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Abstract: Interference fit is often used in rotating machinery to transmit torque and force. The actual
interference value is uncertain due to factors such as manufacturing errors and operating conditions,
resulting in a gap between the response of the system and theoretical results. Therefore, the interval
method is used to study the magnetically suspended dual-rotor system (MSDS) with uncertainty
of interference-fit value. Firstly, a theoretical model of the MSDS was established using the finite
element method, and the influence mechanism of the interference value on the rotor bending stiffness
was derived. Then, the rotor stiffness range was obtained from the uncertain range of interference
value. Finally, the dynamic response of the MSDS was studied based on the Chebyshev interval
method. The research results indicate that the uncertainty of interference value has an effect on
the vibration response of the MSDS. The vibration response of the system is most affected near the
first-order bending critical speed, and the effect on rotor response is relatively small in other angular
speed regions. The research results can provide a basis for the design of rotor systems.

Keywords: magnetically suspended dual-rotor system; interval method; uncertainty of interference
value; dynamic response

1. Introduction

Active magnetic bearing (AMB) is a new type of bearing that achieves stable rotor sus-
pension by controllable electromagnetic force. It has several advantages such as no contact,
no lubrication, no wear, high rotational speed, and adjustable dynamic characteristics [1].
Rotors supported by electromagnetic bearings are well-suited for extreme environments,
such as high-speed and vacuum. Research focusing on the active magnetic bearing is an
important development direction in the future.

Interference fit is widely used in magnetically suspended rotor systems due to its
excellent characteristics such as strong load-bearing capacity, simple structure, and low-cost
manufacturing. Many scholars at home and abroad have studied the characteristics of
interference fit. Li et al. [2] studied the influence of interference fit between the gear and shaft
on gear transmission performance in automotive transmissions. Hu et al. [3] proposed an
error calculation model for shaft holes during the interference-fit stage. Liu et al. [4] studied
the influence of interference fit between shaft and gear on the meshing characteristics of
cylindrical gears. Suo et al. [5] conducted experimental and numerical studies on the wear
damage mechanism of the interference-fit interfaces. Shu et al. [6] analyzed the distribution
of wear debris, damage, and crack initiation characteristics of the axle in the interference-fit
contact area. Lanoue et al. [7] studied the displacement and stress near the contact edge
of the interference fit. Wang et al. [8] studied the effect of interference fit on the dynamic
characteristics of the spindle rotor system. Güven [9] studied the effect of the design
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parameters on the root bending stress considering the interference fit between the shaft and
gear. Pedersen [10] optimized the design of the shaft and hub assembled by interference fit
to improve the contact-pressure distribution. Gruescu et al. [11] determined the value of
interference fit by calculating the necessary contact pressure for transmitting axial and/or
tangential loadings. Storti and Fonçatti [12] proposed a specific calculation routine based on
ANSYS finite element analysis to study the influence of interference fit on the rotor dynamic
behavior of the machine. Kovan [13] conducted stress and separation frequency analyses
of interference fit between the shaft and hub. Vishwakarma et al. [14] studied the influence
of tapered interference fit between the impeller and shaft in a centrifugal compressor. It is
evident that interference fit has a significant impact on system characteristics.

When the shaft is in interference fit with other parts, contact pressure will be formed
on the contact surface and an additional stiffness will be generated on the rotor, thereby
affecting the dynamic characteristics of the rotor system. In the actual rotors, due to
the influence of manufacturing errors, operating conditions, and other factors, there is
uncertainty in the actual interference-fit value, making it difficult to accurately describe
the dynamic characteristics of the rotor. Therefore, it is necessary to consider the impact
of uncertain interference value on the dynamic characteristics of the rotor during the
research process.

