile robot is ∑ XOY. The heading θ is the angle between the global coordinate system X
and the robot body coordinate system XR. The linear and angular velocities of the robot

Actuators 2023, 12, 326 5 of 24

are νC and ωC, which can simplify the motion control of the mobile robot. Therefore, the
kinematic equation of the mobile robot can be obtained through analysis [35].

•
x
•
y
•
θ

 =

cos θ 0
sin θ 0

0 1

(νc
ωc

)
. (1)

In Equation (1),
•
x,
•
y,
•
θ represents the X direction linear velocity, the Y direction linear

velocity, and θ angular velocity of the mobile robot.

Actuators 2023, 12, x FOR PEER REVIEW 5 of 26

Figure 1. Coordinate system and geometric parameter definition.

In Figure 1, it is assumed that the center of mass of the mobile robot is located at point
C . The mobile robot platform has three degrees of freedom in a smooth horizontal plane,
defined in the body coordinate system and represented by a vector X CYR R . The RX

is the forward direction of the mobile robot, and the RY is the lateral movement direction
of the mobile robot. The global coordinate system based on the current environment of
the mobile robot is XOY . The heading θ is the angle between the global coordinate
system X and the robot body coordinate system RX . The linear and angular velocities
of the robot are Cν and Cω , which can simplify the motion control of the mobile robot.
Therefore, the kinematic equation of the mobile robot can be obtained through analysis
[35].

cos 0
sin 0

0 1

c

c

x

y
θ

ν
θ

ω
θ

•

•

•

 
   
    

=    
    

  
 

. (1)

In Equation (1), , ,x y θ
• • •

 represents the X direction linear velocity, the Y direction
linear velocity, and θ angular velocity of the mobile robot.

2.1.2. Calculation of Pose Error of the Mobile Robot
In the mobile robot trajectory tracking control system, two sets of vectors represent

the robot’s current and desired poses. The current pose is [, ,]Tc c c cP X Y θ= and the de-
sired pose is r [, ,]Tr r rP X Y θ= . The desired pose is the target point of the robot, the current
pose is the robot’s current position. We express the error configuration vector as

[, ,]Te e e eP X Y θ= . The robot trajectory tracking error model is a vector transformation com-
pleted in the global coordinate system XOY [36,37].

cos sin 0
sin cos 0 ()
0 0 1

e r c

e r c r c

e r c

X X X
Y Y Y Te P P

θ θ
θ θ

θ θ θ

  −   
    = − − = −    
    −    

. (2)

Figure 1. Coordinate system and geometric parameter definition.

2.1.2. Calculation of Pose Error of the Mobile Robot

In the mobile robot trajectory tracking control system, two sets of vectors represent
the robot’s current and desired poses. The current pose is Pc = [Xc, Yc, θc]

T and the desired
pose is Pr = [Xr, Yr, θr]

T . The desired pose is the target point of the robot, the current pose is
the robot’s current position. We express the error configuration vector as Pe = [Xe, Ye, θe]

T .
The robot trajectory tracking error model is a vector transformation completed in the global
coordinate system ∑ XOY [36,37].Xe

Ye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Xr − Xc
Yr −Yc
θr − θc

 = Te(Pr − Pc). (2)

In Equation (2), Xe, Ye,and θe represent the X direction error, the Y direction error, and

the heading error of the mobile robot. The matrix

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 is the coefficient

Te for transforming the global coordinate system into the local coordinate system of the
mobile robot.

2.1.3. Mobile Robot Trajectory Tracking Control Scheme

Based on the motion mechanism of the differential mobile robot, an overall control
scheme of trajectory tracking based on the Backstepping method is proposed, as shown in
Figure 2.

Actuators 2023, 12, 326 6 of 24

Actuators 2023, 12, x FOR PEER REVIEW 6 of 26

In Equation (2), eX , eY ,and eθ represent the X direction error, the Y direction

error, and the heading error of the mobile robot. The matrix
cos sin 0
sin cos 0
0 0 1

θ θ
θ θ

 
 
− 
 
 

 is the co-

efficient Te for transforming the global coordinate system into the local coordinate sys-
tem of the mobile robot.

2.1.3. Mobile Robot Trajectory Tracking Control Scheme
Based on the motion mechanism of the differential mobile robot, an overall control

scheme of trajectory tracking based on the Backstepping method is proposed, as shown in
Figure 2.

Figure 2. Schematic diagram of trajectory tracking control.

In the trajectory tracking control system, the global input of the system is the robot’s
desired trajectory rP , desired velocity and angular velocity r (,)Tr rq ν ω= . The global out-
put of the system is the current robot pose cP , and the ultimate goal is to use the “Odom-
etry” sensor to converge the pose error to 0. Then, use the pose error eP at the current
moment, the desired velocity and the angular velocity r (,)Tr rq ν ω= to calculate the ve-
locity and angular velocity (,)Tq ν ω= input by the robot at the current moment. As
shown in Equation (3):

(,)
(,)
e r

e r

P q
q

P q
νν
ωω
  

= =   
   

. (3)

2.1.4. Mobile Robot Trajectory Tracking Controller
For mobile robot trajectory tracking control systems, backstepping design is a sys-

tematic controller synthesis method for uncertain systems. This design method combines
the selection of Lyapunov function with controller design using a regression method. The
approach has gained significant attention from researchers worldwide because it ad-
dresses the uncertainties present in the system. Additionally, the method decomposes a
complex nonlinear system into subsystems that are within the system’s capacity, enabling
the control of a relatively complex nonlinear system. Due to the non-linear nature of slip
and the varying dynamic performance of the wheeled mobile robot with changes in
ground friction, a Backstepping algorithm was implemented to realize the trajectory track-
ing control law of the robot.

According to the mobile robot kinematics model and Backstepping modeling
method, it is easy to obtain the tracking control law of the wheeled mobile robot [38–40]
as follows:

Figure 2. Schematic diagram of trajectory tracking control.

In the trajectory tracking control system, the global input of the system is the robot’s
desired trajectory Pr, desired velocity and angular velocity qr = (νr, ωr)

T . The global output
of the system is the current robot pose Pc, and the ultimate goal is to use the “Odometry”
sensor to converge the pose error to 0. Then, use the pose error Pe at the current moment,
the desired velocity and the angular velocity qr = (νr, ωr)

T to calculate the velocity and
angular velocity q = (ν, ω)T input by the robot at the current moment. As shown in
Equation (3):

q =

[
ν
ω

]
=

[
ν(Pe, qr)
ω(Pe, qr)

]
. (3)

2.1.4. Mobile Robot Trajectory Tracking Controller

For mobile robot trajectory tracking control systems, backstepping design is a sys-
tematic controller synthesis method for uncertain systems. This design method combines
the selection of Lyapunov function with controller design using a regression method. The
approach has gained significant attention from researchers worldwide because it addresses
the uncertainties present in the system. Additionally, the method decomposes a complex
nonlinear system into subsystems that are within the system’s capacity, enabling the control
of a relatively complex nonlinear system. Due to the non-linear nature of slip and the
varying dynamic performance of the wheeled mobile robot with changes in ground friction,
a Backstepping algorithm was implemented to realize the trajectory tracking control law of
the robot.

According to the mobile robot kinematics model and Backstepping modeling method,
it is easy to obtain the tracking control law of the wheeled mobile robot [38–40] as follows:[

v
ω

]
=

[
vC cos θe + k1Xe

ωc + k2vcYe + k3 sin θe

]
. (4)

In Equation (4), k1, k2, k3 are all coefficients greater than zero.
In the field of high-precision trajectory tracking control of mobile robots, the dynamic

performance of the robot varies with the environment and the task performed. Therefore,
to optimize the controller’s performance, it is essential to establish the robot’s pose error
model. Moreover, due to the multi-tasking requirements of tracking trajectories, self-
adaptive backstepping trajectory tracking control should also be considered. Self-adaptive
backstepping trajectory tracking control can choose the optimal control parameter gain
in real time based on the mobile robot’s dynamic performance, task requirements, and
interactive environment. This feature is an advantage of reinforcement learning in the
field of robot control. Compared to the traditional trajectory tracking control algorithm,
a self-adaptive trajectory tracking controller for mobile robots based on reinforcement
learning performs better online tuning of the controller gain in real-time as per different

Actuators 2023, 12, 326 7 of 24

task requirements and changes in the environment. In the following section, we discuss in
detail the RL formulation applied to adjust the parameter gains of the controller.

2.2. Reinforcement Learning Self-Adaptive Control
2.2.1. Reinforcement Learning Description

In reinforcement learning, we refer to the system modeling of control objects as
Markov Decision Processes (MDP) [41]. Specifically, it is a tuple defined by four elements:
{X,K, P, r}; X is the state space, K is the action space, P is the state transition probability,
and r is the reward value function. In the high-precision trajectory tracking agent control
system, the selection of the vector k ∈ K at each moment is related to the controller gain.
In a Markov chain, any state form can be transferred from one state to another. RL solves
the control problem by using the ask-based interactive iteration method to achieve the task
goal. In the iterative learning process, the current state is observed xt ∈ X, and an action
kt = (k1, k2, k3) is selected. According to the state transition probability P(xt+1|xt, kt) , the
agent transitions from the current state xt to xt+1. Moreover, the agent receives the reward
function rt+1(xt, kt) while the state transitions. The cumulative reward Gt obtained by the
agent at the end of the control process is given in Equation (5):

Gt = Rt+1 + γRt+2 + . . . =
∞

∑
k=0

γkRt+k+1, (5)

where γ is the discount factor, which represents the value of future rewards at the moment.
The closer γ is to 0, the more attention is paid to current interests; The closer you get to 1,
the more you value future returns. The purpose of the agent in RL is to find an optimal
strategy and select the optimal controller parameter gain kt according to the system state
xt according to different task requirements to maximize the cumulative reward when the
agent reaches the target state. As shown in Equation (6):

J∗ = max Jπ = max Eπ{Rt+1 | xt = x}. (6)

Then, we define the optimal state-action value function is given in Equation (5):

Q∗(xt, kt) = E
{

rt+1 + γmax
k

Q∗(xt+1, kt+1) | xt, kt

}
. (7)

In Equation (7), when the agent transitions from state xt to xt+1, rt+1 is the reward
value obtained by the system, and γ is the same discount factor as appears in Equation (5).
Then, when the agent interacts with the environment through the RL Equation to learn the
action of the optimal state–action function, the optimal policy can be directly obtained in
Equation (8):

π∗ = arg max
k

Q∗(xt, k). (8)

2.2.2. Double Q-Learning of Adaptive Backstepping

In Section 1, the origin development and successful application cases of the Double
Q-learning algorithm have been described in detail. In the traditional Q-learning learning
algorithm, the reward function rt+1 has a random Q value, which leads to an overestimation
problem. Therefore, the Double Q-learning algorithm decouples the action selection from
the Q-value estimation and saves two independent Q-values to update each other through
the dual estimator of the Q function, thereby reducing the deviation of the value estimation.
That is, if the agent uses Equation (8) to select the optimal action kt in state xt and then
brings it into the Q-learning algorithm to update the value to QA(xt, kt). As shown in
Equation (9):

QA(xt, kt)← QA(xt, kt) + α

[
rt+1 + γmax

k
QB(xt+1, kt+1)−QA(xt, kt)

]
. (9)

Actuators 2023, 12, 326 8 of 24

Alternatively, when the agent is in the state xt, use Equation (8) to select the optimal
action kt and to bring it into the Q-learning algorithm to update the value QB(xt, kt). As
shown in Equation (10):

QB(xt, kt)← QB(xt, kt) + α

[
rt+1 + γmax

k
QA(xt+1, kt+1)−QB(xt, kt)

]
, (10)

where α ∈ (0, 1] is the learning rate and γ ∈ (0, 1] is the discount factor.
According to the previous analysis and Formulas (9) and (10), it can be seen that the

updates of the QA(xt, kt) and QB(xt, kt) are in the opposite order. The value function A
of the optimal action is used to update B, and vice versa. Therefore, each agent update
considers the maximum expected payoff of the optimal action policy in a single estimator
without necessarily being the best. Two Q-function estimators are used to correct the bias
against each other, thereby eliminating the bias problem in overestimation. The Double Q-
learning algorithm has the same update characteristics as the Q-learning algorithm. There
is no need to open up a considerable amount of computing space not only to ensure the real-
time performance of the algorithm but also to maintain the characteristics of the original
Q-learning algorithm. In terms of computational complexity and control accuracy, using
the Double Q-learning algorithm can effectively reduce the occurrence of overestimation
and improve the control accuracy of the system compared to using the Q-leaning algorithm.

2.2.3. Incremental Discretization of State Space and Action Space

In standard Q-learning or double Q-learning algorithms, it is essential to establish a
table for state–action discretization. However, if the discretization interval is too large, the
agent’s control accuracy may not be high enough, while a small interval may lead to ideal
control accuracy but poor time-varying performance. Therefore, many researchers have
explored function estimators as an alternative. Wright [42] uses samples collected in the
problem domain to reduce the adverse effects of errors. However, the experimental results
of using this algorithm are closely related to the sample quality, and the calculation of
numerous samples also significantly increases the computational burden of the system [43],
which is not suitable for the real-time performance requirements of mobile robot systems.
To this end, we propose a novel incremental discretization learning method for state
space and action space. This method is based on the incremental discretization idea
proposed by Carlucho et al. In this section, we only briefly introduce the concepts related
to incremental discretization.

Assuming that the mobile robot is in a two-dimensional Cartesian coordinate system
and X represents the error data set as the state space set, η(xt, xt+1) represents a value
function, and ρ represents a threshold scalar data to determine whether the error at each
moment is in the current error set. The agent trajectory tracking control system will change
the state of the system from xt to xt+1 over time. In the agent control system, we expect
the error between the actual trajectory and the expected trajectory of the robot to approach
zero. However, low control accuracy will lead to significant errors. The higher the number
of state increment sets X, the greater the computational load on the agent control system.
Therefore, to solve the problem of too much data in the incremental discretization set of
the state space of the trajectory tracking control system of the agent, it is necessary to
divide the incremental state set into three-state spaces, namely (0–0.2], (0.2–0.5], (0.5–∞).
After the positional relationship between the current agent state space xt+1 and the state
increment set X in the Cartesian coordinate system is determined, the function η(xt, xt+1)
must be used to determine whether the current state set is in the state increment set X.
If η(xt, xt+1) > ρ ∀xt ∈ X, then the position information of xt needs to be added to the
state increment set X, namely X = {X∪ xt+1}. If the current system xt+1 is in the state
increment set X, the discretization process of the state space can be performed. According
to the three regions divided by the state increment set X, each maximum discrete level
of the state space is 4, 2, and 1, and finally denoted as Λ1 = (ρ0, ρ1, ρ2, ρ3), Λ2 = (ρ0, ρ1),
Λ3 = (ρ0).

Actuators 2023, 12, 326 9 of 24

With the interaction between the agent and the environment and the continuous
deepening of learning, the agent must adjust the parameter gains of the backstepping
trajectory tracking controller in real-time according to the task requirements and perfor-
mance indicators. In the Double Q-learning algorithm, at any time t, the agent must select a
current optimal action kt from the given action space K in the Q table through the optimal
policy π∗. In the same way as the discretization of the state space, we discretize the action
space to solve the problems of low control accuracy, excessive calculation, and inaccurate
establishment of the Q table. As the agent interacts with the environment and continues
to learn, the control effect improves after the action space is discretized, allowing for the
selection of an optimal action to be applied to the trajectory-tracking controller. This idea is
presented in a simple diagram, as shown in Figure 3.

Actuators 2023, 12, x FOR PEER REVIEW 9 of 26

proposed by Carlucho et al. In this section, we only briefly introduce the concepts related
to incremental discretization.

Assuming that the mobile robot is in a two-dimensional Cartesian coordinate system
and  represents the error data set as the state space set, ()1,t tx xη + represents a value
function, and ρ represents a threshold scalar data to determine whether the error at each
moment is in the current error set. The agent trajectory tracking control system will change
the state of the system from tx to 1tx + over time. In the agent control system, we expect
the error between the actual trajectory and the expected trajectory of the robot to approach
zero. However, low control accuracy will lead to significant errors. The higher the number
of state increment sets  , the greater the computational load on the agent control system.
Therefore, to solve the problem of too much data in the incremental discretization set of
the state space of the trajectory tracking control system of the agent, it is necessary to di-
vide the incremental state set into three-state spaces, namely (0–0.2], (0.2–0.5], (0.5–∞). Af-
ter the positional relationship between the current agent state space 1tx + and the state
increment set  in the Cartesian coordinate system is determined, the function

()1,t tx xη + must be used to determine whether the current state set is in the state incre-
ment set  . If ()1,t tx x ρη + > tx∀ ∈ , then the position information of tx needs to be
added to the state increment set  , namely 1{ }tx += ∪  . If the current system 1tx + is
in the state increment set  , the discretization process of the state space can be per-
formed. According to the three regions divided by the state increment set  , each maxi-
mum discrete level of the state space is 4, 2, and 1, and finally denoted as

1 0 1 2 3(, , ,)ρ ρ ρ ρΛ = , 2 0 1(,)ρ ρΛ = , 3 0()ρΛ = .
With the interaction between the agent and the environment and the continuous

deepening of learning, the agent must adjust the parameter gains of the backstepping tra-
jectory tracking controller in real-time according to the task requirements and perfor-
mance indicators. In the Double Q-learning algorithm, at any time t , the agent must se-
lect a current optimal action tk from the given action space  in the Q table through
the optimal policy π ∗ . In the same way as the discretization of the state space, we discre-
tize the action space to solve the problems of low control accuracy, excessive calculation,
and inaccurate establishment of the Q table. As the agent interacts with the environment
and continues to learn, the control effect improves after the action space is discretized,
allowing for the selection of an optimal action to be applied to the trajectory-tracking con-
troller. This idea is presented in a simple diagram, as shown in Figure 3.

Figure 3. Incremental action discretization diagram.

First, assume that the agent is in the state tx , select the optimal action tk at the cur-
rent moment in the action space  according to the optimal strategy and execute (in

Figure 3. Incremental action discretization diagram.

First, assume that the agent is in the state xt, select the optimal action kt at the current
moment in the action space K according to the optimal strategy and execute (in Figure 3, the
blue shaded part represents the optimal action). Then, we assume that the agent interacts
with the environment and learns under ideal conditions from the current state xt to xt+1. In
the current state, the agent selects the optimal action kt at the current moment in the action
space K again according to the optimal strategy and executes it. By analogy, according to
the discretization criterion of the state space X, if the system state xt = xt+1 = xt+2 = . . .
remains unchanged, after n cycles, the agent selects the same action kt = kt+1 = kt+2 = . . .
according to the optimal strategy in the action space and executes it. We take the current
action. The action space K is discretized to obtain a more refined action space K′, which is
called the action space incremental discretization process. As shown in Figure 3, after L
times of discretization, the final graceful action discretization space is obtained. It is worth
noting that during the discretization process of the active learning of the agent, the state of
the system at each moment remains unchanged according to the discretization criterion of
the state and action of the agent. Finally, the discretization process of the action space is the
same as that of the state space and can be carried out to the maximum level L; that is, each
action space is discretized as ∆ = δ1, δ2, . . . , δL.