In the study of rotor systems, there has been some research on the quantification
of uncertainty issues. Among them, the interval method [15–18] has been widely used
because it does not need to know the prior probability distribution of the parameters
and select the membership functions to obtain the response interval of the rotor system.
Fu et al. [19,20] studied the effects of different uncertain parameters on rotor imbalance
response and crack response using an interval precise integration method. Chen and
Guo [21] introduced interval Gaussian kernel functions to measure interval fault diagnosis
of rotor cracks under uncertain conditions. Ma et al. [22,23] proposed an interval analysis
method based on Chebyshev expansion to analyze the dynamic response of rotors under
uncertain parameters. Molina et al. [24] analyzed the structural response sensitivity of
flexible rotors under uncertain interval parameters. Hao et al. [25] established an equation
for calculating the natural frequency of a rotor system with uncertain parameters through
interval Taylor expansion analysis. Barbosa et al. [26] used interval uncertainty and sensi-
tivity methods to evaluate the influences of uncertain parameters on the dynamic behavior
of the shaft. Although there have been many studies on the uncertainty issues of the rotor,
there has been no study considering the influence of the uncertain interference value of the
shaft components.

In response to the shortcomings in the existing research, this paper derives the influ-
ence mechanism of the interference value on the rotor stiffness and models the interference
value in the magnetically suspended dual-rotor system (MSDS) as an interval value, thereby
obtaining the rotor stiffness interval. Finally, the dynamic response of the MSDS with un-
certain interference value is studied by the Chebyshev interval method.

2. Dual-Rotor Model and Its Motion Equation
2.1. Structure of the Magnetically Suspended Dual-Rotor System

Based on the structural characteristics of the rotor components in a multi-electric
aviation engine, a MSDS is designed. The main structure is shown in Figure 1. The inner
rotor and outer rotor simulate the low-pressure shaft and high-pressure shaft in the aviation
engine respectively, and the coupling of the inner and outer rotors is achieved through a
rolling bearing as an inter-shaft bearing. Among them, discs 1 and 2 are low-pressure shaft
turbine discs, while discs 3 and 4 are high-pressure shaft turbine discs. The inner rotor is
supported by two active magnetic bearings, and the outer rotor is supported by one active
magnetic bearing.

Table 1 displays the primary structural parameters of the MSDS. This article mainly
studies the radial vibration of the rotor under high-speed conditions. The mass of the rotor
is relatively small. Therefore, for the convenience of analysis, the following assumptions
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were taken into account: (a) Neglecting the effects of torsional and axial vibrations, only
considering radial vibrations; (b) Neglecting the influence of the rotor gravity.
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Figure 1. Structural diagram of the magnetically suspended dual-rotor system.

Table 1. Main parameters of the magnetically suspended dual-rotor system.

Title Value Title Value

Inner rotor
length(m) 0.706 Outer rotor length(m) 0.5011

Inner rotor outer
radius(m) 0.0125 Outer rotor outer

radius(m) 0.02

Inner rotor inner
radius(m) 0.0075 Outer rotor inner

radius(m) 0.015

Inner rotor density
(kg/m3) 7850 Outer rotor

density(kg/m3) 7850

Elastic modulus of
the inner rotor (Pa) 2.1 × 1011 Elastic modulus of the

outer rotor(Pa) 2.1 × 1011

Poisson ratio of
inner rotor 0.3 Poisson ratio of

outer rotor 0.3

Inner rotor disc
density(kg/m3) 7928.56 Outer rotor disc

density(kg/m3) 7928.56

Inner rotor disc
thickness(m) 0.0273 Outer rotor disc

thickness(m) 0.0273

Outer radius of
disc 1(m) 0.125 Outer radius of disc 3(m) 0.125

Inner radius of
disc 1(m) 0.0125 Inner radius of disc 3(m) 0.02

Outer radius of
disc 2(m) 0.125 Outer radius of disc 4(m) 0.125

Inner radius of
disc 2(m) 0.0125 Inner radius of disc 4(m) 0.02

2.2. Dynamics Equations of the System

In the rest of the work, the term “shaft element” should be understood as a two-node
finite beam element determined based on the Euler-Bernoulli beam theory. The inner rotor
is discretized into 5 nodes and the outer rotor is discretized into 4 nodes.