3. Self-Adaptive Trajectory Tracking Control Algorithm Based on
Reinforcement Learning

When the mobile robot performs high-precision tracking along the desired trajectory,
each time t of the tracking control is related to the error between the desired trajectory
and the mobile robot, which not only satisfies the Markov chain but also changes in real-
time. In this paper, we consider the specific task of tracking the desired trajectory as a
Markov decision process: at the moment t, the state xt of the agent selects and executes
an action kt according to the optimal policy π∗, which is used as the parameter gain of
the current trajectory tracking controller to realize the adaptive adjustment of the speed

Actuators 2023, 12, 326 10 of 24

and angular velocity of the mobile robot. Then, the state xt+1 of the agent at time t + 1,
the reward rt+1(xt, kt) at the current time t, the action kt, and the state xt are recombined
into a new tuple (xt, kt, xt+1, rt+1). Using the idea of backstepping trajectory tracking
control, combined with the Double Q-learning algorithm, state space subregion, action
space incremental discretization active learning mechanism, the parameter gain of the
backstepping controller is self-adjusted through the online learning strategy to ensure
the mobile robot can complete the trajectory tracking task with multiple types and high
accuracy. As shown in Figure 4, the robot trajectory tracking control structure is designed
as follows. In the control structure designed in this paper, the agent RL algorithm plays the
role of the upper controller. The system interacts with the environment continuously, and
the agent selects and executes the optimal action kt according to the optimal strategy π∗.
Self-adaptively adjusts the parameter gains of the lower backstepping trajectory tracking
controller to achieve high-precision trajectory tracking tasks.

Actuators 2023, 12, x FOR PEER REVIEW 11 of 26

Figure 4. The overall structure of the self-adaptive trajectory tracking control system.

3.1. Experience Replay Mechanism
Mnih [44] et al. proposed the DQN algorithm based on NIPS in the classical field of

RL. On the one hand, the deep neural network is used to approximate the action–value
function. On the other hand, the experience reply mechanism [45] is used to make the
agent significantly improve the utilization rate of samples and the learning efficiency. The
experience replay mechanism is a simple and effective method, which stores the data ob-
tained by the interaction between the agent and the environment in the form of memory
cells 1 1(, , ,)t t t tx k r x+ + ; it then updates the data according to the random selection of samples
in experience replay memory . As shown in Figure 5.

Figure 5. Schematic diagram of the experience replay mechanism.

This similar experience replay mechanism is common in RL algorithms. It is a model-
based RL paradigm structure that repeatedly updates the system model and action-value
function in a one-step format. However, this paper is based on the backstepping trajectory
tracking error model. We can perform ordered iterations of each algorithm according to
the trajectory tracking error model, and we can randomly select batches of minibatch from
the replay buffer to transform and update the state-action value function of the system.
Moreover, the replay buffer area is bounded, and the maximum amount of system
memory unit data it can store is m , that is, 1 2 3(, , ,...)mR τ τ τ τ= . If the amount of data
stored in the replay buffer area reaches the maximum value, the newly stored memory
cells will be overwritten from the side of the first stored memory cells, and cycle in turn.

Figure 4. The overall structure of the self-adaptive trajectory tracking control system.

3.1. Experience Replay Mechanism

Mnih [44] et al. proposed the DQN algorithm based on NIPS in the classical field of
RL. On the one hand, the deep neural network is used to approximate the action–value
function. On the other hand, the experience reply mechanism [45] is used to make the
agent significantly improve the utilization rate of samples and the learning efficiency.
The experience replay mechanism is a simple and effective method, which stores the
data obtained by the interaction between the agent and the environment in the form of
memory cells (xt, kt, rt+1, xt+1); it then updates the data according to the random selection
of samples in experience replay memory. As shown in Figure 5.

Actuators 2023, 12, x FOR PEER REVIEW 11 of 26

Figure 4. The overall structure of the self-adaptive trajectory tracking control system.

3.1. Experience Replay Mechanism
Mnih [44] et al. proposed the DQN algorithm based on NIPS in the classical field of

RL. On the one hand, the deep neural network is used to approximate the action–value
function. On the other hand, the experience reply mechanism [45] is used to make the
agent significantly improve the utilization rate of samples and the learning efficiency. The
experience replay mechanism is a simple and effective method, which stores the data ob-
tained by the interaction between the agent and the environment in the form of memory
cells 1 1(, , ,)t t t tx k r x+ + ; it then updates the data according to the random selection of samples
in experience replay memory . As shown in Figure 5.

Figure 5. Schematic diagram of the experience replay mechanism.

This similar experience replay mechanism is common in RL algorithms. It is a model-
based RL paradigm structure that repeatedly updates the system model and action-value
function in a one-step format. However, this paper is based on the backstepping trajectory
tracking error model. We can perform ordered iterations of each algorithm according to
the trajectory tracking error model, and we can randomly select batches of minibatch from
the replay buffer to transform and update the state-action value function of the system.
Moreover, the replay buffer area is bounded, and the maximum amount of system
memory unit data it can store is m , that is, 1 2 3(, , ,...)mR τ τ τ τ= . If the amount of data
stored in the replay buffer area reaches the maximum value, the newly stored memory
cells will be overwritten from the side of the first stored memory cells, and cycle in turn.

Figure 5. Schematic diagram of the experience replay mechanism.

Actuators 2023, 12, 326 11 of 24

This similar experience replay mechanism is common in RL algorithms. It is a model-
based RL paradigm structure that repeatedly updates the system model and action-value
function in a one-step format. However, this paper is based on the backstepping trajectory
tracking error model. We can perform ordered iterations of each algorithm according to
the trajectory tracking error model, and we can randomly select batches of minibatch from
the replay buffer to transform and update the state-action value function of the system.
Moreover, the replay buffer area is bounded, and the maximum amount of system memory
unit data it can store is m, that is, R = (τ1, τ2, τ3, . . . τm). If the amount of data stored in
the replay buffer area reaches the maximum value, the newly stored memory cells will be
overwritten from the side of the first stored memory cells, and cycle in turn.

In this paper, the trajectory tracking controller uses the Double Q-learning algorithm
to learn the controller parameter gain adjustment online. Before using the experience replay
mechanism, the state–action value functions of QA and QB need to be randomly initialized.
In the daily application of RL algorithms, the initialization of any state-action value function
is not a simple and easy task. The establishment of the value function has two advantages
for the agent. The first point is that when the value function takes random values, it is
crucial in the RL algorithm to facilitate exploration of the unknown areas, and the use of
random initialization reduces the possibility of excessive deviation of the state–action value
function. The second advantage is that it reduces the number of hyperparameters we input,
so algorithm designers do not need expert experience for hyperparameter tuning. The
algorithm is friendly to simplify the reproduction of the control algorithm and the ability
of cross-platform experiments.

3.2. Incremental Discretization Process

In traditional Q-learning or Double Q-learning algorithms, the state space X is learned
interactively with the environment through uniform discretization. However, our proposed
incremental discretization learning algorithm is a process of continuously updating and
adding state space X through interactive learning. With each interaction, the system state
is updated according to the two forms of state described in Section 2.2.3. If the system state
does not change, an optimal action is selected and executed according to Equation (8), and
the same subsequent operation is performed N times. As described in the previous section,
in this case, the state of the agent remains unchanged, and the action space K needs to be
incrementally discretized and refined.

We define a tuple, which stores all the information about the state–action of the agent
at the current moment, that is, Mt = (xt, kt, l). Then, according to the theoretical basis of N-
memories, we compare the tuples Mt at each moment, that is Mt= Mt−1= Mt−2 = . . .= Mt−n,
to determine whether the state–action information of the agent changes during a certain
time interval T. If the assumption is valid, the system is in the time interval T when there is
no change. The agent needs to perform incremental discretization processing on the optimal
action selected in this time interval to generate a more refined action subset, as shown in
Figure 3. Since the state–action space is in one-to-one correspondence, the discretization of
the action space will inevitably lead to the discretization of the state space; if the state of
the agent is still the same as the current system state at the next moment, the agent will
select and execute the optimal action from the newly created subset of actions.

The incremental discretized state-action active learning mechanism avoids the robot’s
exploration of unnecessary areas by exploring a given space area, making the state-action
space in the Q table more practical. The control accuracy has been transformed from coarse
to more refined and accurate, significantly reducing the number of calculations and provid-
ing better real-time performance of the control system. As shown in Figure 6, the initialized
state space is divided into three regions. This is represented by multiple shaded reachable
states, which represent sub-regions of the state space after incremental discretization.

Actuators 2023, 12, 326 12 of 24Actuators 2023, 12, x FOR PEER REVIEW 13 of 26

Figure 6. Incremental state discretization diagram.

3.3. Algorithmic Statement
The pseudo-code of the proposed incremental Double Q-learning self-adaptive tra-

jectory tracking control algorithm is shown in Algorithm 1. Algorithm 1 pseudo-code of
self-adaptive trajectory tracking control algorithm.

Algorithm 1 Double Q-Learning Track Tracking Algorithm Pseudo-Code
1: Input: ()0 1, , , , , , ,, , , ,tt tr x x l m Nα γ ε η + Λ Δ
2: Position error of the system at initialization
3: Initializing the experience replay buffer R
4: Initializing the state space 
5: Initialize AQ , BQ
6: Loop:
7: ε -Action selection using greedy strategies tk

8: The current tuple (,)t tx k l, is stored in tM

9: Modelling robot kinematics and calculating positional errors te

10: updating → Update Next status 1tx + , Robot input tu and reward 1tr +
11: if the system is variant then
12: The current memory cell 1 1(, , ,)t t t tx k r x+ + is stored in the experience replay buffer
R

13: Divide the region according to the state space  and find the nearest point of
1tx + to ix ∈

14: if 1tx + is inside ix ∈ then

15: if 1tx + is in the (0–0.2] interval, there are four chances to update AQ and BQ

16: if 1tx + is in the (0.2–0.5] interval, there are two chances to update AQ and BQ

17: if 1tx + is in the (0.5–∞) interval, there are one chance to update AQ and BQ
18: else
Incorporate 1tx + in 

Set up AQ and BQ for the newly merged state 1tx +
19: end if
20: else
System performs state-action incremental discretization active learning
21: end if

Figure 6. Incremental state discretization diagram.

3.3. Algorithmic Statement

The pseudo-code of the proposed incremental Double Q-learning self-adaptive tra-
jectory tracking control algorithm is shown in Algorithm 1. Algorithm 1 pseudo-code of
self-adaptive trajectory tracking control algorithm.

Algorithm 1 Double Q-Learning Track Tracking Algorithm Pseudo-Code

1: Input: α, γ, rt, ε0,K, η(xt, xt+1), l, m, N, Λ, ∆
2: Position error of the system at initialization
3: Initializing the experience replay buffer R
4: Initializing the state space X
5: Initialize QA, QB
6: Loop:
7: ε-Action selection using greedy strategies kt
8: The current tuple (xt, kt, l) is stored in Mt
9: Modelling robot kinematics and calculating positional errors et
10: updating→Update Next status xt+1, Robot input ut and reward rt+1
11: if the system is variant then
12: The current memory cell (xt, kt, rt+1, xt+1) is stored in the experience replay buffer R
13: Divide the region according to the state space X and find the nearest point of xt+1 to
xi ∈ X
14: if xt+1 is inside xi ∈ X then
15: if xt+1 is in the (0–0.2] interval, there are four chances to update QA and QB
16: if xt+1 is in the (0.2–0.5] interval, there are two chances to update QA and QB
17: if xt+1 is in the (0.5–∞) interval, there are one chance to update QA and QB
18: else
Incorporate xt+1 in X
Set up QA and QB for the newly merged state xt+1
19: end if
20: else
System performs state-action incremental discretization active learning
21: end if
22: System startup experience replay mechanism
23: Update system state xt = xt+1 with incremental discretization l.
24: end Loop

In the first line, the hyperparameters of the agent need to be entered. Some of these
parameters are common in Q-learning or Double Q-learning. Such as learning rate α,
reward function rt, discount factor γ and exploration strategy ε0. There are also some
special symbols mentioned in this article. For example, initialize the coarse action space
K. Determine the positional relationship between the current system state and the state

Actuators 2023, 12, 326 13 of 24

space according to the value function η(xt, xt+1). l is the action space discretization level
parameter. The size of the minibatch for initializing experience replay is m. The parameter
N is to determine whether the system is changeable and store the memory unit in Mt.
Finally, Λ, ∆ represent the threshold sizes of the state space and action space of the agent
under different discretization levels.

From line 2 to line 5, initialize the state space X, the experience replay buffer R, QA
and QB. In this case, the initialization state of the agent is not set randomly; it needs to be
measured by some sensors. In this paper, the system’s initial state is the pose measured by
the integrated inertial navigation as the initial state x.

From line 6 to the end of the loop on line 26, the Double Q-learning incremental
discretization active learning algorithm is an infinite loop. First, we use the greedy strategy
to select the optimal action in the current state according to QA and QB, then selectively
update the value function of QA or QB according to Equations (9) and (10). Each cycle,
update QA with the probability of εt = ε0 − 1

1+e−2t to get the optimal action or update QB
with the probability of 1− εt to get the optimal action. In line 8, the current state, action
and action discretization level of the agent have been combined into a tuple in Mt for
subsequent determination of whether the system is changing. In lines 9 and 10, updates
the trajectory tracking controller to obtain the robot input ut, the state xt+1 at the next
moment, and the current reward rt+1 according to the pose error and optimal action at the
current moment.

After the agent interacts interactively with the environment, it needs to use Mt to
determine whether the system has changed. Then, the statements in lines 11 to 24 are
executed. When the system changes, this means that the N values stored in Mt are not
the same. Therefore, we merge these N memory cells Mt into the experience replay buffer.
Then, we find the closest point to xt+1 after dividing xt+1 in the region of state space X.
Update the state–action functions QA and QB according to the value function η(xt, xt+1)
and the maximum state discretization Λ. Otherwise, when the system is in the “invariant”
condition, the agent can make the robot’s trajectory tracking control accuracy higher
through active learning according to the incremental discretization mechanism.

After determining whether the current system has changed, in line 22 uses the expe-
rience replay mechanism to update the value functions QA and QB. The agent learning
efficiency is faster, and the discretization time is shorter, which significantly reduces the
possibility of no convergence in the system. Then, in line 23, update the system’s state and
incremental discretization level in preparation for the next cycle.

4. Experimental Result

This section aims to verify the robustness, real-time performance, and anti-disturbance
capabilities of the incremental discretization self-adaptive trajectory tracking control algo-
rithm. First, we set the hyperparameters of the proposed control algorithm and verified
their performance in the Gazebo. Finally, we will perform experiments to compare the pro-
posed algorithm with Fuzzy-Backstepping trajectory tracking and traditional Backstepping
trajectory tracking, adding evidence of the algorithm’s feasibility and effectiveness.

4.1. RL Hyperparameter Settings

Before Gazebo and physical experiments, we must address some common hyperpa-
rameter problems in experiments. First, the parameter gain of the self-adaptive trajectory
tracking controller is the kt = (k1, k2, k3) generated by selecting and executing the optimal
action of the agent at each moment. In simulation and physical experiments, the initial-
ization of the controller parameter gains is satisfied by the uniform random distribution
U(kmin, kmax). The controller parameter gain kt is uniformly initialized randomly, reducing
the hyperparameter of settings. This simplifies the process of setting hyperparameter for
the designer and reduces the reliance on them. By relying less on hyperparameter design,
the controller parameters become more refined and can achieve better control accuracy and
performance. Moreover, the design of the reward function must provide enough valuable

Actuators 2023, 12, 326 14 of 24

information for the entire system to interact with the environment, without disturbing
the external environment. In this paper, the reward function is designed as shown in
Equation (11).

rt = −
ln(1− a(|xt − xre f | − a))

a
− a, (11)

where, a is a free parameter, et = |xt − xre f | represents the pose error between the robot’s
current position and its desired point. However, when the system’s current pose xt is close
to the desired pose xre f , the value of the reward function approaches −1, which indicates
that the system is approaching the desired pose. Conversely, the reward function will give
a relatively lower reward.

In RL, it is necessary to balance exploration and exploitation in order to learn optimal
policies. The balance between exploration and exploitation has a significant impact on the
learning of system performance, determining whether the agent uses its existing strategy
or explores new strategies. Too much exploration will prevent the agent from getting the
maximum reward in the short term, and the agent will randomly choose an action that
leads to poor rewards. To address this issue, in the early stages of reinforcement learning,
the Q table is randomly initialized, resulting in little information about the interaction
between the agent and the environment. To ensure systematic learning, optimal strategy
selection, and a comprehensive exploration of the environment, a high exploration strategy
is adopted. As the agent gains knowledge over time, the learning process begins and the
high-exploration strategy is changed to a lower-exploration strategy [46,47]. To achieve
this transition strategy, we use an exploration-exploitation coefficient that decays over time.
It determines the probability of the robot system selecting the optimal action based on the
current strategy or selecting a random action via the exploration strategy. This probability
can be expressed using an equation as follows (12):

ρl = −(
(ρmax − ρmin)

lmax
)l + ρmax. (12)

For the simulation and the physical experiment, the values of ε0 = 1 and ε1 = 0.95 are
the same.

4.2. Simulation Experiments

The simulation experiment is composed of two parts: a linear simulation experiment
and a circular simulation experiment. In the simulation experiments, the start and end
positions of the robot are in the same position, ensuring that the robot’s environment is the
same in each experiment.

In the incremental discretization Double Q-learning algorithm, we set the remaining
hyperparameters: the learning rate α = 0.2; discount factor γ = 0.95. The experience replay
mechanism also needs to be initialized, we set the initial buffer to n = 7, and the total is
27 = 128; we use N = 4 in N-memories. The incremental discretization levels l for the
state space are Λ1 = (ρ0, ρ1, ρ2, ρ3), Λ2 = (ρ0, ρ1), Λ3 = (ρ0). ρl = −(

(ρmax−ρmin)
lmax

)l + ρmax,
where ρmax = 0.25, ρmin = 0.005 and lmax = 20.

To test the feasibility and effectiveness of the algorithm, we conducted simulation
experiments using the turtlebot3 in Gazebo, as shown in Figure 7. The robot input has two
control variables ut = (νt, ωt), where νmax = 0.26 m/s, ωmax = 1.8 rad/s. In addition, the
robot uses a combination of an odometer and slam to filter and locate [48]. The agent state
at time t is defined as xt = (ex, ey, eθ), and the initialization of the action state space kt is
randomly selected.

Actuators 2023, 12, 326 15 of 24

Actuators 2023, 12, x FOR PEER REVIEW 16 of 26

positions of the robot are in the same position, ensuring that the robot’s environment is
the same in each experiment.