The displacement vectors of the inner and outer rotors can be determined from Figure 1:
q1L = [x1, θy1, x2, θy2, · · · , x5, θy5]

T

q2L = [y1, −θx1, y2, −θx2, · · · , y5, −θx5]
T

q1H = [x6, θy6, x7, θy7, · · · , x9, θy9]
T

q2H = [y6, −θx6, y7, −θx7, · · · , y9,−θx9]
T

(1)

where q1L and q2L represent the generalized displacement vectors of the inner rotor. q1H
and q2H represent the generalized displacement vectors of the outer rotor. xk and yk
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(k = 1, 2,. . . , 5) denote the translational displacements of the inner rotor nodes 1~5 along
the x and y axes, respectively. xk and yk (k = 6,. . . , 9) denote the translational displacements
of the outer rotor nodes 6~9 along the x and y axes. θxk and θyk (k = 1, 2,. . . , 5) refer to
the rotational displacements of the inner rotor nodes 1~5 around the x and y axes, while
θxk and θyk (k = 6,. . . , 9) indicate the rotational displacements of the outer rotor nodes 6~9
around the x and y axes.

By assembling the motion equations of each of the shaft elements and discs of the
inner and outer rotor, the motion equations of the inner and outer rotors in the XOZ and
YOZ planes can be obtained as follows:

ML
..
q1L + ωLJL

.
q2L + KLq1L = F1L

ML
..
q2L + ωLJL

.
q1L + KLq2L = F2L

MH
..
q1H + ωHJH

.
q2H + KHq1H = F1H

MH
..
q2H + ωHJH

.
q1H + KHq2H = F2H

(2)

where ML, JL, and KL represent the mass matrix, gyroscopic matrix, and stiffness matrix of
the inner rotor. MH, JH, and KH represent the mass matrix, gyroscopic matrix, and stiffness
matrix of the outer rotor. The angular speed of the inner and outer rotors are represented
by ωL and ωH, and ωH = ru*ωL, where ru is the angular speed ratio between the outer rotor
and the inner rotor. Furthermore, F1L and F2L are generalized forces that act on the inner
rotor in the XOZ and YOZ planes, F1H and F2H are generalized forces that act on the outer
rotor in the XOZ and YOZ planes. When the unbalances are located on discs 2 and 4, F1L,
F2L, F1H, and F2H can be expressed as:

F1L = [Fax,1 0 0 0 0 0 m2eω2
L sin(ωLt) 0 Fax,2 0]T

F2L = [Fay,1 0 0 0 0 0 m2eω2
L cos(ωLt) 0 Fay,2 0]T

F1H = [Fax,3 0 0 0 m4eω2
H sin(ωHt) 0 0 0]T

F2H = [Fay,3 0 0 0 m4eω2
H cos(ωHt) 0 0 0]T

(3)

where Fax, k (k = 1, 2, 3) is the bearing force of the active magnetic bearing 1, 2, and 3 in the
x direction. Fay, k (k = 1, 2, 3) is the bearing force of the active magnetic bearing 1, 2, and 3 in
the y direction. Furthermore, m2 and m4 are the unbalanced masses of discs 2 and 4, and
e is the eccentricity of discs 2 and 4.

According to the node number of the inter-shaft bearing shown in Figure 1, the
system’s gyroscopic matrix and stiffness matrix are modified [27].

For the convenience of description, the motion equation of the MSDS can be simplified as:

M
..
q + C

.
q + Kq = F (4)

3. Interval Method Model with Uncertainty of Interference Value
3.1. Effect of Interference Value on Rotor Stiffness

In the MSDS, many parts have interference-fit relationships to ensure the high speed
and stable operation of the rotor system. The AMB rotor is a component of the active mag-
netic bearing. The AMB rotor is suspended under the magnetic force of the electromagnet,
and is connected with the shaft by interference fit to support the rotor system. When there
is an interference value between the AMB rotor and the shaft, contact pressure will be
generated on the mating surface. This will cause the inner diameters and outer diameters
of the AMB rotor to expand, and the inner diameters and outer diameters of the shaft to be
compressed. Under the action of contact pressure, the AMB rotor is tightly connected to
the shaft. The schematic diagram of its coordination is shown in Figure 2.