In the incremental discretization Double Q-learning algorithm, we set the remaining
hyperparameters: the learning rate 0.2α = ; discount factor 0.95γ = . The experience re-

play mechanism also needs to be initialized, we set the initial buffer to 7n = , and the total
is 72 128= ; we use 4N = in N-memories. The incremental discretization levels l for
the state space are

1 0 1 2 3(, , ,)ρ ρ ρ ρΛ = ,
2 0 1(,)ρ ρΛ = , 3 0()ρΛ = .

m ax m in
m ax

m ax

()()l l
l

ρ ρρ ρ−
= − + , where m ax 0 .2 5ρ = , min 0.005ρ = and

m ax 2 0l = .

To test the feasibility and effectiveness of the algorithm, we conducted simulation
experiments using the turtlebot3 in Gazebo, as shown in Figure 7. The robot input has two
control variables (,)t t tu ν ω= , where max 0.26 /m sν = , max 1.8 /rad sω = . In addition, the ro-
bot uses a combination of an odometer and slam to filter and locate [48]. The agent state
at time t is defined as (, ,)t x yx e e eθ= , and the initialization of the action state space tk
is randomly selected.

Figure 7. Gazebo Platform.

4.2.1. Linear Trajectory Tracking Simulation Experiment
The linear trajectory tracking simulation experiment defines the linear trajectory as

shown below in Equation (13).

cos
sin

y t
x t

ν θ
ν θ

= × ×
 = × ×

 (13)

The initial pose of the robot is [(0), (0), (0)] [0,0,]
4

T Tx y πθ = . In the linear simulation,

the trajectory tracking target speed is set to 0.2 /cv m s= , with an expected angular veloc-
ity of 0cω = rad/s. The initial gains for the Backstepping trajectory tracking controller
were chosen to be [0.5, 3.51, 2.5]. The self-adaptive trajectory tracking algorithm based on
reinforcement learning is illustrated in Figure 8.

Figure 7. Gazebo Platform.

4.2.1. Linear Trajectory Tracking Simulation Experiment

The linear trajectory tracking simulation experiment defines the linear trajectory as
shown below in Equation (13). {

y = ν× t× cos θ
x = ν× t× sin θ

(13)

The initial pose of the robot is [x(0), y(0), θ(0)]T = [0, 0, π
4]

T . In the linear simulation,
the trajectory tracking target speed is set to vc = 0.2 m/s, with an expected angular velocity
of ωc = 0 rad/s. The initial gains for the Backstepping trajectory tracking controller
were chosen to be [0.5, 3.51, 2.5]. The self-adaptive trajectory tracking algorithm based on
reinforcement learning is illustrated in Figure 8.

The simulation results of linear trajectory tracking are shown in Figure 8, which
comprises six sub-figures. Figure 8a shows the simulated position of linear trajectory
tracking. This demonstrates that the proposed adaptive trajectory tracking algorithm is
effective, allowing the robot to closely follow the expected trajectory. Figure 8b presents
the pose error for the linear trajectory tracking, where the system gradually converges to 0
after about 15 s. Figure 8c illustrates the linear velocity and angular velocity over time for
linear trajectory tracking, which stabilize at about 7 s and 8 s, respectively. Figure 8d shows
a diagram of the parameter gain effect for the linear trajectory tracking controller. Figure 8e
presents a simulation of incremental discretization level for linear trajectory tracking, which
reaches the set maximum value over time. Finally, Figure 8f shows the reward value for the
linear trajectory tracking that stabilizes around −1.

4.2.2. Circular Trajectory Tracking Simulation Experiment

The circular trajectory tracking simulation experiment defines the circular trajectory
as shown below in Equation (14).{

y = r + r ∗ cos(ω ∗ t)
x = r ∗ sin(ω ∗ t)

. (14)

Similar to the linear simulation, the robot’s initial pose is set as [x(0), y(0), θ(0)]T = [0, 0, π
3]

T

for the circular simulation. The trajectory tracking target velocity is vc = 0.2 m/s, with an
expected angular velocity of ωc = 0.1 rad/s. The initial gain of the Backstepping trajectory
tracking controller is chosen as [0.5, 3.51, 2.5]. The adaptive trajectory tracking algorithm
based on reinforcement learning is illustrated in Figure 9.

Actuators 2023, 12, 326 16 of 24
Actuators 2023, 12, x FOR PEER REVIEW 17 of 26

(a) (b)

(c) (d)

(e) (f)

Figure 8. Speed 0.2 m/s linear trajectory tracking. (a) Linear trajectory tracking; (b) Pose error; (c)
Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

The simulation results of linear trajectory tracking are shown in Figure 8, which com-
prises six sub-figures. Figure 8a shows the simulated position of linear trajectory tracking.
This demonstrates that the proposed adaptive trajectory tracking algorithm is effective,
allowing the robot to closely follow the expected trajectory. Figure 8b presents the pose
error for the linear trajectory tracking, where the system gradually converges to 0 after
about 15 s. Figure 8c illustrates the linear velocity and angular velocity over time for linear
trajectory tracking, which stabilize at about 7 s and 8 s, respectively. Figure 8d shows a
diagram of the parameter gain effect for the linear trajectory tracking controller. Figure 8e
presents a simulation of incremental discretization level for linear trajectory tracking,
which reaches the set maximum value over time. Finally, Figure 8f shows the reward value
for the linear trajectory tracking that stabilizes around −1.

Figure 8. Speed 0.2 m/s linear trajectory tracking. (a) Linear trajectory tracking; (b) Pose error;
(c) Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

Figure 9 presents the simulation results for circular trajectory tracking. Figure 9a
shows the simulated position for circular trajectory tracking, where the trajectory tracking
adaptive algorithm proposed in this paper works effectively and allows the robot to closely
follow the expected trajectory. Figure 9b displays the pose error for circular trajectory
tracking, showing that the system gradually converges to 0 after about 9 s. Figure 9c
illustrates the linear velocity and angular velocity over time for circular trajectory tracking,
which stabilizes at around 6 s and 5 s, respectively. Figure 9d shows a diagram of the
parameter gain effect for the circular trajectory tracking controller, while Figure 9e presents
the simulation of incremental discretization level for circular trajectory tracking, which
reaches the set maximum value over time. Finally, Figure 9f shows the reward effect
diagram for the circular trajectory tracking simulation that stabilizes around −1.

Actuators 2023, 12, 326 17 of 24

Actuators 2023, 12, x FOR PEER REVIEW 18 of 26

4.2.2. Circular Trajectory Tracking Simulation Experiment
The circular trajectory tracking simulation experiment defines the circular trajectory

as shown below in Equation (14).

cos()
sin()

y r r t
x r t

ω
ω

= + ∗ ∗
 = ∗ ∗

. (14)

Similar to the linear simulation, the robot’s initial pose is set as

[(0), (0), (0)] [0,0,]
3

T Tx y πθ = for the circular simulation. The trajectory tracking target veloc-

ity is 0.2 /cv m s= , with an expected angular velocity of 0.1cω = rad/s. The initial gain
of the Backstepping trajectory tracking controller is chosen as [0.5, 3.51, 2.5]. The adaptive
trajectory tracking algorithm based on reinforcement learning is illustrated in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Speed 0.2 m/s Circular trajectory tracking. (a) Linear trajectory tracking; (b) Pose error; (c)
Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

Figure 9. Speed 0.2 m/s Circular trajectory tracking. (a) Linear trajectory tracking; (b) Pose error;
(c) Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

As shown in Figures 8 and 9, the results demonstrate that the designed adaptive
trajectory tracking controller can enable the mobile robot system to quickly eliminate
disturbance errors and achieve accurate trajectory tracking with high precision.

4.3. Physical Experiments

This subsection will validate an actual mobile robot’s proposed self-adaptive trajectory
tracking algorithm. The physical experiment was conducted using the Turtlebot3 Waffle
differential mobile robot platform, as shown in Figure 10.

Actuators 2023, 12, 326 18 of 24

Actuators 2023, 12, x FOR PEER REVIEW 19 of 26

Figure 9 presents the simulation results for circular trajectory tracking. Figure 9a
shows the simulated position for circular trajectory tracking, where the trajectory tracking
adaptive algorithm proposed in this paper works effectively and allows the robot to
closely follow the expected trajectory. Figure 9b displays the pose error for circular trajec-
tory tracking, showing that the system gradually converges to 0 after about 9 s. Figure 9c
illustrates the linear velocity and angular velocity over time for circular trajectory track-
ing, which stabilizes at around 6 s and 5 s, respectively. Figure 9d shows a diagram of the
parameter gain effect for the circular trajectory tracking controller, while Figure 9e pre-
sents the simulation of incremental discretization level for circular trajectory tracking,
which reaches the set maximum value over time. Finally, Figure 9f shows the reward effect
diagram for the circular trajectory tracking simulation that stabilizes around −1.

As shown in Figures 8 and 9, the results demonstrate that the designed adaptive tra-
jectory tracking controller can enable the mobile robot system to quickly eliminate dis-
turbance errors and achieve accurate trajectory tracking with high precision.

4.3. Physical Experiments
This subsection will validate an actual mobile robot’s proposed self-adaptive trajec-

tory tracking algorithm. The physical experiment was conducted using the Turtlebot3
Waffle differential mobile robot platform, as shown in Figure 10.

Figure 10. Turtlebot3 mobile robots.

Before beginning the physical experiment, we set the hyperparameters of the RL al-
gorithm and the robot trajectory tracking control system parameters to match those used
in the Gazebo environment. The experiment was designed to verify the algorithm’s ro-
bustness, adaptability, and anti-disturbance capabilities for the indoor inspection project
for mobile robots. In the physical experiment, we verified linear and circular trajectory
tracking with a linear velocity of 0.2 /m s .

4.3.1. Physical Experiment with Linear Trajectory Tracking
In the linear trajectory tracking experiment, the initial position of the robot is set to

[(0), (0), (0)] [0,0,]
4

T Tx y πθ = , with an expected velocity of 0.2 /v m s= and an expected angular

velocity of 0cω = rad/s. The initial gain for the Backstepping trajectory tracking controller
was set at [0.5, 3.51, 2.5]. To confirm the adaptiveness and anti-disturbance performance
of the trajectory tracking controller, random disturbances were added to test the proposed
algorithm’s superior performance. Experiments involving random human disturbance
are conducted to verify that even after experiencing communication failure, localization
sensor deviation, or mobile robot slippage, the robot can make corrections to the desired
trajectory and perform accurate tracking. The linear experiment results based on the dou-
ble Q-learning adaptive trajectory tracking control algorithm are shown in Figure 11.

Figure 10. Turtlebot3 mobile robots.

Before beginning the physical experiment, we set the hyperparameters of the RL
algorithm and the robot trajectory tracking control system parameters to match those
used in the Gazebo environment. The experiment was designed to verify the algorithm’s
robustness, adaptability, and anti-disturbance capabilities for the indoor inspection project
for mobile robots. In the physical experiment, we verified linear and circular trajectory
tracking with a linear velocity of 0.2 m/s.

4.3.1. Physical Experiment with Linear Trajectory Tracking

In the linear trajectory tracking experiment, the initial position of the robot is set to
[x(0), y(0), θ(0)]T = [0, 0, π

4]
T , with an expected velocity of v = 0.2 m/s and an expected

angular velocity of ωc = 0 rad/s. The initial gain for the Backstepping trajectory tracking
controller was set at [0.5, 3.51, 2.5]. To confirm the adaptiveness and anti-disturbance
performance of the trajectory tracking controller, random disturbances were added to test
the proposed algorithm’s superior performance. Experiments involving random human
disturbance are conducted to verify that even after experiencing communication failure,
localization sensor deviation, or mobile robot slippage, the robot can make corrections
to the desired trajectory and perform accurate tracking. The linear experiment results
based on the double Q-learning adaptive trajectory tracking control algorithm are shown
in Figure 11.

To verify the stability, robustness, and anti-interference properties of the adaptive
trajectory tracking algorithm, an expected line speed of v = 0.2 m/s was set for the mobile
robot. As seen in Figure 11a, when the system experiences disturbances, the robot can
quickly and accurately track the desired trajectory. Figure 11b displays the pose error
of the robot while tracking the desired trajectory. The tracking error initially has a large
overshoot, but gradually becomes smaller after learning. When the system encounters
external disturbances, the error can also rapidly be eliminated, making the system gradually
stable. Figure 11c reveals that at around 5 s and 4 s, respectively, the initially assigned linear
and angular velocities begin to converge. When the system is disturbed, the robot’s velocity
and angular velocity can change swiftly. Figure 11d presents the timetable of the trajectory
tracking controller parameter gain over time. Figure 11e illustrates how the system focuses
on improving its optimal policies by performing fine discretization operations on the
state space and action space through incremental active learning mechanisms. Figure 11f
shows how reward changes over time. After the disturbance is eliminated, the reward
value finally stabilizes at around −1, demonstrating that the proposed adaptive trajectory
tracking controller can achieve accurate curve tracking with good stability, robustness, and
anti-interference performance for the mobile robot system.

Actuators 2023, 12, 326 19 of 24
Actuators 2023, 12, x FOR PEER REVIEW 20 of 26

(a) (b)

(c) (d)

(e) (f)

Figure 11. Speed 0.2 m/s linear trajectory tracking. (a) Linear trajectory tracking; (b) Pose error; (c)
Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

To verify the stability, robustness, and anti-interference properties of the adaptive
trajectory tracking algorithm, an expected line speed of 0.2 /v m s= was set for the mobile
robot. As seen in Figure 11a, when the system experiences disturbances, the robot can
quickly and accurately track the desired trajectory. Figure 11b displays the pose error of
the robot while tracking the desired trajectory. The tracking error initially has a large over-
shoot, but gradually becomes smaller after learning. When the system encounters external
disturbances, the error can also rapidly be eliminated, making the system gradually stable.
Figure 11c reveals that at around 5 s and 4 s, respectively, the initially assigned linear and
angular velocities begin to converge. When the system is disturbed, the robot’s velocity
and angular velocity can change swiftly. Figure 11d presents the timetable of the trajectory
tracking controller parameter gain over time. Figure 11e illustrates how the system focuses
on improving its optimal policies by performing fine discretization operations on the state

External disturbance

Figure 11. Speed 0.2 m/s linear trajectory tracking. (a) Linear trajectory tracking; (b) Pose error;
(c) Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

4.3.2. Physical Experiment with Circular Trajectory Tracking

In the circular trajectory tracking experiment, the initial pose of the robot was set
to [x(0), y(0), θ(0)]T = [0, 0, π

3]
T . The expected velocity and angular velocity were set

to v = 0.2 m/s and ωc = 0.1 rad/s, and the initial gain for the Backstepping trajectory
tracking controller was set at [0.5, 3.51, 2.5]. Similar to linear trajectory tracking, random
perturbations were added to test the superior performance of the proposed algorithm.
The results of the circular experiment based on the Double Q-learning adaptive trajectory
tracking control algorithm are illustrated in Figure 12.

Actuators 2023, 12, 326 20 of 24

Actuators 2023, 12, x FOR PEER REVIEW 21 of 26

space and action space through incremental active learning mechanisms. Figure 11f shows
how reward changes over time. After the disturbance is eliminated, the reward value fi-
nally stabilizes at around -1, demonstrating that the proposed adaptive trajectory tracking
controller can achieve accurate curve tracking with good stability, robustness, and anti-
interference performance for the mobile robot system.

4.3.2. Physical Experiment with Circular Trajectory Tracking
In the circular trajectory tracking experiment, the initial pose of the robot was set to

[(0), (0), (0)] [0,0,]
3

T Tx y πθ = . The expected velocity and angular velocity were set to

0.2 /v m s= and 0.1cω = rad/s, and the initial gain for the Backstepping trajectory track-
ing controller was set at [0.5, 3.51, 2.5]. Similar to linear trajectory tracking, random per-
turbations were added to test the superior performance of the proposed algorithm. The
results of the circular experiment based on the Double Q-learning adaptive trajectory
tracking control algorithm are illustrated in Figure 12.

(a) (b)

(c) (d)

(e) (f)

External disturbance

Figure 12. Speed 0.2 m/s Circular trajectory tracking. (a) Linear trajectory tracking; (b) Pose error;
(c) Velocity and angular velocity; (d) Controller gains; (e) Incremental discretization level; (f) Reward.

To evaluate the stability, robustness, and anti-disturbance capabilities of the adaptive
trajectory tracking algorithm, we conducted circular trajectory tracking experiments with
an expected linear velocity of 0.2 m/s and angular velocity of 0.1 rad/s for the mobile robot.
Figure 12a shows that the appearance of system disturbance causes the robot to deviate from
the desired trajectory, but the adaptive trajectory tracking algorithm quickly and accurately
tracks the desired trajectory. In addition, Figure 12b displays the pose error of the robot
during the tracking process, indicating that the tracking error exhibits a large overshoot
in the initial stages, but the system gradually stabilizes at about 12 s. When the system
experiences external disturbances, the adaptive trajectory tracking controller can rapidly
eliminate the error, making the system tend towards a stable state. Figure 12c illustrates that
the linear velocity and angular velocity begin to converge around 8 s and 5 s, respectively.
Furthermore, when a disturbance occurs, the system quickly adjusts the robot’s velocity
and angular velocity. Figure 12d indicates that the optimal trajectory tracking controller

Actuators 2023, 12, 326 21 of 24

parameter gain is obtained after approximately 36 s. Figure 12e shows that as learning
progresses, the agent becomes more focused on improving its optimal policy. Through the
incremental active learning mechanism, the agent performs fine discretization operations
on the state space and action space. Finally, Figure 12f presents the reward values at each
moment during the experiments. After eliminating the disturbance, the final reward value
is stable at around −1.

As shown in Figures 11 and 12, the results demonstrate that the designed adaptive
trajectory tracking controller can enable the mobile robot system to quickly eliminate
disturbance errors and achieve accurate trajectory tracking with high precision.

4.4. Comparative Experiments

The traditional backstepping trajectory tracking control algorithm needs to use expert-
level prior experience to adjust the controller parameter gain. Therefore, we compare
Fuzzy-Backstepping adaptive trajectory tracking controller [49] used in the laboratory
robot platform with the advanced Backstepping-Fractional-Older PID controller [50] and
the Double Q-learning adaptive trajectory tracking control proposed in this paper. The gains
of the trajectory tracking controller selected by the laboratory platform are [3,5,5], ρ = 0,
σ = diag(1, 1), en

v = {−0.2,−0.15,−0.1,−0.5, 0, 0.5, 0.1, 0.15, 0.2}, kn
s = {0, 0.1, 0.2, 0.3, 0.4},

Ai = {NB, NM, NS, ZO, PS, PM, PB}, Bi = {ZO, PS, PM, PB}. The gain of the Backstepping-
Fractional-Older PID trajectory tracking controller is c1 = c2 = 2, λ = 0.4, de = δe = 0.95.
Choose the square as the desired trajectory for the actual test, the initial pose of the robot
was set to [x(0), y(0), θ(0)]T = [0, 0, π

3]
T . The expected velocity and angular velocity were

set to v = 0.2 m/s. The trajectory comparison result is shown in Figure 13a, and the error
result is shown in Figure 13b.