The contact pressure P between the AMB rotor and shaft on the mating surface is [28]:

P =
δ

b
E2
( c2+b2

c2−b2 + ν2) +
b

E1
( b2+a2

b2−a2 − ν1)
(5)
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where δ is the interference value, E1 and ν1 are the elastic modulus and Poisson’s ratio of
the shaft, E2 and ν2 are the elastic modulus and Poisson’s ratio of the AMB rotor, a and b
are the inner diameters and outer diameters of the shaft, and c is the outer diameter of the
AMB rotor.

Actuators 2024, 13, x FOR PEER REVIEW 5 of 14 
 

 

For the convenience of description, the motion equation of the MSDS can be simpli-
fied as: 

+ + =Mq Cq Kq F   (4) 

3. Interval Method Model with Uncertainty of Interference Value 
3.1. Effect of Interference Value on Rotor Stiffness 

In the MSDS, many parts have interference-fit relationships to ensure the high speed 
and stable operation of the rotor system. The AMB rotor is a component of the active mag-
netic bearing. The AMB rotor is suspended under the magnetic force of the electromagnet, 
and is connected with the shaft by interference fit to support the rotor system. When there 
is an interference value between the AMB rotor and the shaft, contact pressure will be 
generated on the mating surface. This will cause the inner diameters and outer diameters 
of the AMB rotor to expand, and the inner diameters and outer diameters of the shaft to 
be compressed. Under the action of contact pressure, the AMB rotor is tightly connected 
to the shaft. The schematic diagram of its coordination is shown in Figure 2. 

 
Figure 2. Structural diagram of interference fit between AMB rotor and shaft. 

The contact pressure P between the AMB rotor and shaft on the mating surface is [28]: 

2 2 2 2

2 12 2 2 2
2 1

( ) ( )
P

b c b b b a
E c b E b a

δ

ν ν
=

+ ++ + −
− −

 
(5) 

where δ is the interference value, E1 and ν1 are the elastic modulus and Poisson’s ratio of 
the shaft, E2 and ν2 are the elastic modulus and Poisson’s ratio of the AMB rotor, a and b 
are the inner diameters and outer diameters of the shaft, and c is the outer diameter of the 
AMB rotor. 

The contact pressure P is uniformly and symmetrically distributed in space. Accord-
ing to the Lame equation, the radial stressσ and radial displacement u on the shaft are 
[29]: 

2 2

2 2 2

22
1

12 2
1

(1 )
( )

(1 )[ (1 ) ]
( )

b P a
b a r

ab Pu r
rE b a

σ

ν ν


 = −
 −

+ = + − −
 

(6) 

where r is the radius from the interface to the center of rotation, and the radial stressσ is 
linearly related to the radial displacement u. The radial displacement ui and uo on the inner 
surface and outer surface of the shaft can be expressed as: 

Figure 2. Structural diagram of interference fit between AMB rotor and shaft.

The contact pressure P is uniformly and symmetrically distributed in space. According
to the Lame equation, the radial stress σ and radial displacement u on the shaft are [29]: σ = b2P

(b2−a2)
(1− a2

r2 )

u = b2P
E1(b2−a2)

[ (1+ν1)a2

r + (1− ν1)r]
(6)

where r is the radius from the interface to the center of rotation, and the radial stress σ is
linearly related to the radial displacement u. The radial displacement ui and uo on the inner
surface and outer surface of the shaft can be expressed as: ui =

b2P
E1(b2−a2)

[ (1+ν1)a2

a + (1− ν1)a]

uo =
b2P

E1(b2−a2)
[ (1+ν1)a2

b + (1− ν1)b]
(7)

The displacement of any section in the shaft element can be represented by the dis-
placement of the element nodes. The micro-unit with a thickness of ds inside the element is
taken, and the bending elastic potential energy of the micro-unit is:

dVs =
1
2

EI
{

xn

yn

} T{ xn

yn

}
ds (8)

the equation of I is:

I =
π

64
[(b− uo)

4 − (a− ui)
4] (9)