Actuators 2023, 12, x FOR PEER REVIEW 23 of 26

(a) (b)

Figure 13. Speed 0.2 m/s square trajectory tracking. (a) Square trajectory tracking; (b) Pose error.

Comparing the experimental results, the obtained errors are 0.05 m, 0.08 m, and 0.1
m, respectively. It can be seen that using the algorithm proposed in this paper, the average
trajectory tracking error obtained under the same environment and state of the robot is
the smallest. In other words, the adaptive trajectory tracking algorithm proposed in this
paper demonstrates higher control accuracy and a smaller error under similar conditions
in the physical experiment.

5. Conclusions
To address the difficulty of adjusting the parameter gains of the backstepping trajec-

tory tracking controller for mobile robots, this paper proposes an adaptive trajectory track-
ing control method based on reinforcement learning, according to the characteristics of
the backstepping trajectory tracking controller, the double Q-learning learning algorithm
and the kinematic model of mobile robots. The improved trajectory tracking online learn-
ing algorithm adopts an incremental discrete sub-region fast learning strategy to make the
Q-table converge quickly and realize the refinement operation, improving the control ac-
curacy of trajectory tracking. By comparing multiple time memories and experience re-
play mechanisms, we accelerate both the control learning system and learning process,
effectively shortening learning time, so that the optimized algorithm can complete the
learning process faster in practical applications and realize the optimal control of trajec-
tory tracking for mobile robots. Finally, the proposed algorithm is verified through both
simulation and physical experiments. The experimental results show that the control al-
gorithm can be used to adjust the parameters of the mobile robot trajectory tracking con-
troller online in real time and has good robustness, generalization, real-time, and anti-
disturbance capabilities under complex tasks. In addition, we believe that the control al-
gorithm proposed in this paper has broad applicability and can be readily adapted to di-
verse control systems, such as UAVs, robotic arms, etc.

In future work, we will focus on some interesting topics such as global path planning
for mobile robots without SLAM, long-range autonomous navigation, and autonomous
obstacle avoidance.

Author Contributions: Conceptualization, N.H. and Z.Y.; methodology, N.H.; software, X.F.; vali-
dation, N.H., Y.S. and X.F.; formal analysis, J.W.; investigation, Y.S.; resources, N.H.; data curation,
N.H.; writing—original draft preparation, N.H.; writing—review and editing, N.H.; visualization,
N.H.; supervision, Y.S.; project administration, Q.Z.; funding acquisition, X F. All authors have read
and agreed to the published version of the manuscript.

Funding: (1) Part of this research was funded by the Guizhou Provincial Science and Technology
Projects under Grant Guizhou-Sci-Co-Supp (Number: [2020]2Y044); (2) The other part was funded

Figure 13. Speed 0.2 m/s square trajectory tracking. (a) Square trajectory tracking; (b) Pose error.

Comparing the experimental results, the obtained errors are 0.05 m, 0.08 m, and 0.1 m,
respectively. It can be seen that using the algorithm proposed in this paper, the average
trajectory tracking error obtained under the same environment and state of the robot is the
smallest. In other words, the adaptive trajectory tracking algorithm proposed in this paper
demonstrates higher control accuracy and a smaller error under similar conditions in the
physical experiment.

5. Conclusions

To address the difficulty of adjusting the parameter gains of the backstepping trajectory
tracking controller for mobile robots, this paper proposes an adaptive trajectory tracking
control method based on reinforcement learning, according to the characteristics of the
backstepping trajectory tracking controller, the double Q-learning learning algorithm and
the kinematic model of mobile robots. The improved trajectory tracking online learning

Actuators 2023, 12, 326 22 of 24

algorithm adopts an incremental discrete sub-region fast learning strategy to make the
Q-table converge quickly and realize the refinement operation, improving the control accu-
racy of trajectory tracking. By comparing multiple time memories and experience replay
mechanisms, we accelerate both the control learning system and learning process, effec-
tively shortening learning time, so that the optimized algorithm can complete the learning
process faster in practical applications and realize the optimal control of trajectory tracking
for mobile robots. Finally, the proposed algorithm is verified through both simulation and
physical experiments. The experimental results show that the control algorithm can be used
to adjust the parameters of the mobile robot trajectory tracking controller online in real
time and has good robustness, generalization, real-time, and anti-disturbance capabilities
under complex tasks. In addition, we believe that the control algorithm proposed in this
paper has broad applicability and can be readily adapted to diverse control systems, such
as UAVs, robotic arms, etc.

In future work, we will focus on some interesting topics such as global path planning
for mobile robots without SLAM, long-range autonomous navigation, and autonomous
obstacle avoidance.

Author Contributions: Conceptualization, N.H. and Z.Y.; methodology, N.H.; software, X.F.; valida-
tion, N.H., Y.S. and X.F.; formal analysis, J.W.; investigation, Y.S.; resources, N.H.; data curation, N.H.;
writing—original draft preparation, N.H.; writing—review and editing, N.H.; visualization, N.H.;
supervision, Y.S.; project administration, Q.Z.; funding acquisition, X F. All authors have read and
agreed to the published version of the manuscript.

Funding: (1) Part of this research was funded by the Guizhou Provincial Science and Technology
Projects under Grant Guizhou-Sci-Co-Supp (Number: [2020]2Y044); (2) The other part was funded
by the research and application of intelligent system for data collection, transmission and repair of
training sites (Key Research and Development Project, Number: 2021YFF0306405).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Thanks to the Shenyang Institute of Automation, the Chinese Academy of
Sciences for providing the experimental site and platform.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jeddisaravi, K.; Alitappeh, R.J.; Pimenta, L.C.A.; Guimarães, F.G. Multi-objective approach for robot motion planning in search

tasks. Appl. Intell. 2016, 45, 305–321. [CrossRef]
2. Panduro, R.; Segura, E.; Belmonte, L.M.; Fernández-Caballero, A.; Novais, P.; Benet, J.; Morales, R. Intelligent trajectory planner

and generalised proportional integral control for two carts equipped with a red-green-blue depth sensor on a circular rail. Integr.
Comput. Eng. 2020, 27, 267–285. [CrossRef]

3. Chocoteco, J.A.; Morales, R.; Feliu, V.; Sira-Ramírez, H. Robust output feedback control for the trajectory tracking of robotic
wheelchairs. Robotica 2014, 33, 41–59. [CrossRef]

4. Vaidyanathan, S.; Azar, A.T. Backstepping Control of Nonlinear Dynamical Systems; Elsevier: Amsterdam, The Netherlands, 2018.
5. Zheng, F.; Gao, W. Adaptive integral backstepping control of a Micro-Quadrotor. In Proceedings of the International Conference

on Intelligent Control & Information Processing, Harbin, China, 25–28 July 2011.
6. Nikdel, N.; Badamchizadeh, M.; Azimirad, V.; Nazari, M. Adaptive backstepping control for an n-degree of freedom robotic

manipulator based on combined state augmentation. Robot. Comput. Manuf. 2017, 44, 129–143. [CrossRef]
7. Dumitrascu, B.; Filipescu, A.; Minzu, V. Backstepping control of wheeled mobile robots. In Proceedings of the 2011 15th

International Conference on System Theory, Control, and Computing (ICSTCC), Sinaia, Romania, 14–16 October 2011.
8. Kou, B.; Wang, Y.L.; Liu, Z.Q.; Zhang, X.M. Trajectory Tracking Control for an Underactuated Unmanned Surface Vehicle Subject

to External Disturbance and Error Constraints. In Intelligent Equipment, Robots, and Vehicles; Springer: Singapore, 2021; pp. 704–713.
9. Wang, M.; Zhang, Z.; Liu, Y. Adaptive backstepping control that is equivalent to tuning functions design. Int. J. Control Autom.

Syst. 2016, 14, 90–98. [CrossRef]
10. Wang, Z.; Liu, X.; Wang, W. Linear-based gain-determining method for adaptive backstepping controller. ISA Trans. 2022, 127,

342–349. [CrossRef]
11. Van, M.; Mavrovouniotis, M.; Ge, S.S. An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust

Fault Tolerant Control of Robot Manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 1448–1458. [CrossRef]

https://doi.org/10.1007/s10489-015-0754-y
https://doi.org/10.3233/ICA-200622
https://doi.org/10.1017/S0263574714000071
https://doi.org/10.1016/j.rcim.2016.08.007
https://doi.org/10.1007/s12555-014-0515-4
https://doi.org/10.1016/j.isatra.2021.08.029
https://doi.org/10.1109/TSMC.2017.2782246

Actuators 2023, 12, 326 23 of 24

12. Sun, D.H.; Cui, M.Y.; Li, Y.F. Adaptive backstepping control of wheeled mobile robots with parameter uncertainties. Control
Theory Appl. 2012, 29, 1198–1204.

13. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
14. Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable Deep Reinforcement Learning for Robotic

Manipulation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD,
Australia, 21–25 May 2018; pp. 6244–6251.