The strain energy of the micro-unit is the work done by the radial stress. The cross-
section of the area between the occurrence of radial deformation and no radial deformation
on the outer surface of the micro-unit is an annular region. The radial displacement of
the outer surface is relatively small. Therefore, the annular region can be unfolded and
approximated as a rectangle region. Under the action of contact pressure P, the strain
energy of this micro-unit is:

dWs =
1
2

πbσuo

{
xn

yn

} T{ xn

yn

}
ds (10)

The total potential energy of this micro-unit is:

dPs =
1
2
[EI + πbσuo]

{
xn

yn

} T{ xn

yn

}
ds (11)
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Assuming that the full length of the shaft element is l. After organizing the above
equation and integrating it along the full length l of the element, the potential energy Ps of
the shaft element is obtained as:

Ps =
1
2
{u1s} T [Ks]{u1s} +

1
2
{u2s} T [Ks]{u2s} (12)

where {u1s} and {u2s} are the displacement of the nodes at both ends of the shaft element,
and Ks is the rotor stiffness:

[Ks] =
EI + πbσuo

l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

 (13)

The above equation is the equation of rotor stiffness after considering the interference-
fit value. Ki = EI + πbσuo represents the rotor stiffness matrix coefficient. When the
interference value δ increases from 0.005 mm to 0.02 mm, the variation curve of Ki at node 1
is shown in Figure 3. It is evident that with the increase in interference value, the rotor
stiffness matrix coefficient tends to increase.
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3.2. Interval Method Model Based on Chebyshev Polynomials

The uncertain parameters can be represented by interval parameters with known
upper and lower bounds, so the interference value can be expressed in interval form as:

δi = [δ, δ] (14)

where δi is the parameter interval of the interference value, δ is the lower bound of the
interference value, and δ is the upper bound of the interference value. The stiffness
interval of the corresponding nodes on the inner and outer rotors can be expressed as
Ki = [Ki

1 Ki
2 · · · Ki

r]
T ,

Ki
a = [Ka, Ka] = [Kc

a − βKc
a, Kc

a + βKc
a]

a = 1, 2 · · · , r
(15)

where Ki
a is the parameter interval of stiffness, Ka is the lower bound of stiffness, Ka is

the upper bound of stiffness, Kc
a is the median of the stiffness interval, and β indicates the

uncertain degree of stiffness K. The system motion equation under the uncertainty of the
interference value can be expressed as:

M
..
q(t) + C

.
q(t) + KIq(t) = F(t) (16)
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where KI is the overall stiffness matrix of the system that includes Ki. The solution of
Equation (16) can be expressed as:

qI(KI , t) =
{

q : M
..
q + C

.
q + Kq = F, q(t0) = q0, K ∈ KI

}
(17)

The above equation can be solved by Chebyshev polynomials.
When the number of uncertain interval variables is r, Equation (17) in multidimen-

sional form can be expressed via Chebyshev polynomials as:

qI(KI , t) ≈
n

∑
k1=0
· · ·

n

∑
kr=0

(
1
2
)

l
q̃k1 , · · · ,k r Ck1 , · · · ,k r (K

I) (18)

where n is the expansion order, l represents the number of occurrences of 0 in the subscript
k1, · · · , kr, and Ck1 , · · · ,k r (K

I) is a multidimensional Chebyshev polynomial that can be
expressed as:

Ck1 ,k 2 , · · · ,k r (K
I) = cos k1θ1 cos k2θ2 · · · cos krθr (19)

where q̃k1 , · · · ,k r represents the Chebyshev coefficient, which can be calculated using the
Gauss–Chebyshev polynomial:

q̃k1 , · · · ,k r ≈ ( 2
m )

r m
∑

j1=1
· · ·

m
∑

jr=1
q̃(t, cos θj1 , · · · cos θjr )

· cos k1θj1 · · · cos krθjr

(20)

where m represents the number of interpolation points in each dimension, and m ≥ n + 1,
q̃(t, cos θj1 , · · · cos θjr ) is the deterministic response solution of the system at the interpolation
point at each time step. The θjr is the interpolation point that can be expressed as:

θjr =
2jr − 1

m
π

2
, jr = 1, 2, · · · , m (21)

when uncertain variables are defined in arbitrary intervals that can be transformed into
standard intervals by transformations [19].

4. Numerical Results
4.1. Verification of Stiffness Equation

To ensure the correctness of the equation for the influence of interference value on rotor
stiffness derived in the previous paper, the calculation results were verified by considering
two extreme working conditions.

When the shaft and AMB rotor are integrated, the rotor stiffness is the sum of the shaft
stiffness and AMB rotor stiffness, and the rotor stiffness is the highest, which is the upper
bound of the stiffness. When there is no contact between the shaft and the AMB rotor, the
influence of interference value on the rotor stiffness is ignored, and only the stiffness of
the shaft is considered. The rotor stiffness is the minimum, which is the lower bound of
stiffness. The upper and lower bounds of the transient response of disc 1 with maximum
and minimum rotor stiffness are shown in the red and green curves in Figure 3. The
interference value between the shaft and the AMB rotor is 0.015 mm, and the unbalances
are located in discs 2 and 3. The eccentricity of the discs is e = 2 × 10−5 m, and the angular
speed ratio is rw = 1.2. When the MSDS is started with angular acceleration α = 500 rad/s2,
the transient deterministic response of disc 1 is shown by the black curve in Figure 4.

In Figure 4 it can be observed that when the interference value is 0.015 mm, the
transient response curve of the MSDS can be completely enveloped by the upper and
lower boundary curves of the rotor transient response at the maximum and minimum rotor
stiffness. The above calculation results can demonstrate that the equation for the influence
of interference value on rotor stiffness derived in this paper is reasonable and effective.
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4.2. Transient Response Analysis

The interference value is easily affected by manufacturing errors, operating conditions,
and other factors. At static or low angular speed, the uncertain degree of interference
value is small. When the temperature or angular speed increases, the interference value
will undergo great changes and the uncertain degree will increase. Therefore, the tran-
sient response of the system during acceleration under different uncertain degrees of the
interference value is studied.

Define Z as the amplitude, Z as the upper bound of the response amplitude, Z as the
lower bound of the response amplitude, Zc as the deterministic response amplitude, ∆Z as
the uncertain value of the response amplitude, and define ∆Z = max(Zc − Z, Z− Zc). To
represent the uncertain degree of system response, define:

λ =
∆Z
Zc (22)

The interference value between the shaft and the AMB rotor is 0.015 mm, with a
degree of uncertainty of 60%. The transient response of disc 1 during the acceleration start
of the MSDS is shown in Figure 5. The transient response of disc 1 when the uncertain
degree of interference value is within the range of [10%, 90%] is shown in Figure 6. It is
evident that the impact of uncertain interference value on the response of the MSDS is
mainly concentrated in the area where the angular speed is less than 1000 rad/s, especially
around the angular speed ω = 580 rad/s. This is the resonance peak point corresponding
to the first-order bending mode of the system, and the uncertainty of interference value
has the greatest impact on the rotor response. In other angular speed regions, the rotor
response is less affected by the uncertainty of interference value. As the uncertain degree
of interference value increases, the response range of the rotor tends to increase, especially
at the resonance peak point corresponding to the first-order bending mode.

According to Equation (22), calculate the relationship between the uncertain degree
of the response and the uncertain degree of the interference value during the entire accel-
eration process of the MSDS. The calculation results are shown in Figure 7. It is evident
that as the uncertain degree of the interference value increases, the uncertain degree of the
response tends to increase, and is approximately in a power-function relationship with the
uncertain degree of the interference value. The maximum uncertain degree of the rotor
response is close to 5%.
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4.3. Steady-State Response Analysis

This section will study the steady-state response of the MSDS under the uncertainty
of the interference value. The interference value between the shaft and the AMB rotor is
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0.015 mm. Use “#” represents the position of the shaft center at a certain time, and “*”
represents the position of the shaft center at subsequent times.