15. Christopher, J. Q-learning. Mach. Learn. 1992, 8, 279–292.
16. Abdi, A.; Adhikari, D.; Park, J.H. A Novel Hybrid Path Planning Method Based on Q-Learning and Neural Network for Robot

Arm. Appl. Sci. 2021, 11, 6770. [CrossRef]
17. Ibrahim, M.M.S.; Atia, M.R.; Fakhr, M.W. Autonomous Vehicle Path Planning using Q-Learning. J. Phys. Conf. Ser. 2021,

2128, 012018. [CrossRef]
18. Li, Z.; Liu, W.; Li, L.; Guo, L.; Zhang, W. Modeling and adaptive controlling of cable-drogue docking system for autonomous

underwater vehicles. Int. J. Adapt. Control Signal Process. 2022, 36, 354–372. [CrossRef]
19. Lample, G.; Chaplot, D.S. Playing FPS games with deep reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; AAAI Press: Washington, DC, USA, 2017.
20. Angiuli, A.; Fouque, J.-P.; Laurière, M. Unified reinforcement Q-learning for mean field game and control problems. Math. Control

Signals Syst. 2022, 34, 217–271. [CrossRef]
21. Seyed Ebrahimi, S.H.; Majidzadeh, K.; Soleimanian Gharehchopog, F. Multi-Label Classification with Meta-Label-Specific Features

and Q-Learning. Control Optim. Appl. Math. 2022, 6, 37–52.
22. Renuka, S.; Raj Kiran, G.S.S.; Rohit, P. An unsupervised content-based article recommendation system using natural language

processing. In Data Intelligence and Cognitive Informatics; Springer: Singapore, 2021; pp. 165–180.
23. Xu, B.; Tang, X.; Hu, X.; Lin, X.; Li, H.; Rathod, D.; Wang, Z. Q-Learning-Based Supervisory Control Adaptability Investigation for

Hybrid Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6797–6806. [CrossRef]
24. Thakkar, H.K.; Desai, A.; Singh, P.; Samhitha, K. ReLearner: A Reinforcement Learning-Based Self Driving Car Model Using

Gym Environment. In Proceedings of the International Advanced Computing Conference, Msida, Malta, 18–19 December 2021;
Springer: Cham, Switzerland, 2021; pp. 399–409.

25. Carlucho, I.; De Paula, M.; Villar, S.A.; Acosta, G.G. Incremental Q-learning strategy for adaptive PID control of mobile robots.
Expert Syst. Appl. 2017, 80, 183–199. [CrossRef]

26. Carlucho, I.; De Paula, M.; Acosta, G.G. Double Q-PID algorithm for mobile robot control. Expert Syst. Appl. 2019, 137, 292–307.
[CrossRef]

27. Cheng, Y.; Zhao, P.; Wang, F.; Block, D.J.; Hovakimyan, N. Improving the Robustness of Reinforcement Learning Policies with L1
Adaptive Control. IEEE Robot. Autom. Lett. 2022, 7, 6574–6581. [CrossRef]

28. Subudhi, B.; Pradhan, S.K. Direct adaptive control of a flexible robot using reinforcement learning. In Proceedings of the 2010
International Conference on Industrial Electronics, Control and Robotics, Rourkela, India, 27–29 December 2010; pp. 129–136.

29. Khan, S.G.; Herrmann, G.; Lewis, F.L.; Pipe, T.; Melhuish, C. Reinforcement learning and optimal adaptive control: An overview
and implementation examples. Annu. Rev. Control 2012, 36, 42–59. [CrossRef]

30. Hasselt, H. Double Q-learning. In Proceedings of the Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010, Vancouver, BC, Canada, 6–9 December 2010.

31. Ou, J.; Guo, X.; Zhu, M.; Lou, W. Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent Q-learning
with monocular vision. Neurocomputing 2021, 441, 300–310. [CrossRef]

32. Khamidehi, B.; Sousa, E.S. A double Q-learning approach for navigation of aerial vehicles with connectivity constraint. In Pro-
ceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020;
pp. 1–6.

33. Jamshidi, F.; Zhang, L.; Nezhadalinaei, F. Autonomous driving systems: Developing an approach based on a* and double
q-learning. In Proceedings of the 2021 7th International Conference on Web Research (ICWR), Tehran, Iran, 19–20 May 2021;
pp. 82–85.

34. Khan, S.N.; Mahmood, T.; Ullah, S.I.; Ali, K.; Ullah, A. Motion Planning for a Snake Robot using Double Deep Q-Learning.
In Proceedings of the 2021 International Conference on Artificial Intelligence (ICAI), Islamabad, Pakistan, 5–7 April 2021;
pp. 264–270.

35. Kumar, U.; Sukavanam, N. Backstepping Based Trajectory Tracking Control of a Four Wheeled Mobile Robot. Int. J. Adv. Robot.
Syst. 2008, 5, 38. [CrossRef]

36. Simba, K.R.; Uchiyama, N.; Sano, S. Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves.
Robot. Comput. Manuf. 2016, 41, 31–42. [CrossRef]

37. Wu, X.; Jin, P.; Zou, T.; Qi, Z.; Xiao, H.; Lou, P. Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for
Differential Mobile Robots. J. Intell. Robot. Syst. 2019, 96, 109–121. [CrossRef]

38. Fierro, R.; Lewis, F.L. Control of a nonholomic mobile robot: Backstepping kinematics into dynamics. J. Robot. Syst. 1997, 14,
149–163. [CrossRef]

39. Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T. A stable tracking control method for a non-holonomic mobile robot.
In Proceedings of the IROS, Osaka, Japan, 3–5 November 1991; pp. 1236–1241.

https://doi.org/10.3390/app11156770
https://doi.org/10.1088/1742-6596/2128/1/012018
https://doi.org/10.1002/acs.3261
https://doi.org/10.1007/s00498-021-00310-1
https://doi.org/10.1109/TITS.2021.3062179
https://doi.org/10.1016/j.eswa.2017.03.002
https://doi.org/10.1016/j.eswa.2019.06.066
https://doi.org/10.1109/LRA.2022.3169309
https://doi.org/10.1016/j.arcontrol.2012.03.004
https://doi.org/10.1016/j.neucom.2021.02.017
https://doi.org/10.5772/6224
https://doi.org/10.1016/j.rcim.2016.02.002
https://doi.org/10.1007/s10846-019-00980-9
https://doi.org/10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R

Actuators 2023, 12, 326 24 of 24

40. Li, Z.; Deng, J.; Lu, R.; Xu, Y.; Bai, J.; Su, C.-Y. Trajectory-Tracking Control of Mobile Robot Systems Incorporating Neural-Dynamic
Optimized Model Predictive Approach. IEEE Trans. Syst. Man, Cybern. Syst. 2015, 46, 740–749. [CrossRef]

41. Monahan, G.E. State of the art—A survey of partially observable Markov decision processes: Theory, models, and algorithms.
Manag. Sci. 1982, 28, 1–16. [CrossRef]

42. Neumann, G.; Peters, J.; Koller, D. Fitted Q-iteration by Advantage Weighted Regression. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2008.

43. Bengio, Y.; LeCun, Y.; Bottou, L.; Chapelle, O.; DeCoste, D.; Weston, J. Scaling Learning Algorithms toward AI. Large-Scale Kernel
Mach. 2007, 34, 1–41.

44. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

45. Zhang, S.; Sutton, R.S. A deeper look at experience replay. arXiv 2017, arXiv:1712.01275.
46. Tokic, M. Adaptive ε-greedy exploration in reinforcement learning based on value differences. In Proceedings of the Annual

Conference on Artificial Intelligence, Karlsruhe, Germany, 21–24 September 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 203–210.

47. Dos Santos Mignon, A.; da Rocha, R.L.A. An adaptive implementation of ε-Greedy in reinforcement learning. Procedia Comput.
Sci. 2017, 109, 1146–1151. [CrossRef]

48. Ullah, I.; Shen, Y.; Su, X.; Esposito, C.; Choi, C. A Localization Based on Unscented Kalman Filter and Particle Filter Localization
Algorithms. IEEE Access 2019, 8, 2233–2246. [CrossRef]

49. Lee, H. Robust Adaptive Fuzzy Control by Backstepping for a Class of MIMO Nonlinear Systems. IEEE Trans. Fuzzy Syst. 2010,
19, 265–275. [CrossRef]

50. Xu, L.; Du, J.; Song, B.; Cao, M. A combined backstepping and fractional-order PID controller to trajectory tracking of mobile
robots. Syst. Sci. Control Eng. 2022, 10, 134–141. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMC.2015.2465352
https://doi.org/10.1287/mnsc.28.1.1
https://doi.org/10.1016/j.procs.2017.05.431
https://doi.org/10.1109/ACCESS.2019.2961740
https://doi.org/10.1109/TFUZZ.2010.2095859
https://doi.org/10.1080/21642583.2022.2047125

	Introduction
	Problem Statement and Analysis
	Backstepping Trajectory Tracking System for Mobile Robots
	Mobile Robot Kinematics Model
	Calculation of Pose Error of the Mobile Robot
	Mobile Robot Trajectory Tracking Control Scheme
	Mobile Robot Trajectory Tracking Controller

	Reinforcement Learning Self-Adaptive Control
	Reinforcement Learning Description
	Double Q-Learning of Adaptive Backstepping
	Incremental Discretization of State Space and Action Space

	Self-Adaptive Trajectory Tracking Control Algorithm Based on Reinforcement Learning
	Experience Replay Mechanism
	Incremental Discretization Process
	Algorithmic Statement

	Experimental Result
	RL Hyperparameter Settings
	Simulation Experiments
	Linear Trajectory Tracking Simulation Experiment
	Circular Trajectory Tracking Simulation Experiment

	Physical Experiments
	Physical Experiment with Linear Trajectory Tracking
	Physical Experiment with Circular Trajectory Tracking

	Comparative Experiments

	Conclusions
	References