4.3.1. Influence of Unbalance on Steady-State Response

Rotor imbalance is a typical fault feature in a rotor system, and the position and value
of the unbalance can lead to differences in rotor response. By changing the position of the
unbalance and the eccentricity e, taking the internal rotor angular speed ω = 580 rad/s
as an example, the steady-state response and axis trajectory of disc 1 are analyzed. The
steady-state response and axis trajectory of disc 1 are shown in Figure 8a–d.
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As shown in Figure 8, when the unbalances are only located on the inner rotor discs 1
and 2 or the outer rotor discs 3 and 4, the rotor axis trajectory appears as a single ellipse.
This is because when the unbalances are only located on the inner or outer rotor, there
is only a corresponding inner or outer rotor rotation frequency. The vortex direction of
the MSDS with uncertain interference value is the same as that of the deterministic rotor
system. From Figure 8, it can also be seen that the influence of the unbalances located in
the inner rotor on the dynamic response of the system is much greater than that of the
unbalances located in the outer rotor on the dynamic response of the system. According
to the definition in the previous paper, it can be determined that the uncertain degree of
response is approximately 4.3% when the unbalances are located in discs 1 and 2, with an
eccentricity of 2 × 10−4 m, and the uncertain degree of response is approximately 4.4%
when the eccentricity is 2 × 10−3 m. When the unbalances are located in discs 3 and 4
with an eccentricity of 2 × 10−4 m, the uncertain degree of response is approximately 4.9%.
When the eccentricity is 2 × 10−3 m, the uncertain degree of response is still approximately
4.9%. This indicates that under the same uncertain degree of interference value, the position
and value of the unbalances have little effect on the uncertain degree of the rotor response.
When the unbalances are only located on the inner or outer rotor, the uncertain degree of
the rotor response is almost unaffected by the value of the unbalances.
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4.3.2. Influence of Angular Speed Ratio on Steady-State Response

The angular speed ratio is a unique and important parameter of the MSDS compared
with the magnetically suspended rotor system, which has a great impact on the rotor axis
trajectory and motion period. There are unbalances on both the inner rotor discs 1 and 2
and the outer rotor disc 3, changing the angular speed ratio ru, and taking the inner rotor
angular speed ω = 580 rad/s as an example. The steady-state response and axis trajectory
of disc 1 are analyzed. The steady-state response and axis trajectory of disc 1 are shown in
Figure 9a–c.
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As shown in Figure 9, when there are unbalances on discs 1, 2, and 3, the rotor axis
trajectory appears as an intertwined ring. This is because when there are unbalances on
both inner and outer rotors, there will be two rotor rotations with different frequencies.
As the angular speed ratio increases, the rotor motion period will decrease. At an angular
speed of 580 rad/s and an angular speed ratio of 1.2, the uncertain degree of rotor response
is approximately 4.4%. At an angular speed ratio of 1.4, the uncertain degree of rotor
response is approximately 4.2%. At an angular speed ratio of 1.6, the uncertain degree of
rotor response is approximately 4.3%. This indicates that although different angular speed
ratios can cause differences in rotor axis trajectory and motion period, the uncertain degree
of rotor response is less affected by the angular speed ratio under the same uncertain degree
of interference value.

5. Conclusions

This paper establishes a dynamic model of the MSDS, deduces the mechanism of
the influence of interference value on the bending stiffness of the rotor, and analyzes the
dynamic response characteristics of the MSDS based on the Chebyshev interval method
when there is uncertainty in interference value. The following conclusions are drawn.

The equation for the effect of interference fit on rotor stiffness established in this paper
is applicable to rotor models with interference-fit relationships.

The uncertainty of the interference value has a relatively large effect on the uncertain
degree of the response at the resonance peak point corresponding to the first-order bending
mode of the MSDS. In other angular speed regions, the effect of changes in uncertain
degrees of interference value on rotor response is relatively small.

The effects of the structural and operational parameters on the dynamic response of the
MSDS under uncertainty of interference value is studied by changing the unbalances and
the angular speed ratio. The research results show that under the same uncertain degree of
interference value, the change in unbalances and angular speed ratio has a relatively small
influence on the uncertain degree of the rotor response.
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